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Abstract

We set up and solve a recursion relation for all even moments of a two-dimensional stiff polymer (Porod—Kratky worm-
like chain) and determine from these moments a simple analytic expression for the end-to-end distribution applicable for all

persistence lengths.
0 2004 Published by Elsevier B.V.

1. Introduction

In a recent not§l], two of us found a new recursion
relation for the even moments of the end-to-end distri-
bution of stiff polymers inD dimensions and used the
resulting moments of high order to construct a sim-
ple analytic distribution function for the end-to-end
distancer = R/L, whereL is the length of the poly-
mer chain. For large reduced persistence lengflis
the result agrees well with perturbative and Monte
Carlo results of Wilhelm and Frd®], for smallers /L
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with the random chain distribution including the weak-
stiffness corrections of Refi3].

Recently, Dahr and Chaudhy4i] have pointed out
the existence of an interesting dip structure in two di-
mensions at intermediatevalues if one plots the ra-
dial distribution densityp (&, r) = P (&, r)/r with the
normalizationfolrdr p(&,r) =1.Inthe usual plots of
P(&,r), this feature is hidden by the extrafactor. It
is interesting to see how this dip can be accommodated
by a simple analytic approximation of the type found
in Ref. [1]. The three parameters used in the three-
dimensional plots of Ref[1] will obviously not be
sufficient to reproduce the dip. In this Letter we solve
this problem and find an analytic expression which fits
excellently high-precision Monte Carlo data using the
even moments obtained in Ref%-7] in D dimen-
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sions. To make this Letter self-contained we briefly
summarize the derivation.

The end-to-end distribution function of a stiff poly-
mer in two dimensions is given by the path integral

[7]

PL(R) o / doy,do, DO (s)e Eo/ksT

L
x 8@ (R - /ds u(s)) (1.2)
0
with the bending energy
L
K
Ep= > /ds [u (s)] (1.2)

0

whereu(s) = (cos9(s), sinf(s)) are the direction vec-
tors of the polymer links, and is the stiffness which
defines the persistence lengtk= 2« /kg T. Due to the
presence of thé-function in the integrand, the path
integral is not exactly solvable. It is, however, easy to
find arbitrarily high even moments for the radial dis-
tribution of the end-to-end distribution. The interest-
ing dip structure is observed in the radial distribution
p(R/L) = PL(R) - L/R. In the sequel, we shall em-
phasize the stiffness dependenceR/L) by includ-
ing &/L inthe argument and discussipgs /L, R/L).

For brevity, we shall also go to natural length units
whereL = 1. The even moments of the end-to-end dis-
tribution are then given by the integrals

1

(R?") E/dr 2 pE ).
0

(1.3)

These moments can be obtained from the coefficient

of 12'/2%1(2n)! in the expansion, in powers af, of
an integral
T
f(r;/\)EfdGW(G,r;k),
0
evaluated at the euclidean tinne= £. The wave func-
tion ¥ (@, t; A) is a solution of the Schrédinger equa-

tion on the circle in euclidean time with a potential
V(0) = (A/2) cosh (see Refs[5-7]):

(1.4)

A d
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where

. 1 42

1
H= + A COSH.

S 2d0? " 2 (1.6)

2. Recursive solution of the Schrédinger equation

The functionf (L; A) has a spectral representation

. B 00 f(;[ do (p(l)T(@) EXF(—E(Z)L)QD(I)(O)
fL;h) = Z fg 4o w(’)f(9)<p<l>(9)

=0

3

(2.1)

where thep® (9) are arbitrarily normalized eigen-
solutions of the time-independent interacting Schro-
dinger equationd¢(9) = EQp®©). We calcu-
late these by perturbation theory, starting from the
eigenstated/) of the unperturbed Hamiltoniafly =
—(1/2)d?/d6?, with eigenvalues:’ =12/2. The as-
sociated Schrédinger wave functiops’ () = (8])
are ¢ @) = 1/V4r and ¢ () = cogi)/ /7.
Note that the ground state wave functionis not normal-
ized to unity on purpose, for later convenience. Now

we set up a recursion scheme for the expansion co-
O} O}

efﬁuents;x, ande of the eigenfunctions and their
energies:
0 00
1) yi N :
@)= 3"y, EO=Y P (2.2)
j=0

I,i=0

The procedure is described [&,8]. The properties
of the unperturbed system determine the initial con-
ditions atix = O for the recursion:

