PHYSICAL REVIEW A

YOLUME 41, NUMBER 11

1 JUNE 1990

Large-order perturbation theory of the Zeeman effect in hydrogen
from a four-dimensional anisotropic anharmonic oscillator

W. Janke
Institut fiir Theorie der Elementarteilchen, Freie Universitdt Berlin,
Arnimallee 14, D-1000 Berlin 88, Federal Republic of Germany
(Received 3 November 1989)

The Zeeman Hamiltonian for (spinless) hydrogen in a constant magnetic field is shown to
be equivalent to a four-dimensional anisotropic anharmonic oscillator. Using this relation,
Rayleigh-Schrédinger perturbation series expansions of both systems can be related to each
other and analyzed in a unified way. Special emphasis is laid upon analytical estimates of their
behavior in large orders of perturbation theory. Employing the path-integral approach, a new
large-order formula is derived for the expansion of the ground-state energy of the oscillator
system. With use of known Bender-Wu formulas for isotropic anharmonic oscillators, the ma-
jor part of this calculation becomes straightforward. Combined with the above equivalence,
this calculation represents the simplest path-integral derivation of large-order formulas for the

Zeeman system.

I. INTRODUCTION

The Zeeman effect, describing atoms in constant mag-
netic field, was one of the earliest problems studied! in
quantum mechanics. For spinless hydrogen (with in-
finitely heavy nucleus), the Hamiltonian is given by

H=%1p-AP?-1r
=3’ ~ 1/r+§B*(2* +y*) + $BL, , )

where p = —iV, A = (B x r) is the vector poten-
tial, and L, is the angular momentum in the z direc-
tion, which is taken along the magnetic field direction,
B = Be,. In the natural units used in (1), B = 1 corre-
sponds to %mczaz/pg = 2.35%x10° G, which is extremely
large compared with typical laboratory fields around 10*
G.

Although many numerical and analytical investiga-
tions of this Hamiltonian have been reported in the
literature,? there is still today considerable interest in its
detailed properties, especially in strong magnetic fields.3
The main motivation comes from astrophysics*'® where
very strong magnetic fields are needed in the description
of neutron star surfaces (101°-10!2 G) and white dwarf
stars (107-10% G). Also in some solid-state systems effec-
tive magnetic fields may reach up to 10*° G.5.

About a decade ago, much effort went into deriving
formulas for the large-order coefficients in the Rayleigh-
Schrodinger perturbation series expansions for the Zee-
man energies.®~1* All these expansions turn out to be
asymptotic series. For the ground-state energy of (1),
EO® =445, E(B?/8)F, the result is®

b (D)7 (-2) T (@4 o

4

Subsequently, this information was used to apply effi-
cient resummation algorithms to these asymptotic series,
allowing accurate computations of the energies, even for
strong fields.!®

Based on Schrédinger’s formulation of quantum me-
chanics, the large-order formulas have been derived by
means of quite involved multidimensional WKB tech-
niques applied to the differential operator (1). These
calculations can be considered as a nontrivial generaliza-
tion of the original derivations!®—18 of the corresponding
Bender-Wu formulas for anharmonic oscillators. While
the latter have been rederived later from path-integral
approaches,19:20 which are conceptually more transpar-
ent and technically simpler, such approaches were never
taken for the Zeeman system.

The purpose of this paper is to present such a path-
integral derivation, albeit in a somewhat indirect fashion.
The motivation to consider this problem once more comes
from a property of the Zeeman system which has appar-
ently been overlooked so far, namely that the Zeeman
Hamiltonian (1) in three dimensions is equivalent to an
anisotropic anharmonic oscillator in four dimensions. By
applying path-integral methods to the latter, this allows
a very transparent and simple derivation of large-order
formulas for the Zeeman system. A brief account of this
approach has been given elsewhere.?!

That it is in principle possible to relate three-
dimensional Coulomb systems to four-dimensional os-
cillators has been known ever since the early work of
Schrodinger?? on his wave equation in 1941. Later such
an equivalence was rediscovered by Kustaanheimo and
Stiefel?® in the context of the classical Kepler prob-
lem in celestial mechanics. More recently, the latter
formulation was used by Duru and Kleinert?* to ob-
tain the path-integral quantization of the pure Coulomb
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potential in terms of a harmonic oscillator. Another
important exarnple is the Stark Hamiltonian for a hy-
drogen atom in constant electric field, which can be
shown!%17(®125 {5 be equivalent to two decoupled two-
dimensional isotropic oscillators with quartic anhar-
monicity. Making use of known results for anharmonic
oscillators, this allowed a very efficient calculation of
perturbation expansions for Stark resonances and their
large-order behaviors.!#17(®).25 A similar approach has
been applied recently to a simplified model with isotropic
perturbations o r? of the Coulomb potential.?® Many
features of the equivalence can already be studied in this
toy model. For the physically interesting case of the Zee-
man Hamiltonian (1), the equlvalent osc111ator system is
derived in Sec. II.

The main body of the paper focuses on exploiting this
equivalence and is organized as follows. In Sec. III ex-
plicit transformation formulas are given which map per-
turbation expansions of both systems onto each other.
The large-order behavior of perturbation expansions for
the oscillator system is discussed in Sec. IV on the basis
of the path-integral approach. Making use of known re-
sults for isotropic anharmonic oscillators, it turns out to
be straightforward to derive a large-order formula for the
ground-state energy which is equivalent to Eq. (2). This
formula is checked against exact perturbation coefficients
in relatively high order, and correction terms are com-
puted numerically. The final two sections are devoted to
a discussion of future applications and some concluding
remarks. In Appendix A recursion relations are derived
which generate the perturbation coefficients of the oscil-
lator system, and in Appendix B an alternative approach
is presented for calculating fluctuation determinants.

II. EQu IVALENCE

In this section we shall derive the equ1valence of the
Zeeman Hamiltonian (1) to a certain anisotropic anhar-
monic oscillator in four dimensions.

