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Abstract 

We report results of a Monte Carlo simulation of the @4 quantum chain. In order to enhance the efficiency of the simulation 
we combine muItig~d simulation techniques with a refined discretization scheme. The resulting accuracy of our data allows 
for a significant test of an analytical approximation based on a va~ational ansatz. While the variational approximation is well 
reproduced for a large range of parameters we find significant deviations for low temperatures and iarge couplings. 

1. Introduction 

The physics of one-dimensional quantum systems 

has attracted considerable attention, both experiment 
and theoretical, for a long time. Among the methods 

to treat these systems analytically the variational ap- 
proximation [ l-51 has been shown to be a very pow- 
erful and useful one [ 61. Since, however, it is hard to 
give precise inherent error estimates for the variational 
approach it is therefore desirable to check the method 
against inde~ndently obtained data, For the +4 chain 
which has been investigated both as a classical [ 7-91 
and as a quantum system [5,10] apparently no such 
independent data exist up to this date. 

Precise Monte Carlo simulations of many-particle 
quantum systems based on a path-integral represen- 
tation of the partition function would provide just 
such an independent approach for these systems [ 1 1 ] . 
The di~culty here is to achieve sufficient accuracy. 
Standard path-integral simulations suffer from well- 
known drawbacks, such as appreciable systematic er- 

rors due to the necessary discretization and severe 
slowing down in the continuum limit. In order to over- 
come these problems a Fourier Monte Carlo simu- 
lation was tried some time ago for the closely re- 
lated sine-Gordon chain [ 121. Even though prelimi- 
nary data seemed to reproduce the variational approx- 
imation [ 41 quite well similar results for the $4 chain 
were not obtained. Unfortunately, a full account of 
these investigations was never published [ 131. A dis- 
advantage of the method used in Ref. [ 121 is that it is 
not based on impo~ance sampling, which is a prob- 
lem p~icul~ly for un~und~ potentials such as the 
d4 double well. 

In view of these difficulties it is therefore gratifying 
that recently some algorithmic improvements devel- 
oped for spin systems and lattice field theories could 
successfully be transferred to path-integral simulations 
[ 141. Multigrid simulation techniques [ 151 in partic- 
ular have been shown to eliminate slowing down in 
the continuum limit for one-particle systems [ 161. It 
seemed therefore worthwhile to investigate whether 
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these algorithmic improvements may now render path- 
integral simulations of quantum chains sufficiently ac- 
curate to allow for a significant comparison with the 

variational approximation. In this Letter we will report 

simulation data for the $4 quantum chain obtained by 

combining multigrid simulation techniques with a re- 

fined discretization scheme. It will be shown that the 
accuracy of the data does allow for a qualified judge- 
ment about the validity of the variational approxima- 

tion. 

2. The model and variational approximation 

The system we are going to discuss is defined by 

the partition function 

z =e-PF = N 
r~ J m(~iw)l 
i=’ 4,(O)=cb,(fiPip) 

x exp(-~Fl[{4i(~))l/fG, (1) 

with a Hamiltonian 

where the potential is given by 

i=l 

+ $ciJ:<& - 1>2]. (3) 

Here p = 1 /kBT denotes the inverse temperature, 

$i z d+i/du, and D[{+i(u)}] is the USU~ path- 
integral measure. The partition function describes a 
set of N harmonically coupled oscillators of mass Au 
separated by a distance a, with each oscillator mov- 
ing in a double-well potential. As usual, we assume 
periodic boundary conditions, Cpo z +N. 

Following the notation of Ref. [5] we introduce 

dimensionless parameters and define a coupling con- 
stant Q = kiwi /Es which controls the quantum charac- 
ter of the system by determining whether the kinks are 
“heavy” enough to be treated semiclassically. In our 
simulations we will fix the energy scale by setting the 

energy of the classical static kink Es = $Aawow~ = 1. 
We also introduce the parameter R = WO/O,, which 

measures the length of the classical kink in units of 

the lattice spacing a. The reduced temperature will be 
denoted by t E kBT/E,. 

The variational approach for one-dimensional 

quantum systems [ 2,451 starts from a quadratic trial 
Hamiltonian. The parameters in this trial Hamiltonian 

are determined by optimizing the Jensen-Peierls in- 

equality for the free energy. A numerical solution of 

the resulting set of iN( N + 1) self-consistent equa- 
tions is extremely complicated. Therefore only the 
limiting cases of high and low temperatures and for 
small coupling Q have been treated in the literature. 

For the latter case, which seems to be the most useful 

one, the final result reads [5] 

\ i=l 

+ fcj:(& - 1)2] )I , (4) 

where A EE A( 1 - 30), &I: E wt( 1 - 3D), and 

with Fk = pb)k/2 and w: = 4~: sin’( kr/N) + OJ:. 
In the sequel the thermodynamic observables of in- 

terest will be the internal energy per site u = U/N = 
( l/N) (F - TJF/aT) and the specific heat per site c 
given by c = C/N = ( 1 IN) XJ/G’T. More precisely, we 
will be interested only in the anharmonic contribution 
to these quantities. For the free energy this is given by 
dF=F-Fharmon=F-(l/P)Cln(2shFk).There- 

fore the last two terms of Eq. (4) give the anharmonic 
contribution to the quantum free energy after subtract- 

ing the corresponding classical contribution Fclass = 

(l/P) Cln@Fk). 1 n order to obtain analytical data 
for a comparison with our Monte Carlo results we 
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therefore have to evaluate the configurational integral 

(4). 
This can be achieved by employing standard trans- 

fer integral techniques 171. Here we have to find the 
eigenvalues of the transfer integral equation associ- 
ated with Eq. (4). In the thermodynamic limit N --+ 
co only the lowest eigenvalue survives but in order 
to control finite-size effects we need to compute all 
eigenvalues. With decreasing temperature more and 
more eigenvalues have to be taken into account. In 
particular, we observe that for low temperatures the 
two lowest eigenvalues are almost degenerate. 

3. Simulation techniques 

The partition function (l)-(3) was discretized 
using the Takahashi-Imada scheme [ 171. The dis- 
cretized version of the partition function here reads 

- $b,C{Si,k})] 9 

where the potential is given by 

hI({f$i,k}) = k[v({&.k}) 
k=l 

(6) 

Here k denotes the additional index for the Trotter dis- 
cretization at each site. The convergence of this dis- 
cretization is of the order e4 where E = /i/?/L and L is 
the Trotter number. The standard, quadratically con- 
vergent discretization scheme is recovered by drop- 
ping the second term in Eq. (6). 

Since for local update algorithms we expect a 
quadratic slowing down in the continuum limit of 
large Trotter numbers L [ 161 we applied a multigrid 
W-cycle with piecewise constant interpolation [ 15 ] 
at each site along the Trotter direction. Note that since 

we are approximating the continuum limit only for 
the Trotter discretization we do not need to apply two- 
dimensional multigrid coarsening. Also note that the 
interactions between the oscillators enter the multi- 
grid coarsening only as constants for the polynomial 
expression for the energy on the finest grid. 

The observables of interest are the internal energy 
and the specific heat. As to the question of energy 
estimators we remark that the discretized partition 
function (5) gives rise to a so-called kinetic estima- 
tor of the energy I& [ 181 by differentiating (U) = 
-d In Z/afl M G where & denotes the simple arith- 
metic mean over Nm measurements of uk in the Monte 
Carlo process. Applying a simple scaling argument 
one can find a different but equivalent energy estima- 
tor U, [ 191 based on the virial theorem with different 
variance. In order to reduce the variance of the energy 
estimation we may then use a linear combination of 
these two estimators. In doing so it should be noted that 
the optimal combination of the two estimators has to 
take into account the individual variances and the co- 
variance of the (blocked) individual estimators [ 201. 
Note that the energy estimators differ for the standard 
discretization scheme and the improved discretization 
since the correction term in L$t is P-dependent. For 
the evaluation of the anharmonic contributions the dis- 
cretization error was further reduced by subtracting 
the exact values for the harmonic contribution at finite 
Trotter number L. For the standard discretization this 
improvement was already made use of in Ref. [ 211. 
Since we are only dealing with Gaussian integrals the 
exact harmonic contribution can, however, also read- 
ily be found for the Takahashi-Imada scheme [ 201. 
A full account of the simulational details discussing 
various systematic algorithmic refinements of path- 
integral Monte Carlo simulations will be given else- 
where [20]. 