(l) =40, Vk(,lc)) =81k e =j%2  (2.3)
To proceed, we need the non-zero matrix elements
of the perturbing Hamiltoniard; = (1/2)cosd in
the unperturbed basis, which are simplyH;|l +
1) = A/2. Inserting the expansion@.2) into the
Schrddinger equatiofl.5), projecting the result onto
some base vectdk|, and extracting the coefficient of

A!, we obtain the following recursion relations:

(0) 0

=Yi-1

)

(1) )
= (Vi1 HYi1)/2,

(2.4)
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and 3. End-to-end distribution and comparison with
i1 Monte Carlo data
A= B (- e ) 2s)
o ’ =1 ' As in the previous papdf], we shall now set up
1 an analytic distribution function fop(&, ). In order
Vk(l,? - (Vk(izl ot Vk(Ql i1 to be able to accommodateetidip structure, we must
ok ’ ’ allow for an extra polynomial factor as compared to

the simple ansatz if1]:

i—1
n_a

—2265)7;5,3—,)- (2.6) , , 5

j=1 p(&,r) = (ao+ azr® + asr + apr®)

Starting from the initial value$2.3), these recursion x rf(1—rf)". (3.1)
relations determine successively the higher-order ex- ) ) _
pansion coefficients if2.2). Inserting the resulting ~ 1h€ parameters are detéred to incorporate opti-
expansion2.2)into Eq.(2.1), only the constant parts ~ Mally our knowledge of the exact moments according
in ¢ () which are independent éfwill survive the 10 €quation(1.3). The coefficientsio, ..., as, k, B, m
integration in the numerators. Therefogé) (9) in the are functions of and are determined by forcing the

numerators of2.1)may be replaced by the constants: moments o{3.1)to fit the exact moments in the range
0 < n < Max(6, 10¢). Foré < 1, best results are ob-

ad 4 tained with the parameter = 0. A comparison of

o _ 0t gy 1 ! , . o
(pé)?mm=/d9 @ (©)p"0) = > > Yerl. (2.7 p(&,r) with Monte Carlo data is shown iffigs. 1
0 i=0 and 2 The associated coefficients are listedTia-

the factor ¥2 reflecting the special normalization of ~Pleé 1 The calculation of the coefficients {8.1) re-

99 (). The denominators q2.1)become explicitly quires some care to guarantee sensitivity to possible
local minima, and to avoid running into unphysical os-

T

r Ot o cillations. The latter may arise from the existence of
/de‘ﬂ @)™ (0) polynomials in which all moments lower than some
0 n vanish. Such oscillations are avoided by controlling

) the high moments and using only low polynomial co-
_ ()2 02,2 - _ . .
= Z<|Vo,i %72+ Z|V1’,i )A g (2.8) efficients in(3.1). A more involved strategy is neces-
i Iz

sary to avoid low-quality local solutions. We proceed
where the sum overis limited by the power of2 up

to which we want to carry the perturbation series; also

[’ is restricted to a finite number of terms, because of a
band-diagonal structure of thgﬁ’ 3 (see[1]). Extract-

ing the coefficients of the power expansionifirom 10
(2.1)we obtain all desired moments of the end-to-end
distribution, the lowest two being well known:

6
(R?)=2{e —£?[1— e ¥5]), (2.9)
=t 5{a0+ S00) :
4(87 392 e 1 —4/&) ; = =
& ( 5 5 ¢ + 5 . (2.10) 0.2 0.4 0.6 0.8 1

The calculation of higher moments can easily be done "'9: 1+ End-to-end distribution(§, r) in D = 2 dimensions as a
9 y function of r for various values of the reduced persistence length

with the help of a M\THEMATICA program, whichwe ¢ _ 0,067,0.1,0.2,0.25,0.3,0.35,0.4,0.5,1, 2. The solid curves
have placed on the internet in notebook fd&h The show the model functiong3.1) with parameters frorTable 1 The
above lowest moments agree with those in Rgf. dots represent Monte Carlo data.