A. Heuristic considerations

In order to see the general aspects of the equiv-
alence most transparently, we shall start with some
heuristic considerations. They are based on the famous
Kustaanheimo-Stiefel mapping??

z = 2(z123 + Taz4) ,

y = 2e124 — 233) , e —C
z= (2] +23) ~ (3 +23)
between coordinates in three and four dlmenswns, satxs—
fying
P+ + 2= @

(Boldface letters are three-vectors, and super-arrowed
letters denote four-vectors.) Originally, this mapping was
invented to cope with the classical Kepler problem. More

r—i’z—x1+m2+z3+z4
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recently, it was exploited by Duru and Kleinert?* to ob-
tain the path-integral quantization of the pure Coulomb
potential, which had eluded any direct treatments be-
fore. Compared with Duru and Kleinert,?* we have in-
terchanged z; « 3. Here we shall not go into the details
of their pioneering work on path integration. Rather, we
shall only extract the main result relevant for our pur-
poses which can be stated as follows. The Schrédinger
equation [—1A 4 V(r)]xb E+ for the pure Coulomb
potential V(r) —Z/r is equivalent to the equation

[-3V2+ R2(~E/4 - Z/r))$ (5)
where V2 is the four-dimensional Laplacian. Using (4)
and defining w? = —E/2, ¢ = Z, this can be written
as the Schrédinger equation for a four-dimensional har-
monic oscillator

log  wio)
(_EV +3'X ) b =¢ed.

Since the oscillator energies € are functions of w, the
Coulomb energies E are given as solutions of the equation

e=¢(w) =e(V-E/2) = U]
In four dimensions, the oscillator energies are &(®)
w(n + 2), so that E(™) —1Z%/(n/2 + 1)
aLZz/m , with principal quantum number m = n/2
+1 Obviously, a more rigorous treatment must yield an
additional “selection rule” which restricts the solutions of
(6) to those with quantum numbers n = even or, equiva-
lently, even angular momentum (indeed, the proper path-
integral treatment in Ref. 24 does precisely that). Such
constraints are necessary to reduce the dynamical degrees

(6)

—of freedom of the four-dimensional system. It is exactly

this subtlety which we shall neglect for the moment in
our heuristic considerations.

It is straightforward to generalize this equivalence to
a Coulomb potential plus isotropic perturbation.?® If the
total potential is V(r) = =Z/r + grP, then it is obvious
from Eqs. (4)-(6), apart from a normalization factor, that
this maps onto

w

. 2
(_%vz 2 ®)

with ¢ = e(w,g/4*!) = ¢(\/~E/2,9/471)) = Z. Ex-
actly as in the pure Coulomb case, the selection rule
turns out?® to be £o = 2c, where £o and f¢ are, re-
spectively, the angular momentum quantum numbers of
the oscillator and Coulomb system.

Similarly, for the Stark Hamiltonian with potential
V(z,y,z) = —Z/r + gz, we obtain

-2 4 Wgﬂ(ﬁ&)p) —_ E¢ ,

0t +28) = a3+ =) b= s
©)

This separates into two decoupled two-dimensional an-
harmonic oscillators [i = (uy,u), 52 = 82, + 82]
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(<37 + 5% @) ba = eabs
leading to the following relation between € and E:

e=¢ey +e_ = e4(/—E]2,+g/16)
+e—(v/—EJ2,—¢/16) = (11)
The stable oscillator with positive quartic coupling de-
termines the real part of the Stark resonances and the
unstable one their decay rates. Of course, this equiva-
lence is well known#17(b):25 and was exploited in many
studies of the Stark effect. In these works, however, it
was derived along different lines by separating the origi-
nal Coulomb problem in parabolic coordinates. .
Finally, consider the main subject of this paper,
namely the Zeeman Hamiltonian (1). Neglecting the
term BL,/2 for the moment (see below), the Zeeman
potential simplifies to V(z,y,2) = ~Z/r + g(z? + y?)
thh g B%/8. Using (3), a short calculation gives
z? 4+ y? = 4(a? + 23)(23 + =2), so that the equivalent
four-dimensional system is seen to be an anisotropic an-
harmonic oscillator,

lay , W g
(—2V + 2x

(10)

—4X2($1 + “’2)(-"’3 + 334)) =¢€¢,
(12)

again with the relation e(\/—E/2,9/43) = Z between
the energies € and E.

Of course, the main virtue of these heuristic consider-
ations is the unified treatment of quite general Coulomb
systems in three dimensions in terms of anharmonic os-

cillators in four dimensions.

B. Proof of equivalence

As mentioned above, we have neglected so far the
somewhat subtle problem of additional “selection rules”
on the four-dimensional system. Although such con-
straints can in principle be derived from the path-integral
approach along the lines of Duru and Kleinert,2* in the
anisotropic case this becomes quite cumbersome. For the
anisotropic anharmonic oscillator (12) we shall therefore
infer the precise meaning of the equivalence from a more
conventional derivation starting from the Schrodinger
equation for the Zeeman system,

1 Z B
Hy = (—5A—7+9($2+y2)+—2‘L3)¢=E¢;

(13)

with ¢ = B?/8 and L, = —i(z8,; — y0;). In cylindrical
coordinates, = pcosa, y = psina, 2z = z, this separates
into

(_.1_(52 +82) + @‘_11/_4
PN

2p2

VA B
W+9P+250)¢ Eep, (14)

6073

with ¢ = p~/2peitc* and £ = 0,+1,... being the two-
dimensional angular momentum (“magnetic”) quantum
number. Introducing parabolic coordinates p; and ps via
2= p} ~ p},
P =2p1p2,
Eq. (14) becomes

(15)

162 —1/4

1 1
——— (52 2 o
( 24(pf+p§)( ot 00)+ 3 4p3p}

Z
Y + 94P1P2) ¢=Ep, (16)

where

E=E~Bétc/2. (17)

Multiplying (16) by 4(p? +p2) and rearranging terms, we
arrive at

—1/4 + 2 —-1/4

2p} 2p3

1 22
(—'5(631 + 652) + =<

+(—4E)(p] + p3) + 494(p + p%)/ﬁp%) p=4Zp,
(18)

where use was made of the trivial identity (p? + p2)/
pip2 = 1/p? + 1/p2. The transformations (14)~(18) are
of course analogous to the treatment of the Stark Hamil-
tonian in parabolic coordinates [as can be seen by replac-
ing gp? — gz in (14), and noting that the term o ¢ in
(18) then becomes 4g(p? + p3)(p} — p3) = 49(p} — p3)].

~ The crucial observation is now that Eq. (18) can be inter-

preted as the Schrodinger equation of two coupled two-
dimensional anharmonic oscillators in cylindrical polar
coordinates subject to the constraint

) = 62 = ¢ (19)
Hence going back to Cartesian coordinates (z;
= picosay, T2 = p1 sinoq, T3 = Pz COSQ2, T4 = P2 sinaz),
we recover after a further trivial rescaling exactly the
heuristic result (12) [but now supplemented with the se-
lection rule (19) and with the BL, term taken into ac-
count]:

h¢ = (-—V2 %2 4 M&(2? + 22)(22 + a:4)>
=€, (20)
with
=-FE/2,
A= g/43. 1)

The energies ¢ and £ = E — Bfc/2 are related by the
equation

e(w,A) = e(\/—E/2,9/4°) = Z.

