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Abstract 

We use Monte Carlo simulations to measure the spin-spin correlation function in the disordered phase of two-dimensional 
q-state Potts models with q = 10,15, and 20 at the first-order transition point pt. To extract the correlation length & from 
the exponential decay of the correlation function over several decades with the desired accuracy we extensively make use 
of cluster-update techniques and improved estimators. Our results for & are compatible with an analytic formula. As a 
byproduct we also measure the energy moments in the disordered phase and find very good agreement with a recent large q 
expansion at fi,. 

1. Introduction 

An important quantity to characterize the properties 
of a statistical system is the correlation length 5 which 
can be extracted from the exponential decay of a cor- 
relation function G(x) in the limit of large distances 
x. Usually various definitions of G(n) are possible 
and it is a priori unclear which one is best suited in nu- 
merical Monte Carlo simulations. There are only very 
few models for which the correlation length is exactly 
known and can thus serve as a testing ground for the 
employed numerical techniques. The best known ex- 
ample is the two-dimensional Ising model where the 
correlation length is exactly known at all temperatures 
in both the high- and low-temperature phase [ 11. Only 
quite recently also for two-dimensional q-state Potts 
models on simple square lattices an analytic formula 
for the correlation length could be derived [ 2,3]. Here, 
however, the correlation length is only known at one 
special temperature, namely at the first-order transi- 

tion point /!lt of this model for q 3 5. More precisely, 
by comparing with a large q expansion, it could be ar- 
gued [4] that the analytic result in Ref. [ 21 refers to 
the correlation length [d( /&) in the disordered phase. 

Using exact duality arguments and the (weak) as- 
sumption of complete wetting (which can only be 
proven in the limit of large q) this result was then 
converted into an explicit expression for the order- 
disorder interfaCe tension, god = 1/2(d [ 41. This for- 
mula turned out to be in good agreement with previous 
(and thus completely unbiased) numerical interface- 
tension data for q = 7 [ 51 and q = 10 [ 61, and also 
subsequent high-precision studies obtained compati- 
ble values (for a table of results and references, see 
Ref. [ 71) . The purpose of this note is to present direct 
numerical tests of the formula for 5,-j (pi). 

2. The model and observables 

The two-dimensional q-state Potts model is defined 
by the partition function [ 81 
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where i = (i,, i,,) denote the lattice sites of a square 
lattice of size V = L, x L,, (ij) are nearest-neighbor 
pairs and &,+ is the Kronecker delta symbol. In the 
infinite volume limit this model exhibits on simple 
square lattices for q < 4 (q b 5) a second (first) 
order phase transition at fir = ln( 1 + A>. At /3r also 
the internal energy densities e, and ed of the ordered 
and disordered phase are known exactly while for the 
corresponding specific heats only the difference AC = 
Cd - c, could be derived analytically. 

In the disordered phase the spin-spin correlation 
function can be defined as 

(1) 

Table 1 
Integrated autocorrelation times of the energy on L x L lattices 
at Pt in the disordered phase for different update algorithms in 
units of sweeps. The results for Wolff’s single-cluster update are 
resealed to these units 

W&j> = (h,, - l/q). (2) 

For numerical purposes it is more convenient to con- 
sider the ky = 0 projection of G, 

g(i,,.L) = Y/- zG(i,j), 
Y 

!v .JY 

(3) 

which should be free of power-like prefactors in the 
large-distance behaviour. For periodic boundary con- 
ditions translational invariance implies that g depends 
only on Ii, - j,l, and for convenience we shall some- 
times simply write g(x). A useful test of the consis- 
tency of our data is provided by the magnetic suscep- 
tibility 

1 

x= V(q-1) i K 
2 

c (dL1 - 1) >> 9 (4) 

which can be computed from the area under the cor- 
relation function, 

L 
9 

x= V(q- 1) ij c 
G(i,j) = L~g(i,,O). 

q-1 t=I I 

(5) 

3. The simulation 

In our Monte Carlo study we investigated the cor- 
relation function in the disordered phase at /3r for 
4 = lo,15 and 20 on lattices of size V = L x L and 

Algorithm q= 10 q= 15 q = 20 

Metropolis E2000 4OO(lOO) - 
heat bath 125(25) 19(S) 11(l) 
Swendsen-Wang 175(20) - 67(9) 
Wolff 52(7) 23(2) 17(2) 

30 1 I 1 I I I 

0 2 4 6 8 10 

5 

Fig. 1. Integrated autocorrelation times of g(x) for q = 20. 