Table 1
Coefficients of the analytic distribution function fei(&, r) in Eq. (3.1) for various values of the persistence lengthThey are obtained by

making six or seven even momentsgai, r) agree with the exact ones

B. Hamprecht et al. / Physics Letters A 330 (2004) 254-259

257

3 ag az as as k m B

0.0025 4000 0 0 0 0 196784 199496

0.01 1000 0 0 0 0 475378 198197

0.02 500 0 0 0 0 229930 197564

0.033 295302 —58.9195 779373 —87.3526 0 120224 200505

0.067 140952 —29.8504 668842 —68.1985 0 562896 221169

0.1 9.20629 —347515 506223 —26.2289 0 132737 105486

0.2 418239 —7.45808 11616 —7.30855 0 12031 166444

0.25 312655 —4.9930 131086 —10.0222 0 942195 200750

0.3 2.38054 —3.38168 128823 —9.51483 0 916782 230164

0.35 182132 —2.062292 112343 —7.24306 0 834230 255206

0.4 139171 —0.952158 894986 —4.33545 0 849552 279120

05 0.800939 0647524 436711 136933 0 806681 332814

1 428376 —173308 263327 —123515 49880 114933 858428

2 504624 —183252 227151 —925829 134792 304949 244143
k =0 and solve for the;, keepings andm fixed,
based on four properly chosen moments. Then we

4 solve forg andm keeping thez; fixed, based on
a choice of two moments. This alternating pro-
cedure is repeated three times. Finally, we solve

2 for thea;, g, andm simultaneously, based on six
properly chosen moments.

0 e For & > 1, we proceed similarly, but allow for
k # 0. The search for good coefficients alter-
nating with a search for gook, 8, andm is re-

r

Fig. 2. End-to-end distribution log(&, r) in D = 2 dimensions as

a function ofr for various values of the reduced persistence length
for very sloppy polymers witlé = 0.0025 0.01, 0.02, 0.033. The
solid curves show the model functio3.1) with parameters from
Table 1 In this range they fall on top of the curves from the Daniels
approximation(3.2) within the accuracy of the plot. The dots repre-
sent Monte Carlo data.

as follows:

e In a first step we sety =ag4 =as =0, B = 2,
and determine preliminary values forandm by
fitting two higher moments of near 2@. The first
coefficientag is fixed by normalization. This gives
a reasonable starting value fer

e In a second step, we introduce one more of the
higher moments to improve the solution farm,
andpg.

e Next we solve for the coefficients; by bring-
ing yet more moments into play. 4f< 1, we take

peated until it converge Unlike before we make
no further attempt to solve for all seven parame-
ters simultaneously.

There are two simple approximations of the radial dis-
tribution p(&, r). One is derived for sma#l by Daniels
[3,7], which reads inD = 2 dimensions:

p&,r)= e |:} (l—i— §r2) — ir4— §]

£ 4 3262 4
(3.2)
At the origin, it has the non-zero value
1 3
0)=—-——-. 3.3
p.0) £ 2 (3.3)
The other approximation is derived for larg¢2,7]:
o—1/861-r)
p&,r) =N7$5/4(1_ 17578
31 1
S 3.4
XU( 4’2’85(1—r))’ (34)
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061 per=0)+3/47
0.5
0.4 °
0.3
0.2

0.1

0.1 0.2 0.3 0.4 0.5

& 0
Fig. 3. Threshold values of thend-to-end distribution function
p(&,r =0) for polymers in two dimensions as a function of the re-
duced persistence length(dots) are compared to the approximate
result(3.3)for sloppy chains with small values éf(straight line).

£=01 p(&,7)

r 0.2 0.4 0.6 0.8 1

Fig. 4. End-to-end distributiop (¢, r) for polymers inD = 2 di-
mensions as a function effor various values of the reduced persis-
tence lengttt in the moderately sloppy regime f=0.1,0.2,0.3.
Solid curves show our model functio3.1) with parameters from
Table 1fitting very well the Monte Carlo data (heavy dots). Dotted
curves show the sma#i-Daniels approximatioK3.2), which deviate
strongly from data points.

whereU (a, b, z) is Kummer's confluent hypergeomet-
ric function, andV is fixed by normalization.

In Fig. 3 we see, that our model functiof8.1)
reproduced very well the threshold valugs3) for
small&. In fact, the approximatio(B.3) describes the
behavior of the polymer at the sloppy end extremely
well, with an accuracy aoparable to that of3.1).
Deviations become visible only fgr> 0.1 as demon-
strated inFig. 4.