(22)
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In the following sections this relation will be used to
deduce properties of the Zeeman system from those of
the anisotropic anharmonic oscillator in (20). Notice
that constraints like £o0 = 2{c mentioned below, Eq. (8)
yields, in general, the complete answer only as far as
the energies are concerned. They are usually not strong
enough to permit a unique relation between the wave
functions also. In this case further constraints are neces-
sary which reduce the degeneracy of the four-dimensional
system. In our derivation of (20)-(22), on the other hand,
the constraint (19) is already sufficient in the stronger lat-
ter sense. More precisely, for ¢ = 0, the products of the
two wave functions of the two-dimensional oscillators in
(18) with radial and angular quantum numbers n", n?

and Z(l) = 3 ) = £c are in a one-to-one correspondence
with the hydrogen wave functions ¢ ()00 in parabolic

coordinates (with energy E RORCYE —3+72/m? m

n{ 4+ nf® 4 |ec| + 1, and degeneracy m?). As usual,
the perturbed wave functions for ¢ # 0 may be labeled
in the same way.

III. SOLUTION OF THE EQUATION
RELATING ¢ AND E

In this section we analyze some consequences of the
equivalence of the Hamiltonians (1) and (20). In partic-
ular we shall derive the large-order behavior of perturba-
tion series expansions for Zeeman energies from that of
the equivalent oscillator system.

As far as the scaling properties of the Hamiltonian & in
(20) are concerned, there are no differences from a sim-
plified model system with isotropic perturbation o |%[°.
For the solution of (22) in terms of £ we can therefore
apply most of the results derived in recent work?® on gen-

eral isotropic perturbations o [¥]2(P+1) [corresponding to

perturbations o r? of the Coulomb potential, see (8)].

]

W. JANKE 41

A. Exact energies

It is easy to show?® that the energies e(w,)) in (20)
scale as
ew,N) =wé(R), A=Ajwt, (23)

where ¢ and } are reduced energy and coupling. Using
(22) (with Z = 1), this implies a parametric representa-
tion for & = E(g),

B =—2/6(0),
g =#3/e()t

which might be a useful alternative for numerical com-
putations of Zeeman energies.

(24)

B. Low-order perturbation theory

According to Eq. (23), perturbation expansions of the
oscillator system must be of the form

e=w ZEk(/\/w4)k

(25)

Insertmg thls expansion in Eq (22) and solving it per-
turbatively, the coefficients Ej of the Zeeman series

E = Z Ekgk
k=0

(26)

can be expressed in terms of &; with ! < & as shown in
Table I up to k = 10. (For technical details, see Ref. 26.)

Let us now apply the relations in Table I to the ground-
state energies, to be denoted shortly by ¢ and E, omit-
ting the superscript (0). Clearly, we then have o = D/2
= 2, and the first two coefficients ¢; and e3 can easily be
determip_ed from standard perturbation theory as given
in any textbook on quantum mechanics. Using obvious
symmetry properties, we obtain

= (0000[4%* (= + 22)(% +2£)/0000) = 32[(z*)oo + (zz)ool(mz)oo =16, (27)

- —42 Z { (1! )011160782 + (124)0,;260," + 2(:82)0”1 (.’B )0712]

f(#0)

x[(#)onsb0n, + (£2)onBons] + (n1 o n3, g = n4)}2/(n1+n2+n3+n4)

—ig,

with (z¥)on = (0|z*|n) denoting the well-known (one-
dimensional) harmonic oscillator matrix elements. Their
nonvanishing values are (22)oo = %, (22)o2 = 715,

(”4)00 = %, (-’”4)02 = %\/5, (34)04 = %\/6, and &y, is
the usual Kronecker delta symbol. Inserting the num-
bers for €9, €1, and €3 in the expressions for Ej given in
Table I, we recover the known Zeeman coefficients” up to
second order:

(28)

Ey=~2/e? = —

Ey = 4ege; /43 = 2, (29)

Ey = 83(1()5? + 46280)/46 = —-%:2 .

In higher orders, the general scheme of standard per-
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turbation theory becomes very tedious. It is therefore
preferable to calculate the £; by means of more special-
ized recursions, which are derived for the anisotropic os-
cillator system in Appendix A. Solving these recursions
with the help of an algebraic computer program [written
in REDUCE (Ref. 27)], it is quite easy to determine the
low-order coefficients as exact, rational numbers. The
first ten coefficients are given in Table II. When these
numbers are inserted in Table I, we find for the ground-
state energy of the Zeeman system the coefficients Ej
listed in Table III. These numbers are in perfect agree-
ment with results” derived directly from the Zeeman
Hamiltonian (1).

C. Large-order perturbation theory

In order to relate £, and Ej in the large-order limit
k — oo, it is convenient to apply the approach in

TABLE 1.

6075

Ref. 26 which takes advantage of the intimate relation-
ship between perturbation coefficients in large order and
the imaginary part of the energies for negative coupling
constant.?8

Let us briefly recall the main steps. For oscillators with
perturbations of the type Az2(P+1)| the imaginary part of

the energies for negative coupling are generically of the
form16— 20

b
1
Ime(w,A) oo 97 (W)

xe= @Iy  o (a] A fwte) P
+ea(alAl/w? )P 4., (30)

with the parameters a,b,v,c¢1,¢s,..., depending on the
detailed form of the perturbation and the spatial dimen-

Solution of Eq. (22), defining the Zeeman perturbation coefficients Ey in terms of

the perturbation coefficients &;,1 < k, of the anisotropic anharmonic oscillator in Eq. (20). To
simplify the expressions, o = 2 has been inserted explicitly. The most general expressions for Ek,
valid for any problem with p = 2, can be recovered by multiplying the right-hand side with a factor

(20/2)**~? and replacing & — 2(e1/€0).

Eo — ——"% -

E, = £1/8

By = (4e2 +563)/128

Es = (263 +9e2e1 + 663)/256

By = (1664 + 104e3e; + 5263 - 312e227 + 143¢%) /8192

Es = (4es + 34eqe; + 3deser + 1366367 + 13631 + 340e3es + 11963)/8192

Es =  (64es + 672561 + 672e462 + 3360e4e? + 33662 + 6720e3e26;
+10 640e3ed + 1120e3 -+ 15 96027 + 23 940e23 + 678323)/524 288

By = (16&7 + 200e6e1 + 200ese2 + 1200e5e? + 200e4e3 + 2400e4e261
+4600e4? + 1200e3e; + 1200e3e3 + 13 800e3e367 + 12 650636}
+4600e3e; + 25 300e3e] + 26 565¢2¢5 + 632567 )/524 288

Ey = (256es + 3712e7e1 + 37126662 + 25 9845552 + 3712e5e3 - 51 968e5e26;
+116928ese] + 1856¢3 + 51 968e4e3€1 + 25 984e423 + 350 T84e46267
+380016e4et + 25 984e3e2 + 175392e267 + 350 T84ese2e;
+1 520 064c3e263 + 950 040e3e? + 29 23264 + 760032e3e7 + 2375 1003t
+1 900 080e2¢$ + 3901952%)/33 554 432

FEy = (649 + 10565y + 1056762 + 8448e7e? + 1056e5e3 + 16 896ege2¢;
+43 648e6¢3 + 1056e564 + 16 896esc36; + 8448563 + 130 944esere?
+163680e5e + 8448c2e; + 16 896e4e362 + 130 944e,e3e2 + 130 944e,63¢e;
4654 T20e46263 + 474 6726465 + 2816e3 + 130 944edeze) + 327 360e35
+43 648e33 + 982 080sae2e? + 2373 360e3e2¢f + 1107 568£3e8
+163 680cke; + 1582240e3e] + 3322 704e2e} + 2136 024e26] + 385 6713)/33 554 432

Eio = (25610 + 4736e9e1 + 47366562 + 42 624635? + 4736e7e3 + 85 248e7e2e,

+248 640e763 + 4736c64 + 85 248ege3e; + 42 624e6€2 + T45 920666262
+1056 720c6e} + 2368e3 + 85 248ese421 + 85 248ese3e2 + T45920e5e3e2
+745920e5e3e; + 4 226 880es5265 -+ 3487 1766565 + 42 624€e
+372960e3e3 + 42 624e462 + 1491 840e 63606, + 4226 880,633

4248 640e453 + 6 340 320£463£7 + 17 435 880c4626? + 9299136648
+248640e3e; + 372 960c3e3 + 6 340 320e2e262 + 8717 94063t .
+4 226 880535%61 + 34871 760535%5‘13 + 55794 816e3e2¢5 + 20590 944535'{
4211 3445 + 8717 940e4e? + 46 495 680e3et + 72 068 30438

438 608 020e2¢] -+ 6 220 181¢1°) /536 870 912
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TABLE II. Perturbation coefficients for the ground-state energy of the anisotropic anharmonic
oscillator in Eq. (20).
g =2
& =4x4
= —166/3 x 42
£3 = 18398/9 x 4%
= —34571027/270 x 4*
€5 = 47713 925 953/4050 % 45
eg = —6702482253377/4500 x 48
er = 7398933910 500 392 213/29 767 500 x 47
= —1329 676 249 040 179 764 514 127/25004 700 000 x 4° )
€ = 112178 030 738 637 487 398 233 759 053 /7 876 480 500 000 x 47
€10 = —7739311 896 633 212902 498 665 902 455 303/1 654 060 905 000 000 x 4°
sion D. Since the parameter p determines “only” the  given by the dispersion relation!®17:29
scaling properties of the system, this includes isotropic ' '
as well as anisotropic perturbations. For the anisotropic /( 2+p)k _1 / ° d\ Ime(w, A + i0) (31)
anharmonic oscillator (20) (with p = 2 and D = 4), the wer/\@ . A Ak+L ’

parameters a, b, and v will be calculated analytically in
Sec. IV. The parameters ¢, ¢, . . ., of the correction terms
can then be estimated numerlcally by companson with
the exact perturbation coefficients €.

The connection with the perturbation coefficients is

C1

where the integral is taken along a cut in the complex
coupling-constant plane. Inserting the small A expan-
sion (30), one finds the following large k behavior of the
perturbation coefficients [recall Eq. (25)]

C2

!
(1
k—oco
This relationship suggests solving Eq. (22) first for
small negative A = g/43 and thus determining ImE in
terms of Ime. The dispersion relation (31) gives then
immediately the desired relatlon between ek and Ek as
k — 0. e
For negative coupling A, Eq. (22) can be written as

k
1=¢(w,A) _szk ( ;\+P> + ilme(w, A) ,

E=0

where we have added the real part of ¢ which, perturba-
tively, has the same expansion as for A > 0. To solve this
for E = —2w?, we put w = z + iy and note that y o< Ime
is exponentially small. A straightforward perturbative

— P o)

(33)

(pk+b— 1)(pk +b- 2)

(32)

b
4. (__1_)
& \(e2*7alA))"”?
Xe—[l/(s’+'a|m"’l(1+al>(1 +63),

ImFE = —4zy =

(34)

wﬁhere ) o

81 = (1 +2/p)(e1/e0)eq " A+ O(?) (35)

62 = cr(e2*PalA)’ +[1 - p+ b(1 + 2/p)]

x(€1/€0)en P |A|

solution?® yields then

+O(]A|H+1/7) (36)

Perturbation coeﬁcjex{ts for the Zeeman gr;ﬁnd—ef;fe Vernerrgy calculated from the

TABLE IIL
expressions in Table I with the €; from Table II.
Eo = —-% _ s R
E,=2
E, =—53/3
E; =5581/9
FEy = -2157T7 397/540
Es = 31283298 283/8100
Eg = —13867513 160 861/27 000
E7 = 5337333446 078 164 463 /59 535 000
Eg = —995860667291594211123017/50 009 400 000

Eg = 86629463423 865975592742 047 423/15752 961 000 000
Eo = —6127873544 613 551 793 091 647103 033 033/3 308121 810 000 000




are, for p > 1, subleading corrections. [Only for p = 1,
does §; contribute a factor exp(—&;/eqg) to the leading
behavior.26] Thus, recalling A = g/4?*! and specializing
to p = 2, we find for the leading behavior of the imaginary
part of the Zeeman energies

b
SRS BN SN BTN Y
ImE(g) vl ((a*]g[)“’) e

x[1+ci(a*|g)/? + c3(a*lg)) + -1, (37)

with
a* = (e§/64)a (38)

and
7" = (4/ed)y (39)

expressed in terms of the parameters €, a, and 7 of the
anisotropic anharmonic oscillator (20), to be determined
in Sec. IV. Furthermore, expanding in Eq. (34) the terms

containing &; and using efa|A| = a*|g|, we obtain for
p=2

N 2

=06 - 5(51/50) ) (40)

2b—1
a

(e1/20) + (e/eo)?

(41)

2
C; = Cg— "—1‘(81/50)61 +

Finally, assuming the validity of a dispersion relation
similar to (31) also for the Zeeman system, we see that
the large-order behavior of Ej is given directly by that
of e in (82), if we replace a,v,¢; by a*,v*,c}. In gen-
eral, the relation between (30) and (37)-(39) holds for
all equivalent oscillator and Coulomb systems with p = 2
(determining the degree of anharmonicity and henceforth
the scaling properties).

