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Abstract

w Ž . xThe KPZ formula V.G. Knizhnik, A.M. Polyakov, and A.B. Zamolodchikov, Mod. Phys. Lett. A 3 1988 819 shows
that coupling central charge cF1 spin models to 2D quantum gravity dresses the conformal weights to get new critical
exponents, where the relation between the original and dressed weights depends only on c. At the discrete level the coupling
to 2D gravity is effected by putting the spin models on annealed ensembles of F 3 planar random graphs or their dual
triangulations, where the connectivity fluctuates on the same time-scale as the spins.

Since the sole determining factor in the dressing is the central charge, one could contemplate putting a spin model on a
quenched ensemble of 2D gravity graphs with the ‘‘wrong’’ c value. We might then expect to see the critical exponents
appropriate to the c value used in generating the graphs. In such cases the KPZ formula could be interpreted as giving a
continuous line of critical exponents which depend on this central charge. We note that rational exponents other than the
KPZ values can be generated using this procedure for the Ising, tricritical Ising and 3-state Potts models. q 1999 Published
by Elsevier Science B.V. All rights reserved.

1. Introduction

Among the many puzzles resolved by 2D confor-
mal field theory is the appearance of rational critical
exponents in models such as the 2D Ising and Potts
models. The miracle is repeated when the models are
coupled to 2D quantum gravity since, as was shown

w x w xby KPZ 1 and DDK 2 , the dressing of the confor-
mal weights by the Liouville field of 2D quantum
gravity leads to a new set of exponents which are
nonetheless still rational. The key formula in estab-

Ž .lishing the relation between the bare D and dressed
˜Ž .D conformal weights

' '1ycq24D y 1yc
D̃s 1Ž .' '25yc y 1yc

depends only on the central charge c of the matter.
The net effect of the gravitational dressing for the

Ž . Žminimal p,q conformal models with cs1y6 p
.2yq rpq, where the primary scaling operators are

labelled by two integers r,s satisfying 1FrFpy1,
1FsFqy1, is to transmute the bare weights Dr , s

wŽ .2 Ž .2 xs D s rq y sp y p y q r4 pq frompyr ,qys

the Kac table into

< < < <rqysp y pyq
D̃ s , 2Ž .r , s < <pqqy pyq

< <where pyq s1 for unitary models. The relation
˜between D and D may be written as

j 2

˜ ˜ ˜DyDsy D Dy1 , 3Ž .Ž .
2
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where

1 ' 'jsy 25yc y 1yc , 4Ž .Ž .'2 3

and is called the KPZ scaling relation.
The effect of coupling various statistical mechani-

cal models to 2D gravity, such as the Ising and
qF4 Potts models, can thus be calculated using the
KPZrDDK results. If we denote the critical tempera-
ture for the phase transition in these models by Tc

< <and the reduced temperature TyT rT by t thenc c

the critical exponents a ,b are defined in the stan-
dard manner as t™0 by

C ; tya , M; t b , 5Ž .sing

where C is the singular part of the specific heatsing

and M is the magnetization. It is then possible to
calculate a and b using the conformal weights of
the energy density operator D and spin operator De s

in both the dressed and undressed cases,

1y2 D De s
as , bs . 6Ž .

1yD 1yDe e

The various scaling relations between the critical
exponents then allow the determination of the com-
plete set of exponents.

2. When the wrong c can be right

The preceding derivation is quite natural when
considering the models in a gravitational context.
Since the matter is interacting with gravity, it is the
central charge of the matter itself which gets fed into
the KPZ formula and returns the new set of rational
dressed conformal weights and consequently new set
of rational critical exponents. There are, however,
circumstances in which one could conceive of cou-
pling the conformal matter to graphs with the
‘‘wrong’’ central charge. The first of these is when
one considers the matter living on a quenched en-

w xsemble of 2D gravity graphs, as was done in 3,4 . In
this case the interaction between the graphs and the
matter is switched off and one is in effect looking at
an ensemble with quenched connectivity disorder.
This ensemble displays several interesting effects,
including a softening of first-order phase transitions

in q)4 Potts models to continuous transitions and
the possible appearance of a new set of non-rational
Ž .but still algebraic quenched exponents for qF4
Potts models. In these respects it very much resem-
bles the quenched bond disorder models that have

w xattracted much attention recently 5 rather than other
quenched connectivity disorder ensembles generated

w xusing Poisonnian random lattices 6,7 which retain
the characteristics of their regular lattice counter-
parts.

The relevant relation between the quenched
dressed weights and bare weights is given by the
cs0 version of the KPZ formula

'1q24D y1
D̃s . 7Ž .

