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Abstract 

We perform simulations of an absolute value version of the Villain model on 43 and 44 Feynman diagrams, “thin” 
3-regular and 4-regular random graphs. The d4 results are in excellent quantitative agreement with the exact calculations 
by Dorey and Kurzepa for an annealed ensemble of thin graphs, in spite of simulating only a single graph of each size. 
We also derive exact results for an annealed ensemble of (63 graphs and again find excellent agreement with the numerical 
data for single c$’ graphs. The simulations confirm the picture of a mean field vortex transition which is suggested by 
the analytical results. Further simulations on & and d6 graphs and of the standard XY model on 43 graphs confirm the 
universality of these results. The calculations of Dorey and Kurzepa were based on reinterpreting the large orders behaviour 
of the anharmonic oscillator in a statistical mechanical context so we also discuss briefly the interpretation of singularities 
in the large orders behaviour in other models as phase transitions. 

1. Background and calculations 

It has long been known that mean field behaviour is 
found in models with short range interactions living on 
tree-like structures such as Bethe lattices [ 11. This ap- 

proach circumvents some of the problems that appear 
with using infinite range interactions to get mean field 
results. Difficulties still arise, however, when dealing 
with the dominant boundary of such trees. Random 

graphs, which are locally tree-like and have no exter- 
nal legs, offer a way round this problem, giving a way 
of calculating and simulating models on closed lat- 

tices with short range interactions that still behave in 
a mean fieId like manner. 

There has been a considerable amount of work on 
spin glass models on random graphs [ 21 mostly with 

Ising or Potts spins, often based on analogy with the 

corresponding Bethe lattice. Recently it was pointed 

out that transplanting methods from matrix models 
and 2D quantum gravity allowed a considerable sim- 
plification of many of the proofs that had been derived 

[ 31 and offered the possibility of attacking problems 
like replica symmetry breaking from a different per- 
spective. 

The matrix model inspired approach to discrete spin 

models was predated by independent work on the fi- 
nite temperature quantum mechanics of the anhar- 

manic oscillator, interpreted as a d = 1, N = 1 matrix 
model [4]. This described a Villain transcription of 
the continuous spin XY model on b;’ graphs and gave a 
mean field vortex transition rather than the Kosterlitz- 
Thouless (KT) [ 51 transition of the standard two di- 

0370-2693/96/$12.00 @ 1990 Elsevier Science B.V. All rights reserved 

SSD10370-2693(95)01526-4 



124 C.F. Baillie et d/Physics Letters B 369 (1996) 123-129 

mensional XY model. In essence, the thermodynamic 
limit of the 44 random graph model is described by 
large orders in the perturbation series of the anhar- 
manic oscillator in finite temperature quantum me- 
chanics. 

If we write the finite temperature partition function 
for the anharmonic oscillator as 

= dr($gj2 -I- &P +g+4) , 

(1) 

where p = 1 /T is the inverse temperature, and carry 
out the perturbative expansion in g, 

(2) 

then each z,(p) may be written as a sum over Feyn- 
man diagrams, which is this case are random 44 graphs 
with k vertices, giving 

&(p) = (-l)kPkxS(G) 
G 

X 1.. .l~dli~,,,,~~eXP(lii-rj+m,l). 
0 0 i=l 

(3) 

In the above S(G) is the symmetry factor, which will 
generically be unity for a large graph, the ti are at- 
tached to each vertex ’ , and the mij are attached to 
each link and summed over the integers. The partition 
function &( p) can be thought of as coming from em- 
bedding the 44 graph on a circle of period p. The finite 
temperature one-dimensional propagator that appears 
in the above, 

DQ~)= 2 eXp(-_lti-tj+tnijl)* 
n,;,=-c0 

(4) 

assigns a time coordinate ti,j to each end of an edge 
as well as a winding number mii to the edge itself. 

’ We have performed a rescnling of ti with respect to the COW 

ventions of 141 for convenience in the numerical simulations de- 

scribed later in the paper. 