IV. LARGE-ORDER ESTIMATE
FOR THE ANISOTROPIC OSCILLATOR
SYSTEM

Let us now turn to the calculation of the large-order
parameters p,a,b,v for the ground-state energy of the
anisotropic anharmonic oscillator (20). Using Egs. (37)-
(39) this yields then quite directly a large-order formula
for the Zeeman coefficients F;. In order to display the
symmetries of (20) more directly, it is useful to introduce
the notation X = (&, V) = (uy,uz, v1,v2) so that Eq. (20)
becomes

1 2
h¢ = ( ~5 @2+ &)+ 5 (@ +7?)

+24(3? + vz)azvz) p=¢cd. (42)
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Our calculation is based on the path-integral approach
in Langer’s formulation3® which exploits the relationship
between € and Ime(X < 0) explained in Sec. IITC. Start-
ing point is the path-integral representation of the quan-
tum partition function (8 = 1/kgT)

Z= /’Dzu'Dzv e~ ALYl i e~Pe (43)

812 2 e W2
A= [ ar| L@+ P+ S+
-B/2 2 2

+4X(&? + \7’2)1'1'2\"’2) (44)

is the Euclidean action corresponding to the Hamiltonian
in (42),

/DzU'DzU = 'ﬁ (/ d?u,(2rAT)"1 /dzvn(27rAT)—l>

is, in the limit N — oo, the usual path-integral measure
on a sliced “time” axis with spacing Ar = /N, and
the paths are assumed to be “periodic,” ie., G(—3/2)
= 1(8/2), ¥(-=B/2) = ¥(B8/2). Since the dependence on
w is known from the above scaling arguments, from now
on we shall put w = 1, for simplicity.

For A > 0, the system is stable and Z is real. It may be
computed, for instance, by perturbation theory, which, in
the path-integral approach, corresponds to an expansion
in fluctuations around the globally stable minimum at
(T, ¥) = 0. For A < 0, however, the system becomes un-
stable and Z, defined by analytic continuation, develops
an imaginary part related to the decay rate. For small
A < 0, this rate is exponentially small and can be cal-
culated by a saddle-point approximation (the analog of
WXKB). Rescaling variables by a factor A~1/4, it is easy
to see that its dependence on A must be of the form

Im Z o e~Ae = e~ A/IAIM? = g=1/(alA))!/? ) (45)

where 4 = 1/a'/? is the action ( in the rescaled variables)
of the saddle-point solution, to be referred to as “critical
bubble” solution. The real part of Z follows from fluctu-
ations around the locally stable minimum at (d,V) = 0.

It has therefore the same power series expansion as for
A>0,

Re Z = e~ (P/2)BI1+O(N)] (46)
Taking the large § limit and observing that, for small
negative A, ImZ is exponentially suppressed and hence

much smaller than ReZ, the ground-state resonance can
be approximated by

Ime = —%ImZ/R)eZ o e~ (@A

Ree = —=InReZ = -’;’-[1 +0(V)]. (47)

B
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From the dispersion relation (31) we see that this sim- v = |¥], it is obvious that for A < 0 the “tunneling path”

ple scaling analysis determines already the leading large-
order behavior ¢; & (—a)fI'(2k), i.e., p = 2.

To determine the parameters b and v, we must consider
the fluctuations around the critical bubble. There is al-
ways one unstable fluctuation mode and a few so-called
zero modes (Nambu-Goldstone modes) which leave the
action invariant. The unstable mode produces the imag-
inary unit and is thus responsible for the decay of the
system. The zero modes are associated with the symme-
tries of the system. Their multiplicity is directly related
to the parameter b since it is well known!%:20 that each
of them produces a factor

o (Ac/2m) 2 o (1/]A|M2)H2 .

Being based on a path integral over periodic paths, one

such mode is always associated with the freedom of trans-
lating the origin of the critical bubble solution along the
T axis. The other zero modes are related to internal sym-
metries like, e.g., rotational invariance. Consider first an
isotropic oscillator in D dimensions. Its internal O(D)
symmetry gives rise to D — 1 rotational zero modes, cor-
responding to the angular degrees of freedom of moving
a vector over the surface of a D-dimensional sphere. To-
gether with the translational zero mode this leads to a
total prefactor

o (1/IAIM%)P72 .

Our system (44) has D = 4, but due to the anisotropic
perturbation its rotational symmetry is reduced to
0O(2)x0(2). Hence the sphere splits into two indepen-
dent circles, so that there are only 1 + 1 = 2 rotational
zero modes, and the total prefactor becomes '

o (L/IA12)%/2 .
This fixes the parameter b = %. Thus from scaling and
symmetry arguments alone, we can conclude that

ex o (—a)FT(2k + 2), (48)

Ep o« (—a*) T (2k + 2). (49)

Of course, in order to find the numerical value of a, we
have to consider the critical bubble solution in more de-

tail, and to determine vy, we must perform a careful fluc-

tuation study which is the most laborious part. Fortu-

nately, these calculations do not have to be done from

scratch, since it turns out that many known results for

isotropic anharmonic oscillators can be used.

A. The “critical bubble” solution

Looking at a contour plot of the potential in (4i),7
V(u,v) = 2(u? + v?) + 4A(u? + v?)u?v? with u = [,

with least action is along the diagonal ray u = v > 0.
The directions of the two-dimensional vectors @ and Vv
are independent and can both be chosen arbitrarily, re-
flecting the O(2)xO(2) symmetry of the system. Any
choice breaks this symmetry spontaneously and leads to
rotational zero modes as described above. A convenient
choice is
L1 -
= :-/_-2-(111, 0)=v, (50)
since then the action reduces to that of an one-
dimensional sextic anharmonic oscillator,
. 6
A= / dr(1i? + 2uw? + M) (51)
with the usual normalizations. From studies of general
self-interactions Aw?(®*!) it is known that this is ex-
tremized by the critical bubble solution (in the large 8

limit)*9,20
- e “1/3p -

w(7) = [ =——

=) = pe
1/4
2|2 [cosh2(r — mp)]1/2

with associated action

A, =ity ELE DR

LD T(242/p) MR,

S A/ =1/ (@) (53)

For p = 2, this givé; A= 21/27/8 and determines the
parameter a to be

-y

“Also the origin 7o in (52) can be chosen arbitrarily. In the

(54)

~ following paper we shall work with 7o = 0, for simplicity.

Any choice of 7y breaks spontaneously r-translational in-
variance and gives rise to a translational zero mode. All

- -these zero modes are encountered explicitly when dealing

with fluctuations which we consider next.

