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Ising model universality for two-dimensional lattices* 
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We use the single-cluster Monte Carlo update algorithm to simulate the Ising model on two-dimensional Poissonian 
random lattices of Delaunay type with up to 80 000 sites. By applying reweighting techniques and finite-size scaling 
analyses to time-series data near criticality, we obtain unambiguous support that the critical exponents for the random 
lattice agree with the exactly known exponents for regular lattices, i.e., that (lattice) universality holds for the two- 
dimensional Ising model. 

I. Introduction 

In numerical  s imulat ions of  many physical systems 
random lattices [1,2] are a useful tool to discretize 
space without introducing any kind of  anisotropy. Re- 
cent applicat ions of  various types of  random lattices 
can be found in a great variety of  fields, such as quan- 
tum field theory or quantum gravity [2-4] ,  the statis- 
tical mechanics of  membranes  [5 ], diffusion l imited 
aggregation [6], or growth models of  sandpiles [7 ], 
to ment ion a few. As a consequence of  the preserved 
rotat ional  (or more generally, Poincar6) invariance, 
spin systems or field theories defined on random lat- 
tices are expected to reach the infinite volume or con- 
t inuum limit  faster than on regular lattices. Implici t  
in this approach is the assumption of  (lattice) univer- 
sality which states that systems defined on lattices of  
different type should exhibit  the same quali tat ive be- 
haviour  once the physical length scale is much larger 
than the average lattice spacing. While this assump- 
tion is known to be true for spin systems on differ- 
ent regular lattices, previous numerical  work [8,9] on 
random lattices could only give weak evidence that 
universali ty holds in this case as well. 
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In this note we reconsider the Ising model  defined 
on two-dimensional  Poissonian ~ random lattices 
constructed according to the Voronoi /Delaunay pre- 
scription [2,4]. In previous work on this model, Es- 
priu et al. [9] have used standard Metropolis Monte 
Carlo (MC) simulations on lattices with N = 10 000 
sites to study the approach of  criticality in the low- 
and high-temperature phase. Here we report high- 
statistics simulations in the very vicinity of  the phase 
transition, using considerably larger lattices of  size 
up to N = 80 000, To achieve the desired accuracy 
of  the data we made extensively use of  recently devel- 
oped greatly refined MC simulation techniques, such 
as cluster update algorithms [ 11,12 ] and reweighting 
methods [13]. As a result of  finite-size scaling (FSS) 
analyses of  our data we obtain very strong support  
for (lattice) universality in this model. 

2. Model 

As part i t ion function we take 

Z = ~--~e -~;E" E = - Z s , s j ;  s i = ± l ,  
{si ) <i j> 

( l )  

For alternative site distributions see, e.g., refs. [6,10]. 
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where K = J / k s T  > 0 is the inverse temperature  in 
natural units and <i j) denote nearest-neighbour links 
of  the Delaunay random lattices, computed according 
to the (dual)  Voronoi cell construction as described, 
e.g., in ref. [4]. Following ref. [9] we thus take the 
relative weights of  the links to be constant. The lattice 
sizes studied are N = 5 000, I0 000, 20 000, 40 000, 
and 80000, with three replicas for each of  the two 
smallest lattices, and two replicas for N = 20 000. We 
always employed periodic boundary conditions,  i.e., 
the topology of  a torus. In this case Euler's theorem 
implies ~ = 6, where ~ is the lattice average of  the lo- 
cal coordinat ion numbers q that vary for Poissonian 
random lattices between 3 and vc. All our lattices sat- 
isfy this rigorous constraint,  and also the distr ibutions 
P (q) agree well with numerical  evaluations of  exact 
integral expressions [14]. The highest coordinat ion 
number  we actually observed in our simulations was 
q = 13 in the N = 80000 lattice. 

To update the spins si we employed the single- 
cluster update algori thm [12] which is straightfor- 
ward to adopt  to random lattices. F rom comparat ive  
studies [15] on regular lattices the single-cluster up- 
date is expected to be more efficient than the mul- 
tiple cluster variant  [11]. All runs were performed 
at K = 0.263, the est imate of  the critical coupling 
Kc as quoted by Espriu et al. [9]. After discarding 
from 50000 to 150000 clusters to reach equilib- 
r ium from an initially completely disordered state, 
we generated a further 4 × 106 clusters and recorded 
every 10th cluster measurements  of  the energy per 
spin, e = E/N,  and the magnetizat ion per spin, 
m = ~ i s i / N  in a time-series file. From analyses 
of  the autocorrelat ion functions of  e and m 2 we ob- 
tained at the scale of  our measurements  integrated 
autocorrelat ion t imes ofr 'e ~ 0.8-1.3 and ?m2 ~ 0.7-  
0.9, respectively. Our  samples thus consist effectively 
of  about 200 000 statistically independent  data. The 
statistical errors are est imated by dividing the t ime 
series into 20 blocks, which are jack-knived to avoid 
bias problems in reweighted data. 