Written in this form the similarity with the Villain 
version of the XY model [ 61, where the edge factor is 

D(ij) = 5 eXp[-&p(Oi- t3j +27T?7Zij)2], (5) 
m,,=-Co 

with 8 taking values in the interval 0 to 27r, is apparent 
so we might expect the same sort of critical behaviour. 
We have, in effect, interpreted the finite temperature 
quantum mechanics of the anharmonic oscillator as an 
absolute value version of the Villain model living on 
thin random graphs. 

As in [4] the free energy per vertex is defined as 

zk(p) F=->izilog - 
I I nk ’ + (6) 

where nk is the number of graphs of size k, nk N 
(16)k(k-1)!.Theenergypervertexinthemodelp= 
aF/@ measures the expectation value of the target- 
space length of the embedded graph, and can be inter- 
preted as a measure of the density of vortices in the 
model. The specific heat is also given by the standard 
formula C = -p2a2F/t?/?*, or equivalently by directly 
differentiating the energy C = @/aT. 

The analytical solution of the thin graph model 
proceeds by looking at the large orders behaviour of 
the anharmonic oscillator partition function [7] in 
IZq. ( 1). After a resealing x = 2fi4, the k -+ cm 
saddle point solution is given by the trajectories of 
period p of a particle moving in the potential V = 
- ix2 + $x4. A non-trivial instanton solution only ex- 
ists above a critical value of the period p (in the cS4 
case & = &rr). For p < & the only contribution 
is from the trivial solution .x(t) - X,tnr where the 
particle sits at the bottom of the well. The change 
of behaviour at p = & is taken as the signal for a 
phase transition in the associated absolute value Vil- 
lain model. To obtain explicit expressions for the par- 
tition function we need to determine the dependence 
of the energy E associated with a given particle trajec- 
tory on the period p. This can be done by evaluating 
the first integral of the classical equations of motion, 

x2 

P(E) = 2 SJ dx 

2[E- V(x)] ’ 
XI 

(7) 

where xt and x2 are the turning points. In the +4 
case, the above integral can be evaluated perturbatively 
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Fig. 1. The energy for various d4 graph sizes. A dotted line 
indicates the analytical prediction. 
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Fig. 2. The specific heat for a +4 graph of size 1000, obtained 

via both numerical differentiation of p and direct measurement. 

Again the dotted fine represents the analytical curve. 

near & [ 41, Inverting the power series gives E( ,8) = 
-++4(/3--&)/(3&) f.. . .Thesesolutionspredict 

P = l//3 for p < & and p 2? exp( -j?) at large p. 
Similarly C = I for /3 < PC and sweeps up to a sharp 
cusp of height 9 as p + &+. In order to obtain 
the full temperature dependence of p and C shown 
in Figs. 1 and 2, we found it useful to express both 
P(E) and the (scaled) classical action in terms of 

elliptic integrals, which can easily be evaluated with 
high precision. In summary, we see a second order 
transition of the mean-field type, with a sharp cusp 
discontinuity in the specific heat. 

An explicit calculation can also be carried through 
in a similar style for the d3 case where the partition 
function is 

(8) 

After a resealing x = -3g& the problem is mapped 
onto considering the trajectories of a particle in the 
potential = -$x2 + 3x3. Evaluating the first integral 
of the classical equations of motion now gives 

P(E) = 6ti3 j.!& , (9) 

where K is the complete elliptic integral with modulus 
k = J(X) -x2)/(x3 - Xl), and XI < x* < Xj are 
the roots of 2[E - V(x)] = 2E + x2 - 2x3/3 = 0. 
Invertingthisgives E(P) = -;+6(p-&)/(5/l,) + 
. . . , where & is now 257. The form of p and C are 
similar to the rp4 graphs, but we now find a peak of 
$inCasp -+ &+ and C = i for p < &. As in the 
d;’ case, to compute the full temperature dependence 
of p and C, we first expressed the (scaled) classical 
action in terms of elliptic integrals, 

l(P) = & J- $(x3 - xp 
x [(2-2k2+2k4)E(k) - (2-3k2+k4)K(k)] 