B. Quadratic fluctuations

~"~Expanding the full action (44) in the deviations §d
=1 —U,, 6V = vV — V., we obtain up to quadratic order

A=A-A
-1 / dr[si’ + 67 + 6% + 67

ABA(Subui) My (5u;6v;)° + -+ ], (55)

where the superscript ¢t denotes transposition and M,;

are the 2 x 2 matrices
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([ + 2276 + A(ue)i(ue)y 7
Ly ( A(ue)i(we); (T2 + 72)

In (55) summations over ¢ = 1,2, j = 1,2 are implied. If
the critical bubble solution (52), (uc)1 = (ve)1 = we/V/2,
()2 = (ve)2 = 0, is inserted, M, decouples into a lon-
gitudinal and transversal part,

(6us6v;) M ;5 (6u;6v;)" = (6urbvi) My (6urbve)t
+(6u26v2)MT(6u26v2)t , (57)
with
My= VD (g 5)
My = (w./V2)* < g g > : (58)

2
64 =3 [ar[e (g + 1430008 en (—py 41—

_1 d? 15
_2/dr[£(“ﬁ+1_—cosh22'r>£+n(_

The operator governing the ¢ fluctnations coincides
precisely with that of the one-dimensional z® oscillator.
Its properties are therefore completely known.!?:2% In
particular, it possesses an eigenmode £_ with negafive
eigenvalue k- < 0, indicating the expected metastabil-
ity, and a zero mode & o« t, with kg = 0, associated
with the translational invariance in 7, i.e., the freedom of
choosing 7y in (52) Clearly, when the eigenmode expan-
sion &(1) =3, fnfn(r) is inserted in (60), the Gaussian
integrals over these modes are formally divergent and re-
quire a careful treatment, which can be summarized by
the following rules:3!

=12 = (1 )P S (1 IV,

(61)
/dgo—\/;—we‘”°ég/2

= (1/Ko)? — 8 (f dru‘;;"/zvr) 7 . (62)

The proper treatment of the decay mode £_ is based on
the fact that, for A < 0, Z must be defined by ana-
lytic continuation, and the second rule follows from the
equality wedrg = &ndfp. Making use of [drui? = A,
k- = —8, and including the contribution of the Gaussian
integrations over all other modes with positive eigenval-
ues, leads to the known fluctuation factor!®:20

i 1 Yz 1/2 g.~B/2

Auc)i(ve); (T2 +72)
[(‘—1.2)2 + 2_‘2_.2]6'1 + 4(”c)z(”c)1u
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(56)

I

Since the quadratic terms decouple trivially, we can thus
decompose (55) into 64 = (6A)L + (6A)r.

Consider first the longitudinal part. The eigenvalues
of M;, are M, ( ) = 15(wc/\/_)4 and M(z) —(we/V2)%.
The diagonahzatlon of M;, is achieved by a 45° rotation
to new coordinates

f(6u1 -+ 61)1), n= \/—(5’(1.1 5’01) (59)

Since the quadratic terms in (55) are invariant under such
a rotation, we obtain for the longitudinal part of 6.4

2/\wﬁ> n+.. ]

AP )+ ]
dr? cosh?ar )T

(60)

The operator associated with the # fluctuations has
only positive eigenvalues. To see this we note that the
potential term of this operator describes a barrier and not
a well, so that it cannot sustain any bound state. In con-
trast to f¢, the fluctuation factor f, is therefore simply
a real number which, however, cannot be taken directly
from the literature. We shall calculate it here by means
of two alternative approaches. In the first approach, one
starts with the trivial identity

d? 1 -1/
fq = det (WF + 1+ —cosh2 27_> = fZesc 5 (64)
where
d? —-1/2
Zosc = det (—TE -+ l>
1 -8/2
e (65)

T 2sinh(B/2) A—oo
is the partition function of the harmonic oscillator and

f= det(—d?/dr? + 1+ 1/ cosh?27) i
. det(—d?/dr? + 1) |

(66)

After a change of variables, t = 27, this ratio of determi-
nants can be written in the canonical form

_ (det[—d’/dt2 + 2z — s(s 4 1)/ cosh? ] /2
F= det[—d?/dt? + 2] ) ’

(67)
with 2 = 3 2 tand s = —--;—. To this form a quite general
formula,19 20 in the theory of Fredholm determinants is
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applicable which states that

;= (r(ﬁ—s)r(ﬁ+ 1 +s))"2
=\ TwareE+D
1/2
ECESUCERE Y
THNG +1)

= (2/77)1/2 ) (68)
where T'() is the usual gamma function. In more
physical terms, this formula can be derived by relat-
ing f to the quantum-mechanical transmission amplitude
of one-dimensional scattering at the potential z — s(s

+1)/cosh®t. See the last entry of Ref. 20. Inserting
(68) in (64) we obtain, in the large g limit,

fa = (@/m) 212,

(69)

In Appendix B, this result is verified by a completely

different approach based on a modiﬁed Gelfand-Yaglom

formula.32,33

Let us now turn to the transversal fluctuations in (55)-
(58). Since the matrix M is proportional to unity, the
transversal degrees of freedom of 6T and 6V decouple au-
tomatically. This leads to two identical fluctuation con-
tributions to 6.4,

(6A)T =3 /dr l:&ug (—— + 14 6Aw ) bug

+(6u2 — 502) + .- }

d? 3
=41 —_— —_
T2 ]dr [6112 ( dr? +1 cosh? 21') buz

+(6uy — 6ug) + : ] . (70)

Each of them is governed by the transversal operator of a
general O(n) symmetric [%|® oscillator whose properties
are again known. It contains one zero mode o w,, asso-
ciated with the freedom of choosing the directions of @,
and V., respectively. If the analog of (62) for rotational
zero modes!® 20 (S, is the surface of the n-dimensional
unit sphere), '

(rn-1)/2
(1/ko)*=D12 5 3, ( / drﬁg/zvr) , (71)
is adapted to our case n = 2, we obtain
1/2
(1/K0)? — 27 (/drﬁf/?fr) , (72)

with the prefactor 27 being the “surface” of the unit
circle. Recalling that G2 = fw? and using the scaling
properties of the action (44), the integral in (72) can be
expressed as
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(Joerm)" -5 Jartm)”
- \—/—i(Ac/W)l/ 2 (73)

Notice that there is an additional factor 1/ V2 compared

‘with the ordinary O(2)-symmetric [X]® oscillator.!®:20

Together with the known contribution®?° of all other
modes with positive eigenvalues, we thus have

1/2
fous ) AL 22me=PI2 | (74)