The large-stiffiness approximatio(8.4), on the
other hand, which is, of course, very good for large
stiffness, is no longer acceptable for modeigate 2,

B. Hamprecht et al. / Physics Letters A 330 (2004) 254-259

P& ) /

T 0.85 0.9 0.95 1

Fig. 5. End-to-end distributiop (&, r) for polymers inD = 2 di-
mensions as a function efin the range of large reduced persistence
length ¢ for ¢ = 0.4,0.5,1,2. The solid curves show the model
functions(3.1) with parameters frorifable 1 Heavy dots represent
Monte Carlo data and dashed cus\tie large-stiffness approxima-
tions(3.4). In this range our model function is still much better than
both approximations. However, fgr> 2 the computational effort
may become so large, that the large-stiffness approximation is use-
ful.

£ p(&,r)
0.20 [=is 4
0.25 3
0.30] sere 2
0.35

1
0

r 1
Fig. 6. End-to-end distributiop (&, r) for polymers inD = 2 di-
mensions as a function effor various values of the reduced persis-
tence length in a medium rangef# 0.2, 0.25, 0.3, 0.35. The solid
curves show the model functio(.1)with parameters froriiable 1
Heavy dots show the Monte Carlo data, dotted curves represent the
Daniels approximatior{3.2), dashed curves the large-stiffness ap-
proximations(3.4). In this range our model function is far superior

to any of the other two approximations and it is in addition valid for
all radii. The& = 0.25-curve shows the interesting dip structure.

For & > 2, the computational effort to fix the para-
meters in our model becomes somewhat large, so that
in this range the approximatio3.4) is more useful
than ours. In the intermediate region fadG< &€ < 1,
however, both approximation schemes are far inferior

where our approximation is much better as shown in to our model, which reproduces Monte Carlo data with

Fig. 5.

high accuracy, as can be seerfig. 6.
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Table 2

To illustrate the accuracy of our analytic approximat{8r) of the
end-to-end distribution we list the quantity of Eq. (3.5) which
measures the deviation of the even moments from the exact ones.
The other two columns show the accuracy of the Monte Carlo data
for the end-to-end distribution by listing the maximal deviati®gy,s

of its moments and the maximal relative deviatidps(Nmax) up to

the momentVimax

& ) Aaps Arel(Nmax)
0.0025 3x 10712 0.000005 038%(8)
0.01 2x 10713 0.000015 073%(8)
0.02 1x 10710 0.000030 153%(8)
0.033 5x 1079 0.000086 160%(8)
0.067 2x 1076 0.000047 070%(8)
0.1 5x107° 0.000018 049%(12)
0.2 4x107° 0.000012 019%(12)
0.25 9% 107° 0.000021 014%(12)
0.3 13x 1075 0.000010 0079%(12)
0.35 2x 1074 0.000061 019%(18)
0.4 2x 1074 0.000032 020%(18)
0.5 2x 1074 0.000050 009%(18)
1 2x 1074 0.000028 0019%(24)
2 8x107° 0.000136 0099%(24)

In addition we check the quality of our simple dis-
tribution function(3.1)with the parameters dfable 1
by calculating its moments and comparing them with
the exact ones. The comparison is showhdble 2for
a large range of the persistence lengtihs a measure
of the quality of the approximation we use the quan-
tity X, listed in the second column @&ble 2 which
sums up all squared deviations of the moments of the
model from the exact ones, in a relevant rangé:of

N

()= Z[<R2n)model_ (Rzn)exact]z’

n=0

(3.5)

where we have extended the sum over the moments up

to the order ofN =12 for& < 0.2, and up toNV = 24
foré >0.2.

Let us also convince ourselves quantitatively of the
high accuracy of our Monte Carlo data for the end-
to-end distribution inFig. 1 by listing the maximal
deviation

Aabs= SUR(R?"),, — (R?") (3.6)

=0 exacJ
of its moments, as well as the maximal relative

deviation
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Arel(Nmax) = ]gnd?)ﬁ|<R2n)MC/<R2n>exact_ 1| (3.7

n=
up to the momeniNmay. It is noteworthy that in spite
of the simplicity of the model, it is a nontrivial task
to obtain accurate Monte Carlo results fai, r) near
r = 0 which are sensitively displayed by the curves of
Fig. 1 but which are almost ignored by the moments.
The reason for this difficulty is that the configura-
tion space for the smal-data is very small and the
binning of the data to estimate the densit€, r) is
done on the axis. One is caught in the competition
between large systematic errors resulting from a nec-
essarily large bin sizé\r, and statistical errors from
a too smallAr. As a compromise we employed in
our simulations a uniform bin sizar = 0.01 which
in combination with a single-cluster update procedure
and a statistics of Fosampled chains yields a satisfac-
tory accuracy near = 0.
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