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Abstract  

We performed a high statistics simulation of Ising spins coupled to 2D quantum gravity on toroidal geometries. The tori 
were triangulated using the Regge calculus approach and contained up to 5122 vertices. We used a constant area ensemble 
with an added R 2 interaction term, employing the d l / I  measure. We find clear evidence that the critical exponents of the 
lsing phase transition are consistent with the static critical exponents and do not depend on the coupling strength of the 
R 2 interaction term. We definitively can exclude for this type of model a behaviour as predicted by Boulatov and Kazakov 
[Phys. Lett. B 186 (1987) 379] for lsing spins coupled to dynamically triangulated surfaces. 

1. I n t r oduc t i on  

With the advances made in string theory there was a 
rising interest in 2D quantum gravity, motivated by the 
fact that a string moving in N dimension is equivalent 
to N scalar fields coupled to 2D quantum gravity [ 1 ]. 
For N equal to zero we then deal with pure gravity. 
An important step forward was made when Kazakov 
[2] suggested a model of  Ising spins living on the 
vertices of  ~b 3 graphs that was solvable and, in its dual 
form, equivalent to lsing spins coupled to a dynamical 
triangulated surface (DTS) .  It turned out [ 3 ] that the 
set of  critical exponents of  the Ising transition is very 
different from the static Onsager critical exponents 
(see Table I be low).  Some time later Knizhnik et al. 
(KPZ)  [41 found the same set of  critical exponents 
with methods of  conformal field theory for matter of  
central charge c = 1/2, which is supposed to be the 
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continuum limit of  Kazakov's  model. The exponents 
have been confirmed in a variety of  numerical studies 
[5 -8 ]  on ~b 3 graphs as well as with the dual method 
of  dynamical triangulated surfaces. 

One of  the oldest methods to study general relativ- 
ity numerically was suggested by Regge [9] .  He used 
a simplicial approximation to a manifold, where the 
underlying lattice has fixed coordination number, and 
took the link lengths as gravitational degrees of  free- 
dom, whereas in the DTS method it is just  the oppo- 
site, the coordination number varies and the simplices 
have fixed link lengths. The relation of  Regge calcu- 
lus to classical relativity has been extensively studied 
[10,11 ], and its continuum limit is reasonably well 
understood. There has been up to now only one sim- 
ulation [ 12] with rather low statistics of  Ising spins 
coupled to gravity using the Regge approach, which 
suggests that the critical exponents are the same as 
in the fiat case. This is somewhat disturbing, because 
it is generally believed that both approaches should 
describe the same model in the continuum limit. We 
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Table l 
Comparison of our Monte Carlo results with the exact results for the Ising model on static lattices (Onsager) and the results of Boulatov 
and Kazakov 131 for the Ising model on dynamical ~3 graphs (DTS). The values marked with a star were computed from hyperscaling 
relations with D = 2. thereby neglecting possible scaling effects due to the internal fractal dimension in the DTS approach. 

ot /3 y ,5 71 v 

DTS - I 0.5 2 5 2/3" 1.5* 
Onsager 0 0.125 1.75 15 0.25 I 
This MC study ,~ 0 0.126(2) 1.75(2) 14.9(3) 0.272(3) 1.01 ( I )  

found it therefore worthwhile to investigate the Regge 
approach again on larger lattices and with a better 
statistics, to confirm or disprove the results obtained 
in Ref. [12] .  

2. The model and simulation techniques 

We simulated the gravitational interaction using the 
Regge calculus where the underlying manifold is dis- 
cretized with a fixed triangulation and the link lengths 
are subject to variations. We used the usual transcrip- 
tion [ 13,14] of  continuum quantities like the metric 
g and the scalar curvature R into the Regge approach, 
namely 

f d2x~/g(x) , Z Ai, (1) 
i 

f d2xv/g(x) R(x) ~ 2 Z 8i, 
i 

f d2x gv/-g'-~R2(x) ~ 4 Z ~ ,  
i 

(2) 

(3) 

where t~ i is the deficit angle at the vertex i defined as 

t~ i = 277" -- Z 0 i ( t ) ,  ( 4 )  

all t sharing i 

and Oi(t) is the dihedral angle associated with the 
triangle t. The area  Ai  is taken to be the barycentric 
area associated with the site i, 