-EP. (10) 

Various numerical consequences of the analytical 
results are worth remarking upon as they are con- 
venient .for verifying that simulations are performing 
correctly. Firstly, we find that p( T,) is equal to T, on 
44 graphs. Secondly, it should be noted that the PC is 
determined only by the period of oscillations around 
the minimum of the potential for any potential. Ap- 
proximating this region with a quadratic gives & = 
2r/m if V N -VO + m*(x - x0)*/2, where xa is the 
minimum point. This reproduces the explicit results 
derived above for +3 and +4 graphs with rather less 
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pain. Finally, it is worth noting that, for a potential 
with an anharmonic term of the form 42(pf’), we will 
have C = p for T > T, because p = pT for T > T, in 
general. 

We can contrast the critical behaviour described 
above with the standard XY model on a flat two di- 
mensional lattice 

Z=y [Fi] exP (~~COSI@i--~jl) ( (11) 

which displays a topologically driven Kosterlitz- 
Thouless (KT) transition. The specific heat has only 
a broad cusp rather than a divergence. However, the 
correlation length has a critical singularity as does 
the spin susceptibility. In spite of the differences the 
physical picture of the transition on thin graphs is 
still very similar to that of the standard KT transi- 
tion. Given the interpretation of p as a vortex density, 
the preceding saddle point results show that as the 
temperature is increased (ie p is decreased) vortices 
are liberated, with the vortex density increasing by 
almost an order of magnitude around PC. 

It is not a foregone conclusion that putting the model 
on any collection of random graphs will give mean 
field behaviour - the model still displays a KT transi- 
tion on an annealed set of planar random graphs (ie 
when coupled to 2D quantum gravity). An explicit 
check in simulations of the thin graph predictions is 
therefore not totally vacuous. We have another mo- 
tivation in carrying out simulations: the work in [3] 
revealed, surprisingly, that calculations made for the 
Ising model on an annealed ensemble of thin graphs 
were in excellent quantitative agreement with simula- 
tions on a single graph. There is thus self-averaging 
for the Ising ferromagnetic transition on such graphs. 
We shall check the self-averaging for the XY transi- 
tion in the simulations reported in the next section, in 
which we look at the absolute value Villain action on 

63,~4,q55 and @ random graphs. We also simulated 
the standard XY action on rb3 graphs to check it the 
universality of our results. 

2. Simulations 

We need to exercise :t little care in defining our 
observables in the simulation because of the unusual 

form of the Boltzmann factors in the partition function 
[ 81. If we define the auxiliary sums 

zO= 2 exp(-piti-tj+WjI), 

m,,=-M 

Cl = F Iti - tj + mijl exp( --PIti - tj + “<;I) , 
n1ij=-oo 

*ij=-CX 

(12) 

then the definition of the energy p = aF/ap applied to 
the partition function in E!q. (3) gives 

(13) 

for the energy per site, where the ( ) denote a thermal 
average and the additional l/p comes from the overall 
factor of flk that appears when the ti are resealed. 

The specific heat can be obtained in the simulations 
either by direct numerical differentiation of the mea- 
surements of p using C = dp/aT, or by differentiating 
Eiq. (3) twice to give 

-1. (14) 

The second term is non-canonical and is due to the 
summed Boltzmann factors whereas the -1 results 
from the overall pk. 

Having decided on our observables, it now remains 
to choose an update scheme for the simulation. A sim- 
ple Metropolis update can be used quite efficiently by 
adopting a discrete approximation to the periodic ri 
and then tabling the resulting Boltzmann factors and 
associated sums &,t~, which can then be looked up 
during the course of the simulation [8]. Depending 
on the temperature, we took from 100 to 1000 differ- 
ent t values for the tables, which were constructed by 
truncating the sum over mij at St 100. Increasing these 
limits made no appreciable difference to the measured 
results in any of the simulations reported here. In do- 
ing this we are taking a Ziw. . ..Z~~ approximation 
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to the 0( 2) symmetry of the model. Notice that for the 
absolute value version 01’ the Villain model one has to 
be quite careful with this approximation, in particular 
at low temperatures, since the associated discretization 
error enters linearly in the action and not squared as 
in the standard Villain model. It is perhaps worth re- 
marking that one could equally well envisage leaving 
the M;; as free variables on each link to be sampled 
in the course of the simulation, but previous work in 
which the sum is carried out a priori as here has given 
good results for the standard Villain/XY model [8] 
and we stick to this. 