_ _ 1 1
= fovs = -\7-3 7o-1724
C. Large-order formula

Combining (63), (69), and (74) we obtain the final re-
sult

- ImZ = ~|fe|fy fou, Fsuse™
T2 (?> 2 <1r2-1/2A>

x A3 2 Ac ge—2P

1 3/2
= -2 ( ) A32e=Acge=2 | (75)

2-1/24
and consequently, using (46) and (47),

1 3/2
Ime = \/5 (m) AglzeHA"

8 3/2
= \/-2- (—> ASIZC_A"

7r3/2 A3/2 —Ac (76)

with A, = 1/(a|A)Y? = 1/(32)A/7?)1/2 given in (53)
and (54). Comparing with the general expression (30),
we see that the large-order parameters p,a,b,v are de-
termined as

p=2, a=32/x? v = 32/n%/2. (77)

Hence, recalling the dispersion relation (31), we find

— 3
b=3%,

for the ground-state expansion of the anisotropic anhar-

monic oscillator (20) the large-order behavior

& T 6y = —%7(—a)'°1“(pk +b)

k~ro0
= ——-——6 -32 ‘R2 "1" 2k + 3 78
= 5/2( / ) ( 2) . ( )

The superscript “asy” stands to indicate that this is the

- .leading asymptotic behavior for large k, omitting the 1/k
__corrections to be discussed below. Finally, using the re-

lations (37)~(39) with eg = 2 so that a* = a/4,v* = v/2,
this implies for the ground-state energy of the Zeeman
Hamiltonian the large-order formula

~Eyr(—a*yrr ok + 1)

Ey — E¥™ =
kk—-voo k

= s -8/ Tk +3),  (19)
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in agreement with the result quoted in (2).

D. Comparison with numerical results

Let us now test the accuracy of the large-order formula
(78) for the anisotropic anharmonic oscillator by com-
paring it with exact coeflicients in relatively high order
(up to k = 110). The exact coefficients can be gener-
ated quite easily with the help of the recursions derived
in Appendix A. As a side result, we shall get numeri-
cal estimates for the corrections ¢; in [recall (32), and
p=2b= %]

(3] + c2 + )
2k+1 " (2k+3)(2k-3) ”
(80)

which, by means of (40) and (41), can then be translated
into the corresponding corrections to the Zeeman formula
(79). o

In Fig. 1(a), the ratio

Rk = ek/e,*:‘y

er=¢€g" (1 +

(81)

is plotted versus k. We see that the expected limiting
value Ry = 1 is reached very rapidly, indicating a rela-
tively small correction term c¢;. For numerical purposes
it is convenient to reexpand the term in large parentheses
in (80) to

71 Y2
(+2+%+., (82)
with

Y1 = c1/2 ,

T2 =c2/4—cl/8 .

(83)

The values of these parameters can be estimated in
Fig. 1(b), where the data in Fig. 1(a) are replotted in
the form (1 — Rp)k = —vy; — y2/k + -+ versus 1/k. A
linear extrapolation to 1/k = 0 yields v; ~ —0.15, and
from the asymptotic slope we read off y2 &~ —4. Notice
that v, is comparatively small. This is presumably re-
lated to the numerical observation3* that for the isotropic
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FIG.1. (a)Theratio Ry = ex/e}™” = 14v1 /k+72/k?+---
for the anisotropic anharmonic oscillator in Eq. (20). (b)
The same data as in (a) but replotted in the form (1 — Rg)k
= —v1 — 72/k vs 1/k. For more precise values of v;,v2 see
Table IV.

oscillator with |Z|® perturbation the 1/k correction seems
to vanish completely. (For D = 1,...,4 the accuracy of
this result is better than 107!2.) More precise values can
be obtained from numerical Neville-like extrapolations,33
to be compiled in Table IV. Formula (78) corrected by
(82) with 71,72 from Table IV is then accurate to within
0.16% for k = 11 and 0.000003 6% for & = 71. The val-
ues derived for 7] are consistent with direct fits to the
Zeeman series which gave” 7} = —2.6183 and v} = 1.283.
On the other hand, Avron’s® guess of an analytical ex-
pression, 7 = —372/27/2 ~ —2.617 074, deviates already
in the fourth digit and is probably incorrect. While this
analytical formula for v} looks quite “natural” for the
Zeeman system, it leads to an “unnatural,” complicated
expression for the correction 7; of the equivalent oscilla-
tor system.

TABLEIV. Higher-order corrections to the large-order formulas for the anisotropic anharmonic
oscillator (ci,¥i) and the Zeeman ground-state energies (cf,v!). The c’s and y’s are related by
€1 = 271, c2 == 4712+ [see Eq. (83)], and for ¢} we have from Eqgs. (40) and (41) (with a = 32/x2,
b=12 and e1/e0 =4 =8), ¢} =1 — 7%/2, and ¢} = c2 — (7?/2)cr + 72/2 + =*/8.

Anharmonic oscillator

Zeeman 7
i i ci cf gl |
1 -0.1508999 —0.3017998 . —5.2366020 —2.6183010
2 -3.98215 -16.07950 2.52076 1.28477
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V. DISCUSSION

Our calculation has demonstrated that the leading
large—order behavior of Zeeman perturbation series ex-
pansions can be understood by simple scaling and sym-
metry arguments for an equivalent four-dimensional os-
cillator system. The detailed form has been derived by
means of the path-integral approach applied to this os-
cillator system. It is therefore interesting to mention the
doubts in Ref. 6 (see also Ref. 12) concerning the va.lidity
of the path-integral approach in Lipatov’s formulation3®
when applied directly to the Zeeman problem Although
the present calculation is based on Langer’s formulation
(which is closely related to but not identical with Lipa-

tov’s), it is hardly conceivable that Lipatov’s approach |

should break down when applied to the anisotropic an-
harmonic oscillator (20). Thus, albeit in a somewhat in-
direct fashion, the equivalent formulation opens the way
to a path-integral treatment of large-order estimates for
the Zeeman system.

From a more practical point of view it is important
to notice that the perturbation coefficients for the os-
cillator system approach their asymptotic limit much
more rapidly than the corresponding Zeeman coefficients.
This might be quite advantageous in applications of re-
summation techniques like, e.g., Borel’s method,2® which
make use of the large-order information. In the interest-
ing case of strong magnetic fields it is presumably even
more important that the oscillator energies show an al-
gebraic strong-coupling behavior (e & A/% as A — o).
In standard procedures, such a behavior can easily be
taken into account to improve the convergence of resum-
mation, as is known from the experience with isotropic
(or one-dlmensmnal) anharmonic oscillators. A direct re-
summation of the Zeeman series, on the other hand, is
complicated by its nonalgebraic strong-coupling behav-
ior containing terms of the type logg,log(logyg),... as
g — o0, and requires a special treatment.!®> In order
to calculate precise Zeeman energies from perturbation
theory this suggests that we resum first the well-behaved
oscillator series and then map the resultmg energies back

onto the Zeeman system by means of the exact relations
(24).