Ai:ZIA,, (5) 
tDi 

w h e r e  A t denotes the area of  the triangle t, which is 
one of  several popular choices that are believed to be 

equivalent in the continuum limit. We simulated the 
partition function 

Z =~-~fDlz(l) exp(-l(l) - KE(l,s)), (6) 
{s} 

where l(l) is defined as the gravitational action 

l(l) = Z ( AAi + a~i), (7) 
i 

and 

e(t, s) = ½ Z Aq(Si- sj)2 (8) 

edges l U lij 

is the energy of  Ising spins si, si = +1, which are 
located at the vertices i of  the lattice. Here the volume 
Aij associated with a link l 0 is defined as 

Aij : Z IA'" (9) 
triangles t D lij 

In two dimensions the Einstein-Hilbert action (2) 
is in virtue of  the Gauss-Bonnet theorem proportional 
to the Euler characteristic X, and therefore a topolog- 
ical invariant which does not contribute to the gravi- 
tational action (7).  In higher than two dimensions a 
R 2 interaction term is sometimes added to guarantee 
the boundedness of  the gravitational action from be- 
low. This is not necessary in two dimensions where 
we included such a term to probe its influence on the 
continuum limit. 

The form of  the path integral measure D/z(l)  in (6) 
is already not clear in the continuum formalism. The 
most simple and most often used choice on the lattice 
is Dlz(1) = 1-'[ dill, which we also adopted here. We 
simulated the gravitational action using the standard 
single-hit Metropolis update. In addition to the usual 
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Metropolis  procedure a change in link length is only 
accepted, if the links of  a triangle fulfill the triangle 
inequality. As Ising update we used the single-cluster 
(Wolff)  algori thm [ 15] which prevents the critical 
slowing down near the phase transition. Between mea- 
surements we performed n = 2 . . . . .  4 Monte Carlo 
steps consist ing of  one lattice sweep to update the link 
lengths l/j followed by a single-cluster flip to update 
(a fraction of) the spins si. We checked in some cases 
that varying the relative frequency of  link and spin 
updates does not change the results within error bars. 

We simulated the partition function (6)  on triangu- 
lated tori of  size N = L 2 with fixed coordination num- 
ber q = 6. This gives rise to 2N triangles and 3N link 
variables. The principal simulations were performed 
at a = 0.001 and the couplings K = 1 and K = 1.025 
tbr L = 6 ,8 ,  10, 12, 16 ,32,64,  I(X), 128, 200, 256, 
and 512. Addit ional  simulations were performed with 
a = 0 and 0. I at K = 1.025, using lattices of  size L = 
8, 16 ,32,64,  100, 128 and 256. Because of  the scale 
invariance of  the measure we could rescale each link 
when proposing a link update such that the total area 
was kept fixed to its initial value A = N. The differ- 
ence of  the model defined by (6)  and the Ising model 
on a static triangular lattice is that the spins are cou- 
pled by geometric weight factors wij = Aij / l~ which 

can fluctuate around the static value wl} = v ~ / 6 ,  with 

a peak at wij < w ° and a long tail for large Wij. With 
decreasing coupling a the peak sharpens and its loca- 
tion shifts to small values of  wij. 

For each run we recorded the time series of  the 
energy density e = E/A ,  the magnetization den- 
sity m = ~ i  Aisi/A and the Liouvil le field density 
~' = ~--~i In ALIA. For each lattice we performed about 
50000  measurements. From an analysis of  the time 
series we found integrated autocorrelation times for 
the energy and the magnetization of  about 1-4 (in 
units of  measurements)  for all lattice sizes. To obtain 
results for the various observables O at K values in an 
interval around the simulation point K0, we applied 
the reweighting method [161. Since we recorded the 
time series this amounts to computing 

(Oe-~Ktr)lx, , 
<O)]K - (e_aXe>lr0 , (10)  

with AK = K - K0. To obtain errors we divided each 
run into 20 blocks and computed standard Jackknife 

errors. At a = 0.001, where we had two simulations at 
different K values, we combined the results according 
to their errors [ 17, ! 81. 

From the time series we computed the Binder pa- 
rameter [ 19], 

l ( m  4) 
UL(K)  = 1 (11) 

3 (m2) 2" 

It is well known that the UL(K)  curves fbr different 
L cross around (Kc, U*) with slopes .:x L I/ ' ,  apart 
from confluent corrections explaining small system- 
atic deviations. This allows an almost unbiased esti- 
mate of  the critical coupling Kc, the critical correla- 
tion length exponent u, and the renormalized charge 
U*. The slopes can be conveniently calculated as 

dUL { <m2 E) <m4 E> 
dK = (I - UL) (E) - 2  ( - -~7 + <m4) j .  