V = 2L x L with L = 150,60 and 40 (M 1454). To 
take advantage of translational invariance we used 
periodic boundary conditions but chose the lattice 
sizes large enough to suppress tunneling events. This 
guaranteed that, starting from a completely random 
configuration, the system remained a sufficiently long 
time in the disordered phase to perform statistically 
meaningful measurements. Since in this situation it 
is not obvious which update algorithm performs best 
we first performed for the L x L lattices a quite 
elaborate efficiency study of the most popular update 
algorithms, the local Metropolis and heat-bath algo- 
rithms and the non-local Wolff single-cluster [ 91 and 
Swendsen-Wang multiple-cluster [ lo] algorithms. 
By measuring the integrated autocorrelation times 
rinr,e of the energy it became immediately clear that 
the Metropolis algorithm is not a good candidate; see 
Table 1. Also the multiple-cluster algorithm seems to 
be inferior in this application. The other two algo- 
rithms, on the other hand, exhibit comparable rtnt.e, 
in particular for large q where the average cluster size 
is small. Taking into account the details of our imple- 
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mentation, this makes it difficult to decide between 
the two alternatives on the basis of rtnte alone. Being 
mainly interested in the long-distance behaviour of 
correlation functions we therefore also looked at the 
integrated autocorrelation times rtnr,s(x) of these quan- 
tities. Our results for q = 20 are shown in Fig. 1. As 
expected we find that for the local heat-bath algorithm 
the autocorrelations increase with distance, while for 
the non-local single-cluster algorithm they decrease. 
On the basis of these tests we finally decided to use 
the single-cluster algorithm for all production runs. It 
should be mentioned that for any algorithm we used 
the multiple-cluster decomposition of a given spin 
configuration for measurements using the improved 
estimator 

act results, cd and py) can be related by duality to the 
corresponding moments in the ordered phase, 

cd = co + &(ed - eo)/fi9 

(3) = _ 

G(i,j) = 4-l(@(i,j)), (6) 
4 

where O( i, j) = 1, if i and j belong to the same cluster, 
and 0 = 0 otherwise. By performing the summations 
in Eq. (3) one easily derives an improved estimator 
for g(i,,O). 

pd /Li3’ + 2( 1 - q)/q3’* 

+ 3(ed - e,>/s + k&3:&, (8) 

which have recently been estimated by means of Pade 
extrapolations of large q series expansions [ 131. Our 
Monte Carlo estimates for the Lx L and 2L x L lattices 
can be found in Table 2, together with the PadC extrap- 
olations as given in the reanalysis of Ref. [ 141 (using 
series expansions extended by one term), which are 
practically indistinguishable from our own Pade anal- 
ysis. A comparison of the two sets of numbers shows 
excellent agreement between the two methods, even 
for the third moment and small q. 

In the production runs we updated the spins af- 
ter many single-cluster iterations with one multiple- 
cluster step to facilitate the most efficient use of the 
“improved estimator” (6). In units of Tin&e the run 
time on the L x L (2L x L) lattices was about 35000 
(60000) for q = 10, 116000 (230000) for q = 15, 
and 72000 (35000) for q = 20. All error bars are es- 
timated by means of the jack-knife technique [ 111. 

Finally it is worth mentioning that all our correlation 
function data are stored in such a way that they can be 
reweighted to nearby temperatures in both directions; 
in this way we have also computed extrapolations of 
the correlation length into the metastable disordered 
region [ 121. 