3. Results 

To determine the transit ion point  Kc and the corre- 
lation length exponent u we first concentrated on the 
magnetic Binder parameter  [ 16 ], 
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Fig. 1. The parameter UL(K) vs the inverse temper- 
ature K for random lattices of size L = x/N with 
N = 5000, 10000,20000,40000 and 80000. The curves 
are obtained by reweighting the time-series data at 
K = 0.263 (~ Kc). 

<m4> (2) 
UL(K) = 1 3(m2)2 , 

where L -= , / ~  is defined as the l inear length of  the 
lattice in natural units. It is well known [ 16 ] that the 
curves UL (K) for lattices of  size L and L'  should in- 
tersect in points (K x (L, L ' ) ,  UX (L, L ' ) )  which ap- 
proach (Kc, U*) for large L,L', and the derivatives 
U ~  - dUL/dK at these points should scale asymp- 
totically with L ~/'. Our results for UL(K) obtained 
from reweighting the time-series data at K = 0.263 
are plotted in fig. 1. For  the small lattices the curves 
are an average over the different replicas [ 17 ]. 

Taking as estimate for Kc the average of  the 
K × (L, L ' )  for the three largest lattices, we obtain 

Kc = 0.2630 + 0.0002, (3) 

where the (rough) error estimate reflects also the fluc- 
tuations between different replicas. The value (3) is 
in very good agreement with high-temperature series 
expansion analyses (Kc ~ 0.26303) [9] and MC sim- 
ulations in the disordered phase (Kc = 0 .2631(3))  

[91. 
At the critical coupling (3), UL (K)  varies only little 

and an average over all lattice sizes gives 

U* = 0.6123 ± 0.0025. (4) 
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At K = Kc - 0.0002 and K = Kc + 0.0002 we ob- 
tain U* = 0.6054(25) and U* = 0.6183(28), re- 
spectively. The value (4) is in very good agreement 
with MC estimates for the regular simple square (sq) 
lattice which are U* = 0.615(10) [18] and U* = 
0.611 ( 1 ) [ 19]. This agreement may be taken as a first 
indication of lattice universality. 

To get an estimate for the exponent u we have com- 
puted the effective exponents 

ln(L' /L)  (5) 
Ueff = In (U'L,(K×)/U'L(K×)) 

for all possible combinations of L and L'. Since we 
do not observe any definite trend of Uerf as a function 
of L and L', we quote as our final result for u the 
average over all combinations,  

u = 1.008 4- 0.022, (6) 

where the error estimate is the standard deviation of 
the ue~. If we consider only the crossing points with the 
N = 80 000 curve, the estimate for u even sharpens 
to u = 1.0043 + 0.0036. We can thus conclude that 
our estimate of the exponent u for the random lattice 
is fully consistent with the exact regular lattice value 
o f u  = 1. 

The ratio of exponents 7/u follows from the scaling 

of the maxima, Z 'ax(L)  cx L y/", of the (finite lattice) 
susceptibility 

z ' ( K )  = K N ( ( m  2) - (Iml)2). (7) 

The curves o f z '  (K) obtained by reweighting the pri- 
mary data at K = 0.263 are shown in fig. 2. It is 
then straightforward to determine the maxima ' Zmax 
for each lattice size L, and a straight line fit through 
all data points in a log-log plot of Z'ax vs L gives 

7/u = 1.7503 + 0.0059, (8) 

with a goodness-of-fit parameter [20] of Q = 0.035. 
This is again in perfect agreement with the exact value 
for regular lattices, 7/u = 1.75. We can thus conclude 
that universality also holds as far as the exponent ratio 
7/u is concerned. 

Z' 
The locations of the susceptibility maxima, Kmax, 

should scale for large L according to KZm'ax = Kc + 
aL-~/", where a is a non-universal constant. Assum- 
ing u = 1 and performing a linear fit through the 
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Fig. 2. The (finite lattice ) susceptibility Z' (K) for the same 
random lattices as in fig. 1. The curves are obtained by 
reweighting the time-series data at K = 0.263 (~ Kc). 

Z' Kmax of the three largest lattices we obtain Kc = 
0.262947 (77) with Q = 0.24, in good agreement with 
our earlier estimate from the intersection points of 
the parameter UL. 

Having estimated u and 7, all other exponents can 
in principle be calculated by scaling or hyperscaling 
relations, e.g., 2fl/u = d - 7/u,  where d is the dimen- 
sion. To get an independent estimate for the expo- 
nent ratio fl/u we have considered the FSS behaviour 
of the magnetization (]m]) at its point of inflection, 
which is given by (Iml)linf (L) ~ L -Is~". From a linear 
fit through all data points we obtain 

fl/v = 0.1208 + 0.0092, (9) 

with Q = 0.10. Also this result is perfectly compatible 
with the exact value for regular lattices, fl/v = 0.125, 
thus supporting the hyperscaling hypothesis for ran- 
dom lattices as well. 

