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Abstract

We prove a powerful scaling property for the extremality condition in the recently developed variational perturbation theory
which converts divergent perturbation expansions into cxponentially fast convergent ones. The proof is given for the energy
eigenvalues of an anharmonic oscillator with an arbitrary x”-potential. The scaling property greatly increases the accuracy

of the results.

In a series of recent papers and a textbook it has been
demonstrated that divergent perturbation expansions
in quantum mechanics can be turned into exponen-
tially fast convergent ones with the help of variational
perturbation theory [ 1-5]. This method is a system-
atic expansion of the first-order approach of Feynman
and Kleinert, and Giachetti and Tognetti [2], related
expansions have also been investigated in Ref, [3].
The purpose of this note is to show that the calculation
can be greatly simplified by observing that the extrema
of the energy depend universally, i.e., independently
of the coupling strength, upon a simple scaling vari-
able o. Since o is a polynomial of degree %p + 1in
the variational parameter, this reduces the degree of
the polynomials to be extremized by this factor (3 for
the quartic potential). The order of the approximation
can therefore be raised by a factor % p + 1. With the
exponentially fast convergence, this leads to a great
increase in the accuracy of the results.

Consider a general symmetric anharmonic oscillator
with a potential

V(x) = %_a)zx2 + gx¥ (wz,g > 0),

p = even. (D)

The standard Rayleigh-Schrodinger perturbation the-
ory yields for each energy level a power-series expan-
sion in the dimensionless reduced coupling constant
g - g/a)(””)ﬂ,

oo !
_ BW 8
E(g)=w) e (m) (2)

=0

The expansion coefficients eP"V are rational numbers
which can easily be computed by a recursion scheme
derived a long time ago by Bender and Wu [6]. A di-
rect summation of the series (2) is meaningless due
to the factorial increase of the coefficients eB¥ giving
rise to a vanishing radius of convergence. An approx-
imate evaluation is only possible at very small g after
truncating the series at an order / =~ 1/g.

An exponentially fast convergent evaluation of the
series (2) becomes possible for all coupling strengths
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[ 5] with the help of variational perturbation theory. It
is here where the restriction to even powers p in the
potential (2) is necessary; otherwise a second varia-
tional parameter is required.

The variational perturbation expansion is derived as
follows. First, the harmonic term of the potential is
split into an arbitrary harmonic term and a remainder,

lo’x* = 50’5 + (Lo’ - %_Q2)x2. (3)
Rewriting
V(x) = 1075 4 Vip(x), (4)

with an interaction

Vi(x) = g(rx® +x"), r=(w’— 0 /2¢, (5)

one performs a perturbation expansion in powers of g
at a fixed r,

N !
Ben =03 an (gt ) ©
1=0 ’

The calculation of the reexpansion coefficients e;(r)
up to a specific order N does not require much addi-
tional work since it is easily obtained from the ordinary
perturbation series (2) by replacing w by /(2% + 2gr
and expanding in powers of g up to the Nth order. This
yields

li
e = E e?w

=0 [—j
X (2r 2P =27yl (7

s —1(p+2)j]

The truncated power series

Wn(g, 2) = Ey(g, (0 — 2°)/28) (8)

is certainly independent of 2 in the limit & — co. At
any finite order, however, it does depend on (2, the
approximation having its fastest speed of convergence
where it depends least on {2, e.g., at points where
dWy/ d2 = 0. If we denote the order-dependent opti-
mal value of 2 by 2y, the quantity Wy (g, £2y) is the
new approximation to E(g).

The extremization yields a large number 3N of £2-
values from which to select the best 2y by choosing
the flattest extremum, i.e., the one with the smallest

second derivative. We shall now demonstrate that the
scaling variable

) 0(/}—2)/2 _QZ_ 2
o= 20 (g @) (9)

makes the extremality condition dWy/d£2 =0 a uni-
versal function of o,

Py(o) =0, (10)

where Py is a polynomial of degree N in o. The
polynomial is obtained by calculating the derivative
of Wy(g, £2) and removing the Nth power of the re-
duced coupling constant as follows,

dWy g
dsn

N
= _Q(I’+2)//2) PN(U) (11)
Condition (10) increases the order to which the ex-
pansion can be evaluated by a factor of %p + 1. Since
the convergence is exponential, this greatly increases
the accuracy which can be reached by a variational
perturbation expansion. This nontrivial property of the
variational approach was discovered empirically while
treating the quartic anharmonic oscillator in Ref. [7]
(for details see Ref. [5]), but not understood.
We prove Eq. (11) and derive the formula

d
Py(o) =_2_ei*l_((r_). (12)
do
Together with (7), we obtain the polynomial of degree
N,
dey..
Pu(o) = ,ZM (13)
do
v (A s )]
=2Ze.1’
=0 N+1-j
X (N+1=j)(=a)". (14)

The proof proceeds as follows. Differentiating

N !
WN=_QZ€[(O') (m%ﬁ) (15)
1=0

with respect to {2 we obtain
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N

dWN de,
= 2)1 02—
Z (ez(cf) 5(p +2)lei(a) + (m)
¢ !

x (mngm) . (16)
With the help of

de; N2 de;
08l (2 - ]

= ( b 2)a> - (17)

this becomes

dW;\r

—§:[1——w+2wkmﬂ

0+ /2 de, 2 [
R [ A
22 2 )

(18)

Rearranging the sum gives

dWy _ , deo g -
de " do \ QDR

N—1
+§j@1#ap+mna
I=1

de; | dess g\
7([7 o _‘+2 do )(0({7+2)/2

+ ([1 — L (p+2)Njey +1(p *2)0%9—0
o

N
8
X <——O(/’+2)./’2> . (19)
The first term vanishes trivially since ep does not de-
pend on .

The crucial observation essential to our result is that
the sum vanishes term by term,

el

[1—%(p+2)l]e,+‘§(p—2)0%— derns

2
+d0

=0.
(20)

To derive this we take the derivative of (7),

!
d
2 =2y e
d =0 I+1—

X (j—I—=1D(=o), (21)

S = 5(p+2)j]

and use the identity
3= 3(p+2)j]
I+1—j

%(p—-Z)j-FZZ*l %[1‘;‘(]7‘5‘2)1']

j—1—1 I
(22)
to rewrite (21) as
1 1 .
2delH—i - sIL—3(p+2)j]
do £ i .
=0 I—j
x [$(p—2)j+2-11(-a). (23)
Since
! 1= (p+2)jl
de 2 ’
%(P—Z)UE(‘TA=Z¢?W
=0 [—]
x Hp -2 jH(—a), (24)
we find

d d
L(p-2)ot+2—H
do

This proves, indeed, that each term in the sum of (19)
vanishes identically.

Finally, we insert Eq. (20) for / = N into the last
term of Eq. (19), and obtain the desired result (11),

dWy g \"dey.i(o)
40 0wz do

= (p+Di-11e. (25)

(26)

The discovery of the scaling variable ¢ was essen-
tial for the recent determination of the strong-coupling
expansions of the energy levels of the quartic anhar-
monic oscillator to a great accuracy [7] (described in
detail in Ref. [5]).

It will be interesting to see whether there exist simi-
lar universal scaling variables for odd interaction pow-
ers p where the asymmetry of the potential requires
the introduction of a second variational parameter, a
shift in the average position of the harmonic trial po-
tential in Ref. [8].
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