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Abstract

Variational perturbation expansions have recently been used by the authors to calculate dircctly the strong-coupling
expansion cocfficients of the anharmonic oscillator. The convergence was observed to be exponentially fast with superimposed
oscillations. In this note. the observed behavior is explained and used to determine accurately the magnitude and phase of
the leading Bender-Wu singularity which is responsible for the finite convergence radius of the strong-coupling expansion

in the complex coupling constant plane.

Variational perturbation theory yields uniformly and
exponentially fast converging expansions for the path
integrals of many quantum mechanical systems [ 1,2].
These expansions are systematic generalizations of an
approximation of Feynman and Kleinert [3] and Gi-
achetti and Tognetti [4]. As far as energy values and
not entire path integrals arc concerned. similar expan-
sions have been investigated in Ref. [ 5]. The conver-
gence was proved for the anharmonic integral and the
quantum mechanical anharmonic oscillator in several
papers for a finite coupling strength ¢ of the anhar-
monic term | 6]. However. these proofs did not explain
the fast convergence at strong couplings found in Ref.
| 7]. For the ground-state energy of the anharmonic
oscillator, the first 23 coefficients of the series
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were calculated with 20 digits precision. Thereby, an
interesting phenomenon was observed: the approach
to the asymptotic values of a, is exponentially fast
with periodic modulations, as shown in Figs. 1 and
2. calling for a revision of the above-quoted proofs
which do not apply to the strong-coupling limit g —
>c. The purpose of this note is to explain the observed
behavior theoretically and to show that it leads to a
rather precise estimate of the largest Bender—Wu sin-
gularities in the complex-g-plane which determine the
convergence radius of the strong-coupling expansion.
The potential of the anharmonic oscillator is

Vix) = %wzxz‘k%ng' (w?.g > 0). (2)

The Rayleigh-Schrédinger perturbation theory yields
a4 powcer-series expansion
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Fig. 1. Exponentally fast convergence of the Nih approximants
for aq 1o their exact values. The dots show dy = {(ay)y — [
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Fig. 2. Oscillatory behavior around the asymptotic approach of v,
1o its exact value as a function of the order N of the approximant
(open circles are for odd N. full circles for even N).
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where E( " are rational numbers L 1 —*8—', Te s
30885 . - . . -
— ?fg ,....obtained from the recursion relations of

Bender and Wu [8].

As is well known, the scries (3) cannot be used
for an evaluation of the energy since it has a zero
radius of Lonvcrgcnce duc to the factorial growth of the
coefficients E( . The recently developed variational
perturbation lhe()ry [2] converts the divergent series
(3) into an exponentially fast convergent one. The
procedure goes as follows (see Section 5.13 of Ref.
[2]). First. the harmonic term of the potential is split

into a new harmonic term with a trial frequency {2,
and a remainder

%w:'xz=%02x2+(l,:w2—%.(22)x2. (4)
After rewriting
V(x) =10 + 1e(—20x% /02 + x*), (5)

we perform a perturbation expansion in powers of g
at a fixed o = 2(2* — 0?) /g,

En(g.o) -”Z

where g = g/ is a dimensionless reduced coupling
constant.

The calculation of the new series up to a specific or-
der N requires only little work, being easily obtained
from the ordinary perturbation series (3) by replac-
ing w by /{22 — go /1, and by reexpanding (3) in
powers of g up to the Nth order. This yields the reex-
pansion coefficients

{
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The truncated power series Wy (g, 2) = E,(VO) (g,0)
is certainly independent of 2 in the limit N — oo.
At any finite order, however, it does depend on 2 via
o, the approximation having its fastest speed of con-
vergence where the dependence on (2 is weakest. If
we denote the order-dependent optimal value of 2 by
2y, the quantity Wy (g, 2y) is the new approxima-
tionto E(g). (Note that our approximation is far more
accurate than the one used in many papers on the ac-
celeration of convergence of perturbation theory such
as Ref. [9]. The approximations in these papers are
reproduced if we use, for all N, 2 = {2; as a varia-
tional frequency.) Introducing the reduced frequency
@® = w/ {2, the approximation can be written as

Wy = (2/2)" w2, a%). (8)

From the approximate energies Wy it is easy to de-
rive simple formulas for the coefficients of the strong-
coupling expansion. We simply expand the function
wa (g, @%) inpowersof &2 = (g/w?) ~*/3g*/3 and find
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with the cocfficients