Furthermore, from the asymptotic scaling of the 
points of inflection, K <lml> = Kc + a'L -~/~, we can inf 
get another estimate for the critical coupling. Assum- 
ing again v = 1, a fit through the points of the three 
largest lattices yields Kc = 0.26304(14) with Q = 
0.60, thus confirming our previous estimates. 

Let us finally consider the specific heat, 

C = K2N((e 2 ) -  (e)2), (10) 

and the associated critical exponent c~. Here hyper- 
scaling predicts ct = 2 du. Since we already know 
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Fig. 3. Finite-size scaling plot of the specific-heat max- 
ima Cmax vs In L, where L = ,fN. The solid straight 
line shows the least-squares fit Cmax = B0 4- B1 In L, with 
B 0 = 0.346(52) and BI = 0.391 (12). 

that u ~ 1 we thus expect c~ ~ 0 for two-dimensional  
random lattices. The corresponding FSS predict ion 
for the maxima of  C is then 

Cmax(L) : B0 4- Bl l n L ,  (11) 

with non-universal constants B0 and B 1. The semi- 
log plot in fig. 3 clearly demonstrates  that our data is 
consistent with this prediction. A linear fit through 
all data points gives B0 = 0.346(52) and B~ -- 
0.391(12) with Q = 0.84. On the other hand, we 
cannot claim unambiguous support  for logarithmic 
scaling. In fact, we can even fit the data with a pure 
power-law Ansatz, Cmax o( L a/v, yielding c~/u = 
0.1824(53) with a similar  goodness-of-fit parameter,  
Q = 0.93, as for the logari thmic fit. We also tr ied a 
non-linear three-parameter  fit to the more reasonable 
Ansatz Cmax = bo + blL ~/". Even though the expo- 
nent ratio ~/u  = 0.17(16) then comes out consis- 
tent with zero, the errors on all three parameters  are 
much too large to draw a firm conclusion from such 
a fit. By means of  exact results for the sq lattice [21 ], 
we have checked [ 17 ] that for the regular lattice the 
specific heat behaves very similar. In both cases one 
would need much larger lattice sizes to discr iminate 
between logarithmic and power-law scaling. 

As before the peak locations KCax should scale like 
KCax = Kc + a"L  -l/~. Assuming again u = 1, we 
obtain from a fit to the data for the three largest lattices 

Kc = 0.26295(33) with Q = 0.95, in agreement with 
the previous estimates. 

4. Conclusion 

In summary,  we have performed a fairly detailed 
finite-size scaling study of  the Ising model  on two- 
dimensional  Poissonian random lattices of  the Delau- 
nay type. Our  estimate for the critical coupling derived 
from the intersection points of  the Binder parameter  
is Kc = 0.2630(2),  the inflection points of  the mag- 
netization yield asymptotically Kc = 0.26304(14),  
and from the peak locations of  the suceptibili ty and 
specific heat we extrapolate Kc = 0.262947 (76) and 
Kc = 0.26295 (33), respectively. These values are in 
good agreement with previous simulations in the dis- 
ordered phase and with analyses of  high-temperature 
series expansions by Espriu et al. [9]. 

As usual the specific-heat maxima are difficult to 
analyze, since the asymptotic finite-size scaling be- 
haviour  sets in only for extremely large lattice sizes. 
Our data is consistent with a logarithmic scaling, i.e., 
with a critical exponent ~ = 0, but not yet sufficient 
to exclude a power-law scaling with ~ ¢ 0 on a statis- 
tically firm basis. Precisely the same situation is en- 
countered, however, for the (exactly known) specific 
heat of  the regular sq lattice. We take this observation 
as further support  that also for this quantity there is 
no violation of  universality. 

Our results for the critical exponents u, 7 and fl are 
much easier to interpret. They clearly indicate that 
these exponents have the same values as for regular 
lattices, i.e., here we obtain strong support  for lattice 
universality in the two-dimensional Ising model. 

As a future project it would be interesting to repeat 
this study for dynamical random lattices that satisfy 
the Voronoi /Delaunay construction at all t imes [22]. 
The important  question would be whether the critical 
behaviour  is still governed by the critical exponents of  
the static random (or regular) lattice considered here, 
or by the critical exponents predicted by matrix model 
theory [23]. For  s tandard dynamically tr iangulated 
lattices, which do not satisfy the Voronoi /Delaunay 
construction, strong numerical evidence for the sec- 
ond alternative was reported recently in ref. [24]. 
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