The final ingredient in the simulations is the choice 
of a random graph. The calculations we have outlined 
in the first section are supposedly for an annealed en- 
semble of thin graphs, so in theory we should carry 
out “flip” moves in the same fashion as in simulations 
of 2D gravity on planar graphs. However, as we are 
interested in checking the self-averaging properties of 
the graphs we take a single graph of each size to com- 
pare with the calculations * . 

We simulated the absolute value Villain model of 
Eq. (3) on 4” and 44 graphs of size up to 2500 
vertices, as well as small runs or N = 250 +5 and 
@ graphs. In all the cases we carried out 500000 
Metropolis sweeps at each p value, with a measure- 
ment every tenth sweep, after allowing a suitable 
amount of equilibration time. As we have indicated no 
flip moves were carried out on the graphs concerned. 
The energy and specific heat, defined as above, were 
the principal observables. In addition, we also sim- 
ulated the standard XY model of Eq. ( 11) on 43 
graphs, using a single cluster update, largely as a 
check on the universality of the Villain model results. 

Turning now to the results themselves we can see in 
Fig. 1 that the energy matches closely the predictions 
of [ 41. There is a low tetnperature exponential growth 
with a “knee” at the phase transition T = l/&r (N 
0.225) followed by linear growth at larger T. It is 
also clear from Fig. 1 that p(T,) = T,, as predicted 
by the analysis in the previous section, We can obtain 
the specific heat either from direct differentiation of 
the energy or by measuring the observable defined in 

2 It should be noted that a (quenched) average over graphs be- 

comes essential when non-self-averaging transitions such as those 

in spin glasses are simulated, 50 it is not always possible to avoid 

the onerous task of simulatinp an ensemble of different graphs. 

0 05 1 

OL 
0 01 0.2 03 04 

Fig. 3. The energy for various # graph sizes. The dotted line 

indicates the analytical prediction. 

Eq. (14),andboh t are plotted in Fig. 2 for a graph of 
size 1000. This is the smallest graph size at which the 
peak reaches its expected value ( $?) - larger graphs 
give similar results, whereas the peak is appreciable 
lower and more rounded on the smaller graphs simu- 
lated. 

Fortified by the good agreement between the analyt- 
ical and numerical results for +4 graphs we can move 
on to look at the possible variations on the theme that 
were outlined in the introduction. We consider the 4’ 
graphs first. In Fig. 3 we plot the energy for various 
graph sizes, showing clearly the similarity with the 
d4 results. The “knee” in the curve is at the expected 
value of T, = 1/27r N 0.16. The specific heat curve 
obtained by numerical differentiation of these results 
is shown in Fig. 4 and is clearly of the same form as 
the +4 curve in Fig. 2, with the correct large T limit 
Of& 

We have not carried out such extensive simulations 
of the 45 and @ random graphs, simply contenting 
ourselves with verifying that the general form of the 
energy is similar and that the large T limit is correct. 
In Fig. 5 the energy is plotted up to very large T for 
43, #Jo, 45 and 4’ graphs of size 250. From the slopes 
it is clear that the specific heat prediction C -+ p for 
T + 00 on #*(P+*) graphs is satisfied to a high degree 
of accuracy. The finite size effects for a given graph 
size increase with the degree of the vertices, which 
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Fig. 4. The specific heat for &’ graphs ol’ vtio~s sizes, obtained 
via numerical differentiation of p. The dotted line shows the 
analytical prediction. 
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Fig. 5. The energy for rb_‘. 1/,“, #J’ and Cp” graphs. The linear 
prediction, p = pT on 42i”+ii graphs when T 2 &, is shown as 
dotted lines to emphasize the very good tit. 

agrees with the intuitive picture of 42(P+1) graphs be- 
ing more “tree-like” for smaller p with a given number 
of vertices. 

We would expect that the standard XY model with 
cosine action would still give us similar results on 
grounds of universality, hut as we have no analytical 
calculations to fall back on in this case it is worthwhile 
verifying this explicitly with simulations, We there- 

2.5 , , I , , I I , I I / 

21 
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Specific Heat, XY 
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Fig. 6. The specific heat for the standard XY mode! on 4’ graphs 
of various sizes. 

fore simulated the standard XY model on 43 graphs 
of various sizes, with similar statistics to the Villain 
model simulations but using a single cluster update 
for improved efficiency. The specific heat, measured 
directly in the simulation, is plotted in Fig. 6 for var- 
ious lattice sizes, where it is clear that, although the 
small and large T limits are different from the Vil- 
lain models ( 1 and 0 respectively), there is still a 
sharp cusp in the curve. This would again indicate a 
transition of mean field rather than KT type, where 
there is a much gentler bump in the specific heat curve 
away from the phase transition point. As for the stan- 
dard Villain model [ 91, the differences can be under- 
stood by an approximate mapping of the absolute value 
version of the Villain model onto the cosine model. 
By adapting the formulas in [9] to the present case, 
we find that the temperature scales should be related 
by ~~(p”““)/lc~(pcoS) = (P/27r)2/ (1 + (P/2N2)7 
where lo,, are Bessel functions and pcoS denotes the 
inverse temperature of the cosine model. Inserting 
& = 2~ this predicts I1 (r)/lo( py) = i or TF’ = 
0.8625.. . , in good agreement with the peak location 
observed in Fig. 6. 

3. Conclusions and other models 

The saddle point predictions for the energy and spe- 
cific heat of the absolute value Villain model on vari- 
ous random graphs are verified by the simulations we 
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have carried out. As one might expect the standard XY 
model on “thin” 43 graphs behaves in an analogous 
fashion, with a mean-field-like transition rather than 
a KT transition. The second point worth emphasizing 
is that we have not needed to simulate an annealed 
ensemble of random graphs to get good quantitative 
agreement with the theory, just as for the Ising ferro- 
magnet on thin graphs [ 31. This should be contrasted 
with the planar graphs in 2D gravity where an annealed 
sum, usually implemented by llip moves in a sim- 
ulation, appears to be essential. Such self-averaging 
means that, unless one is very unlucky, any large thin 
graph is as good as another. 

We are not restricted 10 the simple anharmonic os- 
cillator in searching for statistical mechanical inter- 
pretations of large orders behaviour in quantum me- 
chanics. Another example was considered by one of 
the authors of this paper in [ IO], namely the quan- 
tum mechanics of an anisotropic anharmonic oscilla- 
tor, where the partition function is 

+&#J’: +2cf$:43; +&I 
) 

(15) 

Taking c as the control parameter rather than p, the 
large orders behaviour shows a singularity at c = 1, 
where the model is rotationally symmetric. For -1 5 
c < 1 the quartic 4: + 4; terms dominate and the 
instanton solution is 41 ( t) = u(t) (42 (t) = 0, where 

(16) 

whereas for c > 1 the &?@z term dominates and the 
solution is of the form (bt (r) = #2(t) = u(t)/&. 
Looking at the Feynman diagrams generated by the 
model we can see that it is a sort of loop gas, with 41 
loops and 42 loops mixing via the #& vertex and 
a propagator D(,) between the individual vertices on 
loops of both types. If we consider a ratio of mixed to 
pure vertices, 

M=,_Z& 
4; + (17) 

mixture of 41 and 42 loops for c > 1 (M = 0). 
The singular behaviour at c = 1 can thus be viewed 
as a sort of magnetization transition. It would be an 
interesting exercise to see if other large orders results 
in quantum mechanics could be cast in a statistical 
mechanical mould. 
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