. . ‘
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n

Here WN)((Q’.()) denotes  the nth  derivative  of

l’\'N(‘Q,KZ)Q) with respect to &% at @ = 0, which can
casily be calculated using (7) [ 7].
l N
L) 5 ) = _ fen
;I—!nN (2.0) Z( 1)
=0
I—=n | L X R

oy sC1-3)) L=J N\, s
S () () e
j=0 -

(1

The optimal value of f25 has the N-dependence (see
Ref. [2] and the first of Refs. [5])

2y = geN(1 +6.85/N° ). (12)

where the coefficient cis ¢ = 0.186 047272 ... . With
this £2y. we obtain the exponentially fast approach to
the exact limit as shown in Fig. 3. The exponential
fallott is modulated by oscillations.

To cxplain this behavior we recall that the ground
state energy satisties the subtracted dispersion relation
e ©dg’ disc E (g

v o<

EV(g) =4
=20t an
0

(13)

%

where disc £9(¢’) denotes the discontinuity across
the left-hand cut ( below minus above) in the complex

g-plane. An expansion of the integrand in powers of

g yields the perturbation series (3). The reexpanded
series (6) is obtained from (3) by the above replace-
ment of @ — (1 — )" and a reexpansion in
powers of g.

There is a simple way of obtaining the same reex-
pansion from the dispersion relation ( 13). Introduc-
ing the dimensionless coupling constant g = g/w".
the above replacement amounts to

3 (14

Since Eq. (13) represents an energy, it can be written
as w times a dimensionless function E‘®(g). Apart
from the replacement ( 14) in the argument, it receives
an overall factor 2/w = (1 — o@)'/?. If we introduce
the reduced energy E(g) = E(g)/2, which depends
only on the reduced coupling constant g, the dispersion
relation (13) for E®'(g) turns into

E‘(U)(g) =(1— 0,2)1/2

A o e B0 s
y <%+g(g? /%’_dlSLE (g)). (15)
0

g &-2®

The resummed perturbation series is obtained from
this by an expansion in powers of %g up to order N.

Note that only the truncation of the expansion
causes a difference between the two expressions (13)
and (15). since g and g are the same numbers, as
can be verified by inserting § = g/2° and o into the
right-hand side of (14).

To find the reexpansion coefficients we observe that
cxpression (15) satisfies a dispersion relation in the
complex g-plane. If C denotes the cuts in this plane
and discc E(2) is the discontinuity across these cuts,
the dispersion relation reads

& [ 4 discc £9(2)

EMp) = .
' ) VT v

(16)

rob—

We have changed the argument of the energy from g to
& since this will be the relevant variable in the sequel.

When expanding the denominator in the integrand
in powers of ﬁg, the expansion coefficients 81(0) are
found to be moment integrals with respect to the in-

verse coupling constant 1/2,

k ~
el = gr—i/;f] discc E®(g). (17)
C

In the complex g-plane, the integral (15) has in prin-
ciple cuts along the contours C;, Cy, Ca, C5, and Cs,
as shown in Fig. 3. The first four cuts are the images
of the left-hand cut in the complex g-plane; the curve
Cs is due to the square root of 1 — &g in the mapping
(14) and the prefactor of (15).

Let D(g) abbreviate the discontinuity in the disper-
sion relation (15):
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Fig. 3. Cuts in the complex g-plane whose moments with respect
to the inverse coupling constant determine the reexpansion coefli-
cients. The cuts inside the shaded circle happen to be absent due
to the convergence of the strong-coupling expansion for g > g,
{from Ref. [2]).

D(g) =discE"(g) =2iImE(0) (g — in).

<

g <! (18)

Then the discontinuities across the various cuts are

disc E‘“‘(g) =(1—o) 2Da1 - o)),

(19)
défcﬁ‘[)’({é) = 2i(og— 1)
> 5
x (%/dg/_":’((ff’A) - D(g”))
= ) 2mg+ 8o - 1)
’ (20)

For small negative g. the discontinuity is given by the
semiclassical limit (see Ref. |2]. Ch. 17):

I——

D(g) ~~21 o*R 21
2) 77\ EF (21)

Z’

We denote by s”“ (C;) the contributions of the differ-
ent cuts to the integral (17) for the coefficients. After
inserting (21) into Eq. (19), we obtain from the cut
along C, the semiclassical approximation

2

C
1 \/E AU =0
gV 32 '

(22)

I
£ (C)) ~ 2><4k/—g

For the kth term S of the series this yields an estimate

Sk x (/ﬂef“”)(ag:)k, (23)
2

C,

where f;(y) is the function of y = o@

4
fely) = —(k+3) log(—y) + %(1 —¥2 (24)

For large &, the integral may be evaluated via a saddle
point approximation. At the extremum, ¥ —y 00 ¥k =
—40/3k, fi(y) has the value

fx — klog(3k/4eo) — 20. (25)

The constant —2¢ in this limiting expression arises
when expanding the second term of Eq. (24) into a
Taylor series, (40 /3y) (1 —y)¥? = 40 /3y, — 20 +
. Only the first two terms survive the large-k limit.
Thus, to leading order in k, the kth term of the
reexpanded series becomes

S x 7 (=3k/e) (1)~ (26)
The corresponding reexpansion coefficients are
8}((()) x e~ E’((O)_ 27

They have the remarkable property of growing in pre-
cisely the same manner with k as the initial expan-
sion coefficients E,((O), except for an overall suppres-
sion factor e=2?. This property was discussed in Ref.
[2].

In order to estimate the convergence of the vari-
ational perturbation expansion, we note that o =
1 — 1/42°. For large {2, this expression is smaller than
unity. Hence the powers (og)* alone yield a conver-
gent series. An optimal reexpansion of the energy can
be achieved by choosing, for a given large maximal
order N of the expansion, a parameter o proportional
to N,

ogx~oy =cN. (28)
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Inserting this into (24). we obtain for large k = N

2

4¢ y
fa(y) =N —log(—y)ira;(l -y ). (29)
The extremum of this function lies at
4(,‘ 1,2 1 R
L+ — (1= 2(1+1y) =0 (30)
3y -

The constant ¢ is now chosen in such a way that the
large exponcent proportional to N in the exponential
function e/~¥) duc to the first term in (29) is canceled
by an equally large contribution from the second term,
i.e., we require at the extremum

Suly) =0, (31)
Egs. (30) and (31) arc solved by

v =—0.242964 029973520 .. ..
c=0.186047272987975 ... . (32)

In contrast to the extremal y of Eq. (24) which dom-
inates the large-k limit, the extremal y of the present
limit, in which & is also large but of the order of N, re-
mains finite (the previous estimate holds for k > N).
Accordingly. the second term (4¢/3y) (1 — ¥)¥ % in
[ (y) contributes in full. not merely via the first two
Taylor expansion terms of ( | —y)3 2 asitdid in (25).
Since fa(7v) vanishes at the extremum, the Nth
term in the reexpansion has the order of magnitude
SN X (U'NKN )Y =1 — ) . (33)
i
According to (28). the frequency 2y grows for large
N like

172
!

Oy~ oy g~ (eNe) ' (34)

As a consequence, the last term of the series decreases
for large N like

N

|
Sn(Cy) x (1 - _A”)
((TNg)‘ )

il VIR
%Cil\h'”‘u ~ e N fegr (35)

This estimate does not yet explain the convergence of

the variational perturbation expansion in the strong-
coupling limit observed in Figs. 1 and 2. For the con-
tribution of the cut C; to Sy. the derivation of such a

exp(6.41 — 9.42N1/3)

2 3N‘/34 5 6

Fig. 4. Theoretically obtained convergence behavior of the Nth
approximants for aq, to be compared with the empirically found
behavior in Fig. 2.
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Fig. 5. Theoretically obtained oscillatory behavior around the
asymptotic approach of ay to its exact value as a function of the
order N of the approximant, to be compared with the empirically
found behavior in Fig. 3, averaged between even and odd orders.

behavior requires including a little more information
into the estimate. This information is supplied by the
empirically observed property that the best £2y-values
lie for finite N on a curve (see Ch. 5 in Ref. [2]):

6.85
aN ~ cN (I + W) . (36)

\

Thus the asymptotic behavior (28) receives, at a finite
N, a rather large correction. By inserting this oy into
fa(y) of (29), we find an extra exponential factor
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Fig. 6. Comparison of ratios R, between successive expansion
coefficients of the strong-coupling expansion (dots) with the ratios
R3® of the expansion of a superposition of two singularities at
£ =0.156exp(+0.69) (crosses).
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Fig. 7. Strong-coupling expansion for the ground-state energy in
comparison with the exact values and the perturbative results of
second and third order. The convergence radius in 1/g is larger
than 1/0.2.