(12)  

We further analyzed the (finite lattice) susceptibility, 

x ( K )  = A( (m 2) - (]m])2), (13)  

the susceptibili ty in the disordered phase, 

x ' ( K )  = a ( ( m  2)),  (14)  

the specific heat, 

C( K) = K2A( (e 2) - <e)2), (15)  

and studied the (finite lattice) magnetization at its 
point of  inflection, <]m[)]i,f. The inflection point can 
be obtained from the maximum of  d(Im]) /dK,  which 
can be calculated as 

d<lml) 
d ~  - (E)<lm[) - (Elml). (16)  

Further useful quantities are the logarithmic deriva- 
tives 

dln<lml) 
d-----~ - <E) (iml > , 

and 

d In(m2) (Era2) 
- -  - ( E )  - -  - -  

dK (m 2) " 

(Elml) 
(17) 

(18)  

Another gravitational quantity of  interest is the Liou- 
ville field q~(x) = In x /g(x ) .  In the discretized version 
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its lattice average reads as ~ = ( 1/A) Ei In Ai, and the 
associated lattice Liouville susceptibility is defined as 

x ¢ ( L  ) = A((~2) _ (~p)2). (19) 

3. Results 

By applying reweighting techniques we first deter- 
mined the maxima of X, C, d(Im[)/dK, d ln(lml)/dK, 
and dln(m2)/dK. The location of the maxima pro- 
vided us with five sequences of pseudo-transition 
points Kmax(L) for which the scaling variable x = 
(Kmax (L) - Kc) L l/~ should be constant. Using this in- 
formation we then have several possibilities to extract 
the critical exponent v from (linear) least square fits 
of the tinite-size scaling (FSS) Ansatz I dUL/dK "~ 
LI/~ fo (x )  or d ln(lmlP)/dK ~ L1/~ fp (x) to the data 
at the various Kmax(L) .  The tit range was chosen 
such that the goodness-of-fit parameter Q was always 
above 0.1. 

For the very extensive simulations at a = 0.001 all 
values are in good agreement with the Onsager value 
v = 1 at a 2% level, giving rise to an average of 1/v = 
1.(30(1). For the other two couplings, a = 0.1 and 
a = 0, the data scatter a bit more but their averages 
1/u = 0 . 9 8 ( 1 ) ( a  = 0.1) and l / v  = 0 . 9 5 ( 2 ) ( a  = 0) 
are still compatible with v = 1. 

Assuming thus v = 1 we have next determined esti- 
mates for Kc from the Binder parameter crossings and 
the scaling of the various Kmax (L) .  The crossings K x 
of the curves Ut.(K) with L and L I approach Kc as 

K × = Kc + K/(b  1/~ -- 1), (20) 

where b = L' /L,  x is a constant, and confluent cor- 
rections are neglected. This method, valid for large 
b, turned out to be the most precise one, leading for 
a = 0.001 to an estimate of the critical coupling 
Kc = 1.02652(6).  For a = 0.1 we obtain by the 
same method K~ = 1.0292( ! ), and for a = 0 we find 
Kc = 1.0230(2).  Performing linear least-squares fits 
with z., = 1 to the various pseudo-transition points 
Krnax(L) gave consistent estimates of Kc for all five 

I By writing the scaling Ansatz as -~ N I/Dv instead of ~ L I/v 

we trivially get the same estimates for 2~yD. This would be 
directly comparable with DTS simulations where D is possibly a 
non-trivial internal fractal dimension; of. Table I. 

sequences. As final value we quote their average Kc = 
1.02650(8), where the error is taken as the minimum 
among the five estimates. This is probably an overesti- 
mate, but since the five sequences are of course corre- 
lated a more refined optimization of the final estimate 
would require a careful analysis of cross-correlations 
which we have not performed here. For the other cou- 
plings a = 0. I and a = 0.0 we obtain Kc = 1.0301 (2) 
and K,. = 1.0243(4), respectively, again in reasonable 
agreement with the estimate from the Binder param- 
eter crossings. Combining this information we use in 
further analyses 

Kc= 1.0234 ~ 0.0002 

K,.= 1.0265 ± 0.0001 

Kc= 1.0295 ± 0.0001 

(a  = 0 . 0 ) ,  (21) 

(a  = 0.001),  (22) 

(a  = 0.1). (23) 

In particular we can now extract v also from the scaling 
ofdU/dK and d ln(lmlV)/dK at Kc, in good agreement 
with our previous results. 