4

w xIt has recently been pointed out by Cardy 8 that one
should, in fact, see multi-fractal scaling of local
correlators on quenched gravity graphs, just as with
quenched bond disorder. The nth power of a correla-

˜tor with weight D averaged over the disorder scales
˜not as nD, but rather

'1q24nD y1
D̃ s . 8Ž .n 4

Freed from the bounds of using the ‘‘right’’ value
of c in the KPZ formula we can consider the effect
of coupling conformal matter to other backgrounds,
whether quenched or annealed. In the quenched case

Ž .one is interested in calculating the reduced free
w x w xenergy Fs lnZ where . . . is a quenched av-av av

erage over an ensemble of graphs characterized by a
central charge csd. Such graphs can be generated
by using the adjacency matrix of the graph G since

Ž .the fixed area i.e. fixed number of vertices partition
function Z obtained on integrating out d scalarA

fields with central charge d is

ydr2Z s det C , 9Ž . Ž .ÝA G
Ž .GgGG A

Ž .where GG A is the class of graph being being
summed over and C is the adjacency matrix of theG

the graph G:

q if is j,° i~C s 10yn if i and j are adjacent, Ž .G i j¢
0 otherwise.
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Since d is now a parameter, one can in principle use
arbitrary negative or positive values in generating the
ensemble of graphs. We take this as the definition of
the central charge csd associated with the graphs.
In the above q is the order of vertex i and n is thei i j

number of edges connecting the adjacent vertices i
and j, which can be more than one in certain ensem-

Ž .bles GG A .
In analytical calculations for quenched ensembles

Ž .we can use the replica trick to formally replace the
free energy by the n™0 limit of an n-replicated
version of our matter action

n nw xFs lim Z y1 rn s lim Z y1 rn ,Ž . Ž .av
n™0 n™0av

11Ž .

which relates the quenched ensemble to the annealed
problem with n copies of the matter fields of inter-

w xest. The . . . stands as before for a functionalav

integral over surfaces with central charge d, now
dynamically coupled to the matter fields. The total
central charge is thus c sdqnc and in thetotal matter

quenched n™0 limit c ™d is the number whichtotal

appears in the KPZ formula. A simulation to this
w xeffect has already been carried out in 9 where good

numerical agreement was obtained for the measured
exponents of the Ising model on a quenched ensem-
ble of dsy5 graphs and those calculated by substi-
tuting csdsy5 in the KPZ formula for the
dressed energy and spin weights 1.

Since the central charge of the graphs is decou-
pled from the matter in quenched simulations such as
that described above, the KPZ formula on such
backgrounds can be thought of as giving a line of

˜Ž .dressed conformal weights, say D d , depending on
the central charge associated with the graphs d. If
we parameterise d in the customary manner

26 pyqŽ .
ds1y 12Ž .

pq

1 The interpretation put upon the results there was that annealed
and quenched ensemble of graphs gave the same results provided
the total central charge, c , was the same – the difference istotal

essentially semantic.

Table 1
Critical exponents for the Ising model

a b g

1 7Onsager 0 8 4
1Ž .KPZ ds1r2 y1 22

Ž .quenched ds0 y0.8685169 0.4167516 2.0350137
39 1 1dsy y 210 2 4

we arrive at the following version of the KPZ for-
mula

2 2 < <(p qq y2 pq 1y2 D y pyqŽ .
D̃ d s 13Ž . Ž .

< <pqqy pyq

for the dressing of weights in a gravitational back-
ground characterised by central charge d. The energy
and spin weights derived from this formula would

Ž .then, via Eq. 6 , give a line of critical exponents
Ž . Ž .a d and b d which depended on the background

central charge d. In annealed simulations the central
Ž .charge of the now non-replicated matter should be

included and d is replaced by c sdqc intotal matter

the above considerations.

3. Rational points

On a line of continuously varying critical expo-
nents the rational values are typically the most inter-
esting, a prime example being the 8 vertex model on
a square lattice where the Ising model, amongst
others, appears at such a point. We might thus
enquire whether rational points other than the stan-

Ždard ones i.e. ds1r2 for Ising, 7r10 for the
tri-critical Ising model, 4r5 for the 3-state Potts

.model exist. In the case of the Ising model D se

1r2, D s1r16 and there are no other operators ins

the conformal table apart from the unit operator. If
˜ ˜Ž . Ž .we want to obtain rational D d and D d , ande s

Ž . Ž . Ž .hence rational a d and b d , we see from Eq. 13
that both p2 qq2 and p2 qq2 y7pqr4 must be
perfect squares. The first condition will be satisfied
by the first two members of any Pythagorean triple
Ž . 2p,q,m which can be parameterised in general as