. 4c (1 fy)3’26.85
Afyv ~ .
¢ ~ exp [N 3 " qu]

6.85 e
=exp{Nlog(~7) 7,,} :xe""”l . (37)
N2/3
This reduces the size of the last term due to the cut

Sy(Cy) in (35) to

Sy(Cy) x e 197 e 1‘|N“. (38)

which agrees with the convergence seen in Figs. | and
2.

Note that there is no need to evaluate the effect
of the shift in the extremal value of y caused by the

correction term in (36), since this would be of second
order in 1/N?/3,

How about the contributions of the other cuts? For
Cj, the integral in (17) runs from § = —2/0 to —oc
and decreases like (—2/0) —*_ The associated last
term Sy(C;) is of the negligible order e=V°2"_ For
the cuts C, , 5, the integrals (17) start at § = 1/o and
have therefore the leading behavior

Eio)(cz,ia) ~ ot (39)

This implies a contribution to the Nth term in the
reexpansion of the order of

Sv(Cys4) ~ (a)V, (40)

which decreases merely like (35) and does not explain
the empirically observed convergence in the strong-
coupling limit. As before, an additional information
produces a better estimate. The cuts in Fig. 3 do not
really reach the point g = 1. There exists a small cir-
cle of radius 4g > 0 in which £®’(2) has no singu-
larities at all. This is a consequence of the fact unused
up to this point that the strong-coupling expansion (1)
converges for g > g¢. For the reduced energy, this ex-
pansion reads

N -2/3
(0 sy — (15y1/3 &t
E (8)~(48) {a0+al [4(1 _0.(@)3/2]
+az{

| —4/3
_ +op
=]

The convergence of (1) for g > g, implies that (41)
converges for all og in a neighborhood of the point
og =1 with a radius

g 2//3
wen= (3
&s

| 213
=<~,U [l+A(a’§)]) : (42)

s

{0

(41)

where g, = g,/@’. For large N, A(a8) goes to zero
like 1/(N|g,|c)??. Thus the integration contours
of the moment integrals (17) for the contributions
eiO)(C,) of the other cuts do not begin at the point
og =1, but a little distance A(og) away from it. This
generates an additional suppression factor
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(o8) N~ 1+ Aodr] V. (43)

Let us set — 2, = || expligy) and xq = (—8/g)> ' =
—|x¢lexp(i@), and introduce the parameter a =
1/(|@s]c)?/3. Since there arc two complex conjugate
contributions we obtain, for large N a last term of the
order of

Y cos 3 . )
Sn(Cys3) eV O LGg (N Fasing) (44)

By choosing

[&] ~ 0160, 6 ~ —0.467. (45)
we obtain the curves shown in Figs. 4 and 5 which
agree very well with the observed Figs. | and 2. Their
envelope has the asymptotic falloff e 223",

Let us sce how the positions of the largest Bender-
Wu singularities compare with what we can extract
directly from the strong-coupling series (1) up to or-
der 22 [7]. For a pair of square root singularitics at
Xo = —|x¢] exp(£if), the coefficients of a power series
3" a,x” have the asymptotic ratios R, = a,4(/a, ~
RS = —cos[(n+1)0+38]/|xcos(nf +8). Plotting
the ratios R, for the coefficients a, in Fig. 6, we scc
that for large n, they are well reproduced by RY if we
choose

lxg| = 1/0.117, 6= -0.467. (46)
with an irrelevant phase angle § = 0.15. The angle 6

is in excellent agreement with the value found in (45).
From |x| we find [gi| = 4]1/x, ¥? = 0.160, again in
excellent agreement with (45).

Note that this convergence radius is compatible with
the heuristic convergence of the strong-coupling series
up to order 22, as can be scen in Fig. 7 by comparing
the series with the exact curve.

While this work was in progress, we received a
Genova preprint by R. Guida, K. Konishi and H.
Suzuki (hep-th/9305084) in which the exponentially
fast convergence found in Ref. [7] is proved rigor-
ously by reducing it to the known convergence of the
strong-coupling cxpansion.

W] thanks the Deutsche Forschungsgemeinschaft
for a Heisenberg fellowship.
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