4. Results 

We have performed simulations of the partition 
function ( 1) -( 3) using the improved discretization 
scheme (5), (6) for different values of N, Q, and t. 
The parameter R was kept fixed at R = 5 for all sim- 
ulations. The update was performed using a multigrid 
W-cycle with piecewise constant interpolation in the 
Trotter direction at each site with single-hit Metropo- 
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lis updating and nl = 1 pre-, n2 = 0 postsweeps. 

For each data point we have measured the internal 
energy using the optimally combined estimator with 
N,,, = 200000 measurements taken every second 
sweep, i.e. n, = 2, after discarding n, x 1000 sweeps 
for thermalization. The Metropolis acceptance rates 

were adjusted to be G 40%-60% on the finest grid 
and the same step width was used for all multigrid 

levels. The specific heat was measured by simple nu- 

merical differentiation of the “combined” estimator, 
which was reweighted in a temperature interval of 

dt = 0.0001. These estimates gave consistent values 
with direct measurements of the specific heat using 

the estimators obtained by differentiating the discrete 

partition function but (slightly) smaller errors. All 

statistical errors were computed by jack-kniving the 
data on the basis of 500 blocks. 

Comparing the jack-knife error with the canonical 
variance of the individual measurements we find that 
the integrated autocorrelation time for both the ki- 

netic energy estimator and the virial estimator never 

exceeded a value of @/ne f 2. Within these bounds 

we noticed that the autocorrelation times tended to be 
larger for low temperatures and large coupling con- 

stants. This observation is also reflected in the fact 

that the acceptance rates were roughly constant on all 
levels for high temperatures and small couplings but 

tended to decrease for lower t and larger Q. We con- 
clude that in our simulations the measurements of the 

energies were more or less statistically decorrelated. 
Fig. 1 shows the measured anharmonic contribu- 

tions to the internal energy per site for Q = 0.1 and 
t = 0.1,0.2,0.3, and 0.4 as a function of the number 

of oscillators N. Here the Trotter number L was set to 
L = 16 for all temperatures. The solid lines show the 
variational approximation for finite N, and the dotted 

horizontal lines show the corresponding values in the 

thermodynamic limit N 4 00. We see that the Monte 
Carlo data fully confirm the variational approximation 
within the statistical uncertainty. For high tempera- 
tures the finite-size effects are quite appreciable but 
die off rapidly with increasing N. For low tempera- 
tures on the other hand the finite-size data approach 
the thermodynamic limit rather slowly but the abso- 
lute values differ only by a small amount from the 

asymptotic value. 
Let us now look at the temperature dependence of 

the internal energy. Fig. 2 shows the measured anhar- 
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Fig. 1. Finite-size dependence for the measured anharmonic con- 

tributions to the internal energy per site. Solid lines show the 

variational approximation for finite N and dotted lines show the 

thermodynamic limit. 
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Fig. 2. Anharmonic contributions to the internal energy per site 
as a function of the temperature t for various coupling parameters 

Q. Solid lines show the variational approximation for N = 300. 

Dotted lines show the variational approximation for N = 03. 

manic contributions to the internal energy per site as 
a function of the temperature t for various couplings 

Q. Here the number of oscillators was N = 300 except 
for t = 0.05,0.30,0.35, and 0.40 where we simulated 
a chain of N = 200 oscillators. The Trotter number 
was L = 16 for t > 0.20, L = 32 for t = 0.15, L = 64 
for t = 0.10, and L = 128 for t = 0.05. Regarding a 
comparison with the variational data we observe that 
the approximation again is fully confirmed for high 
temperatures t and small couplings Q. For lower t we 
still find a satisfactory agreement if we also take into 
account finite-size corrections. The situation is differ- 
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ent, however, for low temperatures and large couplings 
as can be clearly seen in Fig. 2. Here we find signif- 
icant deviations from the variational approximation. 
Note that the error bars for the data are smaller than 

the data symbols. Let us take a closer look at the low- 

est temperature which we have investigated, t = 0.05. 
For Q = 0.1 and Q = 0.2 the variational approxima- 
tion is confirmed within our statistical error estimate. 

But already for Q = 0.3 we find a statistically sig- 

nificant discrepancy between our measured value of 
Rdu = 0.01641(21) and the variational approximation 
which predicts a value of Rdu = -0.01512 for both 

N = 200 and N = 00. This discrepancy increases if we 
go to larger couplings. For the worst case, Q = 0.6, 

the variational approximation gives a value of Rdu = 
-0.05898 for N = 00 and Rdu = -0.05982 for N = 

200. The simulation on the other hand yields a value 

of Rdu = -0.07447(26), i.e., the variational approx- 
imation deviates from the Monte Carlo results by 56 
statistical error bars even if finite-size corrections are 

fully taken into account. 
In order to check whether for the Monte Carlo data 

systematic errors due to the discretization would still 
play a role we have checked our data for I = 0.1 against 

simulations with smaller Trotter numbers, L = 16 and 

L = 32. For Q = 0.1 and Q = 0.2 we found no signifi- 
cant differences but we did observe finite E effects for 

larger couplings Q. Their sizes, however, were small 
enough and in view of the fact that our discretization 

converges with the fourth order in E we believe that 

the remaining discretization error for small t and large 

Q is at most of the same order as the statistical errors. 
In any case, we observed that going to a larger Trotter 
number would push the values down, i.e. would fur- 
ther increase the difference to the variational approx- 
imation. 

We conclude that our data differ significantly from 

the variational approximation for large Q and small t. 
The question then arises whether these discrepancies 
are a consequence of the low coupling expansion or 
rather inherent to the variational approach at this level. 

In view of the fact that the data fit quite well even for 
large Q at high temperatures it seems more likely that 

the latter is the case. On the basis of the validity of the 
Wigner expansion Giachetti et al. [ 51 suggested that 
their expansion be valid as long as 

0.20 0.30 0.40 

I 

fig. 3. Anharmonic contributions to the specific heat per site as 
a function of the temperature t for various coupling parameters 
Q. Solid lines show the variational approximation for N = 300. 
Dotted lines show the variational approximation for N = co. 

t > &Q2 ln( 8R) z 0. 1468Q2. 

This means, for Q = 0.3 we have to compare t = 0.05 
with 0.013212 to explain a discrepancy of almost 5 

statistical error bars. For our worst case of Q = 0.6 Eq. 
(7) reads explicitly t >> 0.053 and the discrepancy of 

56 statistical error bars for t = 0.05 is indeed due to 

a violation of this condition. Looking at Fig. 2 for the 
largest coupling, Q = 0.6, we conclude that condition 

(7) is violated for almost all temperatures displayed 
in Fig. 2 only if we take the >> to mean: larger by 
more than one order of magnitude. 

Let us finally take a look at the specific heat. Fig. 3 

shows the measured anharmonic contributions to the 
specific heat per site. Again the solid lines are the vari- 
ational approximation for N = 300 and the dotted lines 
show the corresponding thermodynamic limit. Due to 
the fact that the estimation of the specific heat involves 

a difference of statistically fluctuating variables the 

resulting statistical accuracy is greatly reduced com- 
pared to the estimation of energies. Therefore our data 
for the specific heat do not allow for a significant fal- 

sifying test of the variational approximation. For the 
more interesting case of large couplings we also see 

that the statistical uncertainty unfortunately is even in- 

creasing, in particular for low temperatures. One there- 
fore would have to conclude that neither a brute force 
increase of the statistics appears to be a reasonable 
way of getting more accurate data. With these restric- 
tions we nevertheless do see, however, that the gen- 
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era1 trend of the quantum effects as computed by the 
variational approximation is confirmed. 

5. Discussion 

Employing refined path-integral Monte Carlo tech- 

niques we have been able to considerably reduce the 
systematic and statistical errors of a quantum Monte 

Carlo simulation of the 4’ chain. The resulting accu- 
racy now allows for a significant test of the variational 

approximation. For small couplings we find that the 

variational quantum corrections to the thermodynamic 
quantities are fully confirmed and only for large cou- 
plings and low temperatures do we observe significant 

deviations from the exact Monte Carlo data. The dis- 

crepancies may be due to the additional approxima- 
tion of the small coupling expansion which was used 

to evaluate the effective classical potential of the vari- 
ational approximation. It would therefore be interest- 
ing to see whether the Monte Carlo data might be re- 

produced by taking into account higher-order correc- 

tions in the coupling parameter Q. The discrepancies 
increase both for large couplings and for low temper- 
atures. Since it is known that the variational approx- 
imation works better at high temperatures the other 

possible reason for the deviations of the analytical data 
may be an inherent failure of the variational approxi- 

mation itself (at this level of accuracy). If this should 
be the case it would be interesting to see whether by 
calculating the higher-order corrections to the varia- 

tional approach [ 221 one would be able to account for 

the remaining discrepancies. 
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