Estimates of cd from the finite-size scaling be- 
haviour of the specific-heat maxima gave a consistent 
value of 6.0(2) [ 1.51 for q = 20, but much too small 
values for q = 10 [ 16,171, while recent estimates 
from very long high-temperature series expansions 
[ 181 are too large by a factor of about 2. Only finite- 
size scaling ut the transition point /It seems to give 
sensible results, at least for q = 10 [ 171. 

4.2. Susceptibility 

As a further test of the consistency of our data we 
compared the magnetic susceptibility computed ac- 
cording to Eq. (5) with measurements using the im- 
proved cluster estimators 

4. Results 

X = (lCl)sc = wl*>sw/wlh~ (9) 

where ( )sc ( ( )sw ) refers to the average taken 
from the single (multiple) cluster update. As is shown 
in Table 3, in all cases we obtained excellent agree- 

ment between the three estimators. 

4.1. Energy moments 4.3. Correlation function 

To convince ourselves that the system was always 
in the disordered phase, we monitored the time series 
of the energy measurements and computed the first 
three rnozrn;;:s “_f the energy distribution, ed E (El/V, 

cd = kh pd = &(E*) - (E)*)/V, and ,ui ) = 
((E - (E))3)/V. While ed can be compared with ex- 

Let us now turn to the main subject of this note, the 
correlation function. A preliminary report of a first set 
of L x L data was recently given in Ref. [ 191. Our 
complete set of measurements now consists of data 
for G along the coordinate axes and for the projected 
correlation functions g(x) for q = 10,15, and 20 on 

(7) 



230 W. Jade, S. Kappler /Physics Letters A 197 (1995) 227-234 

Table 2 
Comparison of numerical and analytical results for energy moments at /I, in the disordered phase 

Observable 

&, (MC, L X L) 

&, (MC, 2L X L) 

e,-J (exact) 

c,_, (MC, L X L) 

c,, (MC, 2L X L) 

cd (large 4) 

(3) (MC, L x L) 

/“b) (MC 2L x L) 

;p (hug;: 9) 

q= 10 q= 15 

-0.96812( 15) -0.75053( 13) 

-0.968190(81) -0.750510(65) 

-0.968203.. -0.750492. . 
18.33( 17) 8.695(47) 

18.34( 12) 8.665( 29) 

18.5( 1) 8.66(3) 

-2010( 100) -171.0(5.1) 

-2031(73) -176.1(3.8) 

-1833(40) -174(4) 

q = 20 

-0.62648(20) 

-0.626555(97) 

-0.626529.. 

6.144(43) 

6.140(27) 

6.133(5) 

-54.7(1.9) 

-53.9( 1.5) 

-54.6(4) 

Table 3 

The magnetic susceptibility at pr in the disordered phase from three different estimators 

Lattice 

LXL 

2L x L 

Observable 

[q/(9- t)l Ckis(Lu) 

(IWSC 

(ICl*)sw/wl)sw 

[q/(4- 1)l Cf=:g(i.u) 

Wl)sc 
wl*)sw/wl)sw 

q= 10 

38.02( 14) 

38.02( 14) 

38.02( 14) 

38.075(80) 

38.094(80) 

38.075( 80) 

q= 15 

10.228( 19) 

10.234( 19) 

10.228( 19) 

10.2330( 94) 

10.2331(91) 

10.2330(94) 

q = 20 

5.874( 11) 

5.872(11) 

5.874(11) 

5.8813(60) 

5.8808(59) 

5.8813(60) 

L x L and 2L x L lattices with L = 150,60 and 40. The 
average of the k, = 0 and k, = 0 projections on the 

L x L lattices and the k, = 0 projection on the 2L x L 
lattices, i.e. g(x), are shown in the semi-log plots of 
Fig. 2. The quite pronounced curvature for small x 
indicates that the simplest two-parameter ansatz for 
periodic boundary conditions, 

(10) 

which takes into account only the lowest excitation 
(largest correlation length), can only be justified for 
very large X. We have therefore considered also the 

more general ansatz 

g(x) =ach(v) +bch(cv), (11) 

with four parameters a, b, c, and .%$d. 
Since non-linear four-parameter fits are notoriously 

difficult to control, we first fixed &d at its theoret- 
ical value (td = 10.559519. . ., 4.180954.. ., and 
2.695502.. . for q = 10,15, and 20,\ respectively), 

and optimized only the remaining three parameters. 