2 2 2 2 Ž .psu yÕ ,qs2uÕ,msu qÕ with g.c.d. u,Õ

2 Pythagorean triples are three integers satisfying p2 q q2 s
m2.
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s1. Inserting this into the second condition and
looking at the possible factorisations shows that only

Ž .two triples satisfy both conditions, 3,4,5 and
Ž .5,12,13 . The first corresponds to ds1r2 and, as it
should, returns the standard KPZ weights for the
Ising model coupled to 2D gravity. The second,
however, is a background with dsy39r10 and
gives the weights

39 3 39 1˜ ˜D y s , D y s 14Ž .Ž . Ž .e s10 5 10 10

Ž .which translates to exponents a y39r10 sy1r2,
Ž .b y39r10 s1r4. For comparison we show in

Table 1 the exponents a , b and g 3 for the flat
Ž . Ž .lattice Onsager exponents , KPZ d s 1r2 ,
Ž .quenched ds0 and dsy39r10.

Ž .Remarkably, a y39r10 sy1r2 is the stan-
dard KPZ value for the three-state Potts model which

Ž .has cs4r5, but b y39r10 s1r4 is half the
3-state Potts model exponent. This prompts one to
look at the weights of the three-state Potts model in
their own right. In this case one has a much larger
conformal grid of allowed scaling dimensions, twelve
of which actually appear as physical operators. De-
manding rationality for all of these turns out to be
too restrictive for all but the KPZ values with ds
4r5. However, if we ask for rationality of only the
energy and spin operators, which have bare weights

Ž .D s2r5 and D s1r15, respectively, Eq. 13 nowe s
2 2 Ž . 2 2shows that p q q y 2r5 pq and p q q y

Ž .26r15 pq must be perfect squares. We again find
two possible solutions, ds4r5 and dsy3886r
1115. The resulting exponents are tabulated in Table

Ž .2 along with the classical fixed lattice , KPZ and
quenched values.

We have omitted the tricritical Ising model, which
strictly speaking comes between the Ising and three-
state Potts model in any classification, in our discus-
sion. Once again demanding rationality for the full
conformal grid is too restrictive to give any values of
d other than 7r10, but we can still get rational
values by restricting ourselves to rational energy and

3 Derived from the scaling relation a q2b qg s2.

Table 2
Critical exponents for the 3-state Potts model

a b g

1 1 13fixed 3 9 9
1 1 3Ž .KPZ ds4r5 y 2 2 2

Ž .quenched ds0 y0.2932676 0.3511286 1.5910104
1 6 43dsy3886r1115 y 27 27 27

spin operator weights. In this case the bare weights
are D s1r10 and D s3r80 and we find a wholee s

series of additional solutions d s y1449r400,
y3059r1430, y133763r156400, . . . as well as
Ž .unlike the Ising and 3-state Potts models positive
solutions ds69r70,44719r81200, . . . .

4. Conclusions

In summary, we have seen that treating the central
charge in the KPZ formula as a free parameter
admits rational exponent values other than the stan-
dard ones for Ising, tricritical Ising and three-state
Potts models. The numerology is most convincing in
the Ising case, since both the operators in its small
conformal grid acquire rational weights when ds
y39r10. Although rational weights can be arranged
for the energy and spin operators at novel values of
the central charge for the other two, the rest of the
conformal grid still acquires irrational weights. The
three-state Potts model has one other rational value
of dsy3886r1115, and the tricritical Ising many,
including positive values.

We have noted that feeding a value of the central
charge other than that of the matter into the KPZ
formula is precisely what is required when the mat-
terrgravity back reaction is switched off, as in
quenched simulations. Given the similarity of spin
model behaviour on such ensembles to those with
quenched bond disorder and the existence of non-
perturbative results for the resulting exponents,
investigation of such models may be useful for
illuminating some of the murkier properties of ferro-
magnetic systems with quenched disorder. Formally
exponents calculated for the ‘‘wrong’’ central charge
values can also apply to annealed ensembles of
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Žgraphs i.e. the connectivity in the graphs is fluctuat-
ing on the same time-scale as the spins, even if the
back reaction of the matter on the graphs is switched

.off so long as the appropriate matter central charge
is included.

Finally, it is worth noting that the new rational
points all appear to be numerically accessible, since
w x9 investigated csy5 and the central charges for
the Ising and three-state Potts rational exponents are
both in the vicinity of y4. It would be interesting to
investigate either numerically or analytically whether
the rational points were simply a numerical accident,
or differed in some manner from the rest of the line
of exponents, as well as the occurrence of such
points in other known models.
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