VI. CONCLUSION

Extending similar relationships for the Coulomb po-
tential plus isotropic perturbations and the Stark Hamil-
tonian, the Zeeman Hamiltonian in three dimensions has
been shown to be equivalent to an anisotropic anhar-
monic oscillator in four dimensions. Apart from the the-
oretical interest in unifying two seemingly different sys-
tems, this equivalence appears to be useful also from a
practical point of view. This was demonstrated explicitly
by showing that the large-order estimate for the ground-
state expansion of the Zeeman Hamiltonian can be re-
derived quite easily from the equivalent anisotropic an-
harmonic oscillator system by using well-known Bender-
Wu formulas for isotropic anharmonic oscillators. As a
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future application it would be interesting to investigate
the accuracy of Zeeman energies calculated by first re-
summing the well-behaved oscillator series and then us-
ing the exact transformation formulas. Of course, other
information available for anharmonic oscillator systems

. (such as rigorous inequalities) will also be transferable to

the Zeeman system and may yield interesting new results.

Note added in proof. After the submission of this pa-
per, Professor M. Kibler kindly pointed out to me that
he and T. Negadi have emphasized the equivalence of
the Zeeman Hamiltonian to an anisotropic anharmonic
oscillator before in Lett. Nuovo Cimento 39, 319 (1984).
These authors did not, however, derive any consequences
from their observation, as apparently intended. The main

_ point of the present paper was to exploit this equivalence

and deduce the large-order behavior of Zeeman pertur-
bation series from path-integral analyses of the oscillator
system.
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APPENDIX A: RECURSIONS
FOR GROUND-STATE PERTURBATION
COEFFICIENTS OF OSCILLATOR SYSTEM

In this appendix, recursions are derived for the per-
turbation coefficients £; of the ground-state energy e
=2+ Y -1 €xAF of the anisotropic oscillator system

[—1(82 +82) + 1(@® + ¥2) + 4\ (@2 + ¥) )Y = e .

(A1)

Such recursions are the basis for an efficient computation
of &; in relatively high order (say, up to k = 100) of
perturbation theory. Following a scheme introduced by
Bender and Wu,'® we proceed as follows.
Parametrizing @ and v by two-dimensional polar co-
ordinates, the radial ground-state Schrédinger equation
_becomes

NENAR
T2\ 8u? T dv?

-i-%(u2 + v?) + 4 (u? + vz)u202] b=cd. (A2)

19
2v Ov

19
2u Ou

Sepa.ratmg out, the urﬁlperturbed ground-state wave func-
tion, vy = e~ /2e=v*/2,

%= pod = e+ 2g (A3)

Eq. (A2) transforms into
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1 (e & 1 N8 (1 )\
[ 2“”(au2 +av2>‘”(§‘" )a_u—“(i“” ) v
+4A(u? + vz)u303]¢ =uv(e—2)¢. (A4)

Inserting the perturbation expansions [bo(u,v) = 1

1 (o2 A ]
—§uv(m+—a—;)bk—v<§—u>%bk—u<-2-

This can be solved with the ansatz

J

2k . .
b (u,v) = E b i (u?) (%),

§,j=0

(A7)
leading to the recursion

1 ) .
bk, = Wt (2(1 4+ 1)%bki41,5 + 205 + 1)%0k 5,541

k-1
~4bp_1i-2j-1 — 4bp-1i-15-2 + ZEk—Lbl,i,j) ,
{=1

(A8)
with
e = —2(br,1,0 + br,0,1) - (A9)

The recursion must be initialized with bg 0,0 = 1 and all
other b ;,; = 0, and then worked through with increasing
k=1,2,3,..., and, for each k, decreasing 7 = 2k,...,0,
j =2k,...,0 (omitting i = j = 0). '

This recursion was run with an algebraic computer
program written in REDUCE (Ref. 27) to generate the
exact coefficients ¢ displayed in Table I. With a numer-
ical program it was possible to compute £ up to order

= 110 with = 26 digits accuracy. Notice finally that
the recursion yields, besides the energy expansion, also
the wave-function expansion in a simple way.

APPENDIX B: FLUCTUATION
DETERMINANT f, FROM MODIFIED
GELFAND-YAGLOM APPROACH

This appendix is devoted to an alternative derivation
of formula (69) for the fluctuation determinant f, defined
in Eq. (64). It employs a modification of a formula by
Gelfand and Yaglom®? for fluctuation determinants with
fized boundary conditions [n(—8/2) = n(8/2) = 0]. If
these are replaced by periodic boundary conditions, the
modified formula can be stated as follows:33

Let D(7) be a solution of the differential equation

() D(T)= _£+1+_Lﬁ_
" T\ dr? cosh? 97

) D(r)=0, (Bl1)
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= bo,0,0]
$(u,0) = Y be(u,v)X¥, e=2+Y epdt, (A5)
k=0 k=1
and comparing equal powers in A, we find
P k=1
— 1)2> %bk -+ 4(u2 + vz)u3vsbk_1 = uv Z;sk_tb’- . (A6)
[
with initial conditions
D(-8/2)=0, D(-B/2)=1. (B2)
Then
, L 1/2
f, = [det0,]/? = (——————) . (83
! ’ 2AD(8/2) - 1]
The even solution of (B1) is
D.(7) = cosh'/?(27) , (B4)
and the independent odd one follows from
T d,rl
D,(r) = 2De('r')/0 l_)-g—(_r’j
= cosh1/2(2r)arcsin(tanh 2r). (B5)
The general solution
D(r) = AD (1) + BD,(7) (B6)
satisfies the initial conditions (B2) if we choose
A=3 cdshi/:(ﬁ)arcsin(tanh B), (B7)
B =1 cosh?(g).
This gives
. sinh 8
D(B/2) = A——rr—o
(61 = A
sinh 8 . 2
B (marcsm(tanh B+ m)
= sinh S arcsin(tanh ) + 1, (B8)
and inserting in (B3) we have
_ 1 1/2
f1 =\ 350 B arcsin(tanh )
_ [ tanh(B/2) \'?
- (arcsin(tanh B) Zosc » (B9)

with Z,sc = 1/[2 sinh(8/2)]. Hence, in the limit § —
0o, we obtain once again Eq. (69),

fo — V1arcsin(Q)e=/* = \/2/me~P/2.

B—roo

(B10)
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