Another quantity of interest is the asymptotic limit 
U* of the Binder parameter at Kc. We first looked at 
the scaling of U × = U(K ×) for fixed b = L ' /L  = 2, 
where one can assume a scaling of the form 

U x ( K  x ) = U* + c L - ' .  (24) 

From a three-parameter fit we obtain U* = 0.616(9)  
and w = 0.6(5)  for a = 0.001. Another somewhat 
more stable way to obtain an estimate for U* is by fit- 
ting the values of Ut. at Kc according to (24) .  For a = 
0.001 we obtain from the three-parameter fit shown in 
Fig. 1 U* = 0.6117(14) and ~o = 1.1(4). The uncer- 
tainty in Kc, however, implies a further error of AU* 
0.0035, so that we finally quote U* = 0 .612(5) .  From 
three-parameter fits at Kc we obtain for a = 0.1 U* = 
0.615(6) and w = 0 .7(4) .  For a = 0.0 the errors 
turned out to be larger, leading to an estimate of U* = 
0.609(33) and w = 0 .3(7) .  

These values are practicably indistinguishable 
from estimates for the regular square lattice, U* = 
0.615(10) [20] and U* = 0.611(1) [211, or Poisso- 
nian random lattices, U* = 0.615(7)  [22].  This gives 
further evidence that the critical behaviour of Ising 
spins on Regge lattices is governed by the standard 
(Onsager) universality class. We are not aware of 
any estimates for U* in the DTS approach. 
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Fig. I. Finite-size scal ing of the Binder parameter values Ut,(K) for a = 0.001 and K = 1.0265 ,~ Kc. The solid line is a three-parameter 
fit U/,(K) =U* + cL - '°,  yielding U* = 0 . 6 1 1 7 ( 1 4 )  and t o =  1.1(4) .  

~max versus L 
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Fig. 2. Doublc logarithmic finite-size scaling plot of the susceptibility maxima gmax for a = 0.0, 0.001, and 0.1. To disentangle the curves 
we added an offset of  - 2  (2)  to the data for a = 0.0 ( a  = 0.1).  The slopes are in all three cases compatible  with the Onsager  value 
"y/~, = 1.75 for regular static lattices. 
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To extract the critical exponent ratio ),/v we used 
the scaling g "~ Lr/~f3(x) at the previously dis- 
cussed points of constant x, as well as the scaling 
of X' at K,.. The quality of the fits for Xm~x can be 
inspected in Fig. 2. As final results we find y/v  = 
1.735(5) (a  = 0.001),  3'/v = 1.728(3) (a  = 0.1), 
and ~/v = 1.717(6) (a  = 0). The values for ),Iv 
for the different values of a are compatible with each 
other, but are all slightly below the Onsager value of 
7/v  = 1.75. Due to their respective error range, how- 
ever, they are still consistent with the fiat space expo- 
nent ratio. 

To extract the magnetical critical exponent ratio ~/v  
we used that (Iml) ~ L-a/~fa(x) at all constant x- 
values. Another method is too look at the scaling of 

d(lml)/dK ~ L(l-~)/~fs(x). Because the errors on 
the different estimates turned out to vary over a large 
range we chose to compute error-weighted averages. 
Using our average values for v we obtain the final 
estimates of f l /v  = 0.127(3) (a  = 0.001), ~/v  = 
0.123(2)  (a  = 0.1),  and [~/v = 0 . 1 2 3 ( 4 )  (a  = 0.0). 
Again we see little influence of the curvature square 
term, and the results are again in agreement with the 
Onsager result ~/v  = 0.125. 

Having found so far overwhelming evidence for the 
Onsager universality class, we expect also the specific- 
heat exponent a to take on the Onsager value, namely 
a = 0. In this case we expect a logarithmic divergence 
like 

C(x, L) = A(x) + B(x) lnL.  (25) 

Indeed the data at the different fixed values of x can 
all be fitted nicely with this Ansatz. In particular, for 
a fit of Cma~ with 11 data points at a = 0.001 we 
obtain A = 0 .17(1) ,  B = 0 .369(5) ,  with Q = 0.80. 
Of course, we also did an unbiased 3-parameter fit of 
the form 

a = 0.1, and A = 7(12) ,  B = - 7 ( 1 2 ) ,  and ot/v 
- 0 . 0 6 ( 1 3 ) ,  with a quality Q = 0.32 for a = 0 

Similar fits of C at the other Kmax(L) sequences 
well as at Kc gave consistent results. Another meth( 
which in previous studies [23] gave improved es 
mates over (26) ,  is to fit the energy density accordi 
to e( L) = a + BL (~-l)/~. Three-parameter fits at 
gave ( a -  1 ) /v  = - 0 . 9 8 ( 5 )  (a  = 0.001 ), (o r -  I ) /~ 
- 0 . 9 8 ( 4 )  (a = 0 .1) ,and  (o t -1 ) /v  = - 1 . 0 6 ( 4 )  (c 
0.0). Overall we can conclude that also tor a/v  ( 
data is fully consistent with the static Onsager val 
of zero. 

We found in all FSS analyses that the added R 2 
teraction term did not affect the FSS behaviour. To 
a final estimate we therelore computed a weighted 
erage of the three simulations with different coupli 
a. The results, put into comparison with the KPZ p~ 
dictions, can be found in Table 1. We used the ust 
scaling relations r / =  2 - y / v  and ~ = 1 +~,/fl, as w 
as our measured value for v to convert the expom 
ratios. 

Let us finally consider the critical behaviour of t 
Liouville field ~o which is the interesting variable in t 
gravitational sector. The FSS prediction is x~(L) 
L(2-~)f6(x) [12].  Using the 7 largest values 1 
L in our simulation tor a = 0.001 at Kc a lint 

least-squares fit yields (2 - r/~) = 0.047(28) ,  w 
Q = 0.15, and tbr a = 0.1 we get with 6 data poil 
(2 - rho) = 0.040(13) ,  with Q = 0.79. For a = 0 ,  
the other hand, we lind with 7 data points (2 - rt~) 
2.01 (6) ,  with Q = 0.19. The observed pronounced C 
pendence of r/~ on a is plausible because a positive 
term tends to suppress curvature fluctuations and s~ 
bilizes in this way also the area fluctuations. Therefc 
one should only consider the case with a = 0, whi 
gives an observed value of r/~ ,~ 0 that is consist~ 
with a massless free field behaviour of ~o. 

C(x, L) = A(x) + B(x)L ~/~, (26) 

which gave us in the case of the fit of Cmax with a = 
0.001 and 8 data points A = 7.9(3.8) ,  B = - 7 . 9 ( 3 . 7 ) ,  
and a /v  = - 0 . 0 6 ( 5 ) ,  with a quality Q = 0.12, com- 
pare Fig. 3. For comparison, we included also the best 
fit with Ansatz (25) ,  and a linear least-squares fit 
with the DTS prediction ot/v = - 2 / 3 .  For the other 
two a-values we get A = 7 .4(8.1) ,  B = - 7 . 4 ( 7 . 8 ) ,  
and ot/v = - 0 . 0 7 ( 9 ) ,  with a quality Q = 0.08 for 

4. Concluding remarks 

We have performed a fairly detailed high statis 
study of the Ising model coupled to quantum gray 
via the Regge calculus approach. Using the path in 
gral measure 1-I dl/l  we have found that an includ 
R 2 interaction term showed no effect on the nature 
the phase transition, and that the critical exponents 
the lsing transition still agree with the Onsager exF 
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L 

Fig. 3. Finite-size scaling of the specific-heat maxima for a = 0.001. Also shown are a logarithmic fit Cma~ = A + Bin L, a power-law fit 
Cm~x = A + BL"/", as well as a constrained power-law fit assuming the DTS prediction a / ~  = -2 /3 .  

nents for regular static lattices. If  one believes in KPZ 
scaling then Reggc calculus can survive as a tool to 
probe quantum gravity only, if one can modify it to 
reproduce the KPZ results. The two most likely al- 
terations would be to implement a different coupling 
of  the Ising spins to gravity, or to use a different, 
maybe more physically motivated, measure. In fact, 
exploratory simulations [ 24] with a different measure 
seem to imply that the choice of  measure plays a more 
dominant role than has been thought so far. 

Note added in proof 

After completion of  our work we received a preprint 
by Bock and Vink [25] suggesting that the Regge 
method with the dl/l measure gives wrong results also 
tbr pure gravity, i.e. 3~st~ng does not agree with the KPZ 
prediction. 
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