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We perform simulations of a discrete gaussian solid on solid (DGSOS) model on dynamical ~b 3 graphs, which is 
equivalent to coupling the model to 2d quantum gravity, using the cluster algorithms recently developed by Evertz et 
al. for use on fixed lattices. We find evidence from the growth of the width-squared in the rough phase of KT-like 
behaviour, which is consistent with theoretical expectations. We also investigate the cluster statistics, dynamical critical 
exponent and lattice properties, and compare these with the dual X Y  model. 

I. Introduction 

Following the work in [1,2] in the continuum Li- 
ouville theory formalism and the vast recent output 
of  results in the context of  matrix models [3] it is 
now clear that one can calculate the critical exponents 
for various c ~< 1 conformal field theories coupled to 
2d quantum gravity given the conformal weights of  
operators in the "bare" theories without gravity. The 
coupling to 2d quantum gravity can be incorporated 
in discrete simulations o f  such models by having the 
matter live on, and interact with, a dynamical lattice 
- typically a dynamical triangulation or the dual dy- 
namical ~b 3 graphs. The Ising model can be solved ex- 
actly on dynamical ~b 3 and ~b 4 graphs [4], giving ex- 
ponents in agreement with the continuum approach, 
and these results are also backed up by numerical sim- 

1 Address Sept. 1993-1994. 
2 Permanent address. 

ulations, as are the exponent values for 3 and 4 state 
Potts models coupled to 2d gravity [5]. For c > 1 the 
matrix models can no longer be exactly solved and 
the continuum approach breaks down, but numeri- 
cal simulations show no obvious pathologies and nei- 
ther do extrapolations from exactly evaluated parti- 
tion functions for small numbers of  points [6,7]. 

In view of  this the borderline case o f  c = 1, exem- 
plified by the 4 state Potts model or the X Y  model, is 
of  particular interest. On a fixed lattice the X Y model, 
whose partition function is 

/ . 
• ( i  j )  

(1) 

where the 0i's are angular variables, is known to un- 
dergo a Kosterlitz-Thouless (KT) transition driven 
by the unbinding of  vortex pair configurations [8]. 
The correlation length diverges as 
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B~ 
~ = Acexp((T_ Tc)v ) ,  

and the spin susceptibility as 

)~ = A x exp ( ( 

(2) 

(3) 

where the exponent v is predicted to be 1/2. The KT 
theory also predicts the correlation function critical 
exponent ~/ = 1/4, where )1 is given by 

X = C~ 2-'1. (4) 

It has proved notoriously difficult to confirm this be- 
haviour numerically [9] though there is now a gen- 
eral consensus that the data supports a KT transition 
rather than possible alternatives such as a second or- 
der transition. On a dynamical lattice the theoretical 
predictions are that a KT transition persists [ 10 ] and 
the two simulations carried out to date appear to sup- 
port this assertion [ 11,12 ]. 

Another class of lattice models, namely the solid 
on solid (SOS) models, are expected to display a 
KT roughening transition. Different variants of these 
models exist one of which, the body-centred solid on 
solid (BCSOS) model, is equivalent to a six vertex 
model which is exactly soluble and is known to have 
a KT transition [13]. Numerical evidence suggests 
that on fixed lattices other variants such as the dual 
of the XY model, the discrete gaussian solid on solid 
(DGSOS) model we consider here and the absolute 
value solid on solid (ASOS) model are in the same 
universality class [ 14 ]. The partition function for the 
DGSOS model on a fixed lattice is given by 

h (i,j) 

where the h's are integer heights at each lattice point 
and the sum in the exponent is over the edges in the 
lattice. In the ASOS model this is modified to 

h (i,j) 

in the dual of the XY model to 

where/Ihi-hjl is a modified Bessel function, and in the 
BCSOS model to 

~ exp (- f l  ~ l h i -  hjl) , 
h [i,j] 

(8) 

where i, j are now diagonal neighbours and nearest 
neighbours are constrained by [hi-  hi[ = 1. The mod- 
els have a rough phase at low fl separated from a 
smooth phase at high fl by the KT transition. The 
width-squared of the surface, which can be defined by 

(9) 

where h is the mean value of the hi, is predicted by KT 
theory to diverge logarithmically in the rough phase 
with the number of points N: 

a2 Teir log(N) =~-~-  + B ,  (10) 

where d is the fractal dimension of the lattice (we have 
substituted L = N TM). At the critical point fl = tc 
KT predicts Teff = 2~re and as t approaches tc from 
below Ten - 2/rt ~ (tic - t)t/2. On fixed lattices it 
appears that it is possible to unambiguously verify eq. 
(10) for sufficiently small t but that the behaviour of 
Teff as t ---' tc cannot be fitted without including cor- 
rections in the formula for the width-squared coming 
from using a "running temperature" in the KT flow 
equations [ 14 ]. 

2. The simulation method 

In this paper we simulate the DGSOS model on dy- 
namical ~b 3 graphs of spherical topology with a fixed 
number N of points and no tadpole or self-energy in- 
sertions which would correspond to degenerate trian- 
gulations on the direct lattice. The partition function 
is now 

Z = E E exp (-fl E G~ff)(ht- hj)2 ) , 
G(N) h (i,j) 

(11) 

E H Ilhi-hJ L (fl), (7) 
h (i,j) 

where G!  ~) is the connectivity matrix of the graph. 
U 

Our aims are threefold: 
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- We wish to see if the KT predictions are still valid 
when the SOS model is coupled to 2d quantum grav- 
ity, as they appear to be in the X Y  model case; 
- We wish to investigate the efficiency of the clus- 
ter algorithms used in simulating the SOS models on 
dynamical lattices; 
- We wish to see how the lattice characteristics of the 
SOS model compare with the Ports and X Y  models 
simulated previously. 

To this end we simulate graphs with N = 100, 200, 
300, 400, 500, 1000, 2000, 5000, 10000 points for a 
range of fl values from 0.05 to 5.0. For each data 
point we carried out 10 000 metropolis equilibration 
sweeps, followed by 50000 measurements. Before 
each set of measurements we carry out a number of 
Wolff updates using the H and I algorithms of Evertz 
et al. tuned so that N u p d a t e s  = 1/Cluster Size, as well 
as N local "flip" moves in the lattice. Test runs and 
our experience with simulating the Potts and X Y 
models on dynamical lattices provided assurance that 
this was sufficient to allow for the lattice and the 
spin model to interact. To ensure detailed balance it 
is necessary to check that the rings at either end of 
the link being flipped have no links in common. The 
starting graphs came from the Tutte algorithm used 
to generate pure two-dimensional gravity meshes. 

The cluster algorithms used in the simulations are 
of the so-called "valley to mountain reflection" type 
[ 14]. One chooses a reflection plane at height M 
and notes that all of the hi may be written as hi = 
crilhi - MI + M where the tri = ±1 are embedded 
Ising variables determining whether the height hi is 
above ( + ) or below ( - )  M. A cluster is then built 
by choosing a seed point and adding further links (i j) 
with the probability 

Padd ---- 1 - qexp (-fllhi - MIIhj - Ml(aiaj + 1)),  

(12) 

where q ~< 1. It is then flipped by reversing the sign of 
the embedded Ising variables in the cluster. The fixed 
lattice simulations in [ 14 ] revealed that the choice of 
the reflection plane M was crucial for the effectiveness 
of the algorithm, because the width-squared of the sur- 
faces was not that great (in the region of 1-2) for val- 
ues of fl around tic even for large lattices. One has to 
be careful to ensure that M is not picked too far away 
from the surface. If  we take q = 1 in eq. (13) tak- 

ing the reflection plane to pass through the seed point 
will generate only clusters of size 1 ("monomers") so 
we must choose some other point close to the seed. 
One possibility is to take M = h~d + 1/2, where 
the plus and minus are chosen with equal probability, 
which was called the H algorithm (H = half-integer) 
in [ 14]. It was found that this algorithm, while er- 
godic, still had a dynamical critical exponent z _~ 1. It 
was pointed out in [ 14] that single step islands, con- 
figurations where a set of points on the surface were a 
step above or below the background, could be created 
and destroyed by the H algorithm but not reflected 
by it. Such reflections would cost nothing in terms of 
the Boltzmann weights and are thus likely to be im- 
portant for the dynamics. They should therefore be 
included by some means if one is trying to mimic the 
physically relevant degrees of freedom with the clus- 
ters. A possibility for doing this is to take M = hj 
where j is another randomly chosen point other than 
the seed on the surface, which was called the I algo- 
rithm (I = integer). This is no longer ergodic on its 
own as only even changes in heights will result from 
the reflections, but combining the H and I algorithms 
gives an ergodic algorithm that effectively eliminates 
critical slowing down on fixed lattices. Another pos- 
sibility is to take M = h~ed with q < 1 when hi = 
hseed, giving a so-called Q algorithm which could also 
be combined with the H algorithm to eliminate criti- 
cal slowing down. For the sake of simplicity we con- 
centrate here on combining the H and I algorithms in 
our simulations. 

In the simulations we measured the width-squared, 
as defined in eq. (9), the energy 

(i j) 

the specific heat 

C = N((E 2) - (E)2), (14) 

autocorrelation functions for the energy and width- 
squared and the correlator 

C,, = ( n - ~  ~. ( h , - h j ) 2 j ( d o - r ) > ,  (15) 
zy 

where dij is the geodesic distance on the lattice be- 
tween points i and j and 
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nCr) = ~ (~(dij -- r) (16) 
1 

i j  

is the number of points at geodesic distance r. The 
size, diameter and number of boundary points of  the 
two types of clusters and various characteristics of the 
lattice itself were also measured. In what follows we 
describe the results of these measurements. 

3. Measurements on the SOS model 

The energy and specific heat are plotted in fig. 1 for 
the various fl values and system sizes simulated. The 
curve for the specific heat looks gratifyingly KT-like - 
there is no sign of an increasing peak with system size 
as one would expect for a second order transition. It is 
also clear that the behaviour of the model as fl ---, 0 is 
correctly being reproduced. In this limit the diverging 
width of the surface relative to the lattice size means 
that one has in effect real valued heights at each point 
instead of integers. We should thus see the behaviour 
of a single free real scalar field as fl ~ 0 and it is 
known from a simple scaling argument that both the 
energy and specific heat for this should be 1/2. Both 
the specific heat and energy curves in fig. 1 show this 
behaviour up to fl = 1.5. The phase transition point 
is not at the maximum in the specific heat curve for 
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Fig. 1. The specific heat and energy for the various graph 
sizes plotted against ft. 
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Fig. 2. The width-squared of the surfaces as defined in ¢q. 
(9). The lowest # values are not plotted in order to avoid 
compressing the scale. 

a KT transition but using this as a rough guide, along 
with the onset of the divergence in the width-squared 
the critical region is in the region of, or just below, 
p=3.  

The scaling relation of eq. (10) for the width- 
squared, which is plotted in fig. 2 with the smallest # 
values dropped to avoid an overly large scale is also 
verified. In table 1 we show the results of  fitting a 2 
to Alog(N) + B. As might be expected the fits are 
quite good deep in the rough phase but deteriorate 
as one approaches the transition point in the region 
o f #  = 3. We do not attempt to fit A ( =  Taf/dn) to 
Tar - 2/n ~_ (tic - r )  1/2 because of the aforemen- 
tioned necessity of including corrections to this for- 
mula by introducing a "running temperature" in the 
KT flow equations. We do not have sufficient data 
near to the putative critical point from the current 
runs to fit accurately to this modified formula for the 
width-squared. As well as measuring the behaviour 
of the DGSOS model itself it is also interesting to 
investigate the algorithmic aspects of the simulation, 
in particular whether the mixed H and I cluster meth- 
ods employed here are still efficient at reducing crit- 
ical slowing down. In the case of fixed lattices it was 
found [14] that combining the H and I algorithms 
gave a very small, or perhaps even zero, value of the 
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Table 1 
Fitted values of A and B. 

fl A B %2 

0.05 11.8(1) -35(1) 7.3 
0.10 6.57(8) -22(1) 3.9 
0.25 2.36(4) -7.0(3) 2.6 
0.50 1.16(2) -3.4(1) 2.5 
0.75 0.83(1) -2 .6(I )  4.1 
1.00 0.61(1) -1.9(1) 5.9 
1 .25  0.50(1) -1.60(4) 4.4 
1 .50  0.36(1) -0.95(2) 5.1 
1 .75  0.315(3) -0.89(2) 4.3 
2.00 0.270(3) -0.76(2) 4.3 
2.25 0.256(3) -0.85(2) 6.5 
2.50 0.207(3) -0.67(2) 5.7 
2.75 0.153(1) -0.47(1) 7.3 
3.00 0.091(1) -0.23(1) 5.9 

Table 2 
Values of z/d for selected #. 

# z/d Z 2 
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Fig. 3. The mean cluster sizes as a fraction of the lattice size 
for the two cluster algorithms on the largest (N ffi 10 000) 
graphs simulated. 

0.05 0.0018(1) 2.9 
0.25 0.0007(1) 4.3 
2.50 0.0018(1) 10 
2.75 0.0089(3) 9 
3.00 0.0027(1) 9 

dynamical critical exponent z defined by z ~ L z, 
where L is the linear size of  the system and z is the 
autocorrelation time, for fl ~< pc*l .  In our case we 
must use the definition T -~ N z/a where d is again 
the fractal dimension of  the lattice We find that z /d  
is very small for all of  the p values we simulated, 
some typical values are listed in table 2. I f  we assume 
that the fractal dimension is ___ 2.6, which is what we 
measure in a naive counting of  the density of  points 
(see section 4 below), we find values for z that are 
very small for all the p we have measured. We have 
not, of  course, pinpointed the transition point ac- 
curately with the current batch of  simulations so it 
would be unwise to claim that critical slowing down 
is almost eliminated on dynamical lattices with the 

# 1  We restrict ourselves to the rough phase as the correla- 
tion length ~ is effectively the linear lattice size here - 
in the smooth phase we would have to fit to the expo- 
nential decay of a two-point function to obtain ~. 

cluster algorithms used here - we would need data at 
the critical point to assure us of  this. Nonetheless, it 
would appear that a small value o f  z is likely to be 
achieved there too, judging from the persistently low 
values for all the measured #. 

The behaviour of  the cluster algorithms as p is var- 
ied is shown in fig. 3, where the average duster  size as 
a fraction of  the total number of  lattice points is plot- 
ted. In the critical region (p = 3) both the H and I al- 
gorithms generate clusters of  approximately the same 
average fractional size. This is slightly misleading as 
a closer look at the cluster statistics reveals that the 
I algorithm produces more dusters of  intermediate 
size than the H algorithm, which tends to favour both 
very large and very small clusters. This behaviour is 
similar to that of  the clusters on a fixed lattice. 

There is an interesting crossover in the average clus- 
ter sizes o f  the two algorithms in the region of  the 
phase transition point. Deep in the rough phase at low 
p the H algorithm produces a small average duster  
size with fewer dusters generated per attempt. This is 
because at low fl there is a good chance that the ran- 
dom reflection plane picked will be a long way from 
the seed point in the H algorithm, so the cluster grow- 
ing will fail at the first step because of  the large penalty 
in the probability factor. The I algorithm, on the other 
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Fig. 4. Binned sizes of both H and I clusters on N = 10 000 
lattices plotted against their diameters on a log/log scale for 
selected #. 

hand, always picks a point at distance 1/2 from the 
seed and incurs no such penalty. In the smooth phase 
(fl >/ 3) the situation is reversed - we now see that 
the H algorithm generates clusters almost the size of  
the graph, whereas the I algorithm has a small average 
size. The histogram of  the cluster sizes reveals that 
the H algorithm produces clusters almost the size of  
the graph at most attempts, whereas the I algorithm 
has a very much smaller peak for clusters of  this size 
and fails to build a cluster with much greater proba- 
bility. This is presumably because the I algorithm is 
more likely to encounter a point on the opposite side 
of  the reflection plane for a thin surface at an early 
stage and terminate the cluster growth. 

We have also measured the size and diameter of  
the clusters grown and binned values for these on an 
N = 10 000 lattice, without error bars for clarity, 
are plotted against each other on log-log scales for 
three fl values in fig. 4. The H and I dusters behave 
differently with temperature - the curves for the I 
clusters shift monotonely upwards with temperature, 
but the highest curve for the H clusters is roughly 
in the critical region at fl = 2.75. In spite of  this 
variation the slopes in the linear section of  the graphs 
are almost constant, which gives a fractal dimension 
(with a large error due to the spread in the individual 
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Fig. 5. The correlator C U at fl = 0.05 for various lattice 
sizes. Additional simulations of a real gaussian scalar field 
X on a dynamical lattice with 1000 points and an h field 
on a fixed lattice with 500 points are shown as NIOOOX 
and N500F respectively. 

clusters) o f  2.5 similar to that measured naively for 
the graphs themselves as discussed in section 4 below. 

The results of  the measurements on the correlator 
Cq are plotted in fig. 5 for # = 0.05. As we are 
deep in the rough phase we would expect essentially 
free-field behaviour, which naively suggests a logarith- 
mic growth with d u = [i - J l. However, we see that 
the growth is actually linear after an initial logarith- 
mic section which increases with the lattice size. The 
form of the curve is similar on fixed lattices where the 
flips are switched off, even though the slope changes 
slightly, so we are clearly looking at a finite size ef- 
fect caused by the spherical topology. Further evi- 
dence for this interpretation is provided by simulat- 
ing a single free scalar field with a gaussian action, 
which gives identical behaviour to the h, as it should 
for small p. Although the complicated fractal nature 
of  the ¢3 graphs makes naive geometrical arguments 
rather dangerous, it is possible to construct a plausi- 
bility argument for such behaviour: the scalar propa- 
gator (i.e. effectively our eorrelator) on a sphere can 
be written as log I z l where I zl is the stereographically 
projected distance from the sphere on the complex 
plane. This is related to the distance dij we measure 
on the sphere by 
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Izl (dq/rcR) 
= V/1 _ ( d u / n R ) 2 ,  (17) 

where R is the radius of the sphere. If  log I z (d u)l is 
plotted as a function ofdij, which is what we are doing 
when we measure the correlator, it has a long quasi- 
linear portion after the initial logarithmic increase. 

4. Lattice properties 

The results of the measurements of the lattice 
properties are succinctly summarized in fig. 6, which 
should be compared with the similar fig. 5 in our 
earlier simulations of the X Y  model [ 11 ]. The mea- 
sured quantities AL and AF relate to the acceptance 
of the flip moves on the graphs. A flip can be forbid- 
den either from constraints arising from the graph 
(i.e. no tadpoles and no self-energy bubbles) or from 
the energy change in the spin model induced by the 
reconnection of the vertices. AL measures the frac- 
tion of randomly selected links which pass the first 
test and could be flipped according to the graph con- 
straints and AF measures the fraction of the links sat- 
isfying the graph constraints that actually are flipped, 
i.e. pass the Metropolis test using the DGSOS model 
energy change. Also plotted is the fraction of rings 
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Fig. 6. AF, AL and PR3 for N = 10 000 simulation; the 
y-scale applies to AF only, AL and PR3 have been scaled 
appropriately to fit on plot. 

9 December 1993 

of length 3, PR3, which serves as an indicator of  the 
local curvature distribution in the @3 graph. 

From fig. 6 it is clear that PR3 has a modest peak in 
the region of the phase transition, with a dip appearing 
in AL at the same point. This behaviour appears to be 
generic in all the models on dynamical lattices that we 
have simulated. However, there is no sign of the uni- 
versality with the central charge, c, of the various lat- 
tice properties that we found in the Potts model sim- 
ulations [6 ] where the curves of AL, AF and PR3 as 
functions of the reduced temperature depended only 
on c and the maximum and phase transition values of  
PR3 grew linearly with c. This is not surprising as the 
X Y model also failed to show these properties. It is 
interesting to note, however, that the DGSOS model 
displays clearly different lattice properties to even the 
X Y model. In particular AF is monotone increasing 
for the DGSOS model whereas it is rather similar in 
form to AL in the X Y  model with a dip occurring 
well below the phase transition point. In view of the 
duality between the X Y  and an (admittedly slightly 
different) SOS model one might have expected sim- 
ply reversing left and right in fig. 6 to have repro- 
duced the X Y model results. In addition the maxi- 
mum value of PR3 observed for the DGSOS model 
is 0.2211 at fl = 2.00, which should be compared 
with 0.2185 for the X Y  model on graphs of a similar 
size. 

We have also attempted a naive measurement of  
the fractal dimension of the lattice by simply counting 
the number of points N(r)  within a given geodesic 
distance r of  a random starting point i, 

N(r) = ( E O ( r - d u )  I, (18) 
i j  

and using logN(r)  ~_ d logr  to extract the fractal di- 
mension d. A similar procedure gave values in the 
region of 2.7 for Ports models when extrapolated to 
infinite lattice size and 2.6 for the X Y  model when 
extrapolated in a self-consistent fashion [6,11 ]. Ap- 
plying the same methods to the DGSOS model lat- 
tices again produces a value in the region of 2.6. How- 
ever, the recent work of Kawai et al. on a transfer ma- 
trix formalism for pure 2d gravity [15] shows that a 
direct measurement of the density of  points such as 
we have carried out here contains non-universal, lat- 
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rice dependent factors #2. This is likely to remain true 
with the introduction of matter so, while our results 
may be useful for comparing the behaviour of differ- 
ent models on similar lattices, it is unclear how reli- 
able they are as measurements of the "dimension" of 
the lattices. 
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9217394, and W.J. thanks the Deutsche Forschungs- 
gemeinschaft for a Heisenberg fellowship. DAJ is 
supported at LPTHE by an EEC HCM fellowship. 
The simulations were carried out on workstations at 
Heriot-Watt University and Mainz. 

5. Conclusions 

We have simulated a DGSOS model on dynami- 
cal ~b 3 graphs using a mixed cluster algorithm. There 
is good evidence for the logarithmic growth of the 
width-squared of the surface in the rough phase pre- 
dicted by KT theory. The energy and specific heat of 
the DGSOS model also have the expected forms and 
low p limits. Measurements of the dynamical critical 
exponent suggest that critical slowing down may well 
be eliminated completely, though it would take an ac- 
curate determination of the critical point to be ab- 
solutely certain of this. The lattice properties we ob- 
served are not a simple inversion of those seen in the 
X Y  model, which is dual to a slightly different sort 
of SOS model. It would be interesting to obtain more 
data in the critical region with the DGSOS model and 
fit to the improved formula for the width-squared in 
order to determine the critical/~ accurately. It would 
also be interesting to look at the dual to the X Y  model 
to see if the lattice properties there are then closer to a 
straightforward reflection of those in the X Y  model. 
As SOS surfaces are in effect Gauss parametrizations 
of 2d surfaces embedded in 3d with no overhangs it 
would be very useful if cluster algorithms similar to 
those used here could be devised for the more com- 
plicated actions including extrinsic curvature that are 
used in simulations of "real" surfaces and string the- 
ory. 
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