The resulting fits to the L x L and 2L x L data are 
shown in Fig. 2 as dotted and solid lines, respectively. 
Over a wide range up to about x x (5. . .6)5d the 

lines are excellent interpolations of the data. At very 
large distances, however, we also see a clear tendency 
of the fits to lie systematically above the data. This 

already indicates that unconstrained fits to the ansatz 
( 11) over the same x range with &d as a free param- 
eter should somewhat underestimate the analytical 

value of &. 
In fact, this is what we observed in the uncon- 

strained fits to both the L x L and 2L x L data. In 
order to estimate systematic errors we performed fits 
to both ansatze using varying fit intervals. As a gen- 
eral tendency we noticed a trend to higher values for 
td when restricting the fit interval to larger x values, 
but then also the statistical errors increase rapidly. For 

9 = 10 this is illustrated in Fig. 3a, where xtin de- 
notes the smallest x value included in the fits. The 
last point used was xmax = ;L for both geometries. 
For the four-parameter fits we have stopped increas- 
ing _x,,,tn as soon as the error on the amplitude b be- 
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Table 4 
Numerical estimates of the correlation length & (/3,) from four-parameter fits to the ansatz ( 11) in the range Xmin . xmax = 1 L. For the 
2L x L lattices the fits along the x and y direction are distinguished by the index 

Lattice q = 10, L = 150 9 = 15, L = 60 9=20, L=40 

Xmin ‘td Xmin cd Xmin &d 

LXL 11 8.8(3) 5 3.60(10) 3 2.21(6) 
16 8.9(4) 7 3.67(13) 4 2.21(7) 
20 9.0(5) 9 3.70(16) 5 2.24(6) 

(2LX L)X 11 9.0(4) 5 3.52(5) 3 2.21(3) 
16 9.5(6) 7 3.54(7) 4 2.23(4) 
20 10.2(9) 9 3.59(10) 5 2.23(5) 

(2L x L)Y 11 8.9(4) 5 3.52(8) 3 2.26(4) 
16 9.1(5) 7 3.58(11) 4 2.30(6) 
20 9.3(7) 9 3.62(16) 5 2.33(7) 

exact 10.559519.. 4.180954.. 2.695502.. . 

came comparable with its central value. For a reason- 
able range of xtin values satisfying this criterion our 
results are collected in Table 4. Here we also give the 

results of fits of g( y), i.e., the k, = 0 projection along 
the short direction of the 2L x L lattices. The fits of 
g(x) with the smallest xmin values are shown in Fig. 2 

as long (L x L) and short (2L x L) dashed lines. 

For the parameter c we obtain from the unconstrained 
four-parameter fits the q independent estimates of c x 
1.5-2, with a clear tendency of decreasing c for in- 
creasing xkn. This observation is consistent with the 
constrained three-parameter fits with td held fixed at 

its analytical value where we find the quite stable es- 
timate of c = 1.5 f 0.1, again for all three values of q. 

Our numerical estimates for ,$d underestimate the 
analytical values by about lo%-20% for both lattice 
geometries. The relative deviation clearly increases 

with increasing q. For some fit ranges we have re- 

peated the analysis using so-called correlated fits [ 201 
which, in general, seemed to be a little more stable. 
We did not observe, however, any significant increase 
of the estimates for &d. We also investigated whether 
the Fourier transforms of g or G are less susceptible 

to systematic corrections and thus easier to analyze. 
Unfortunately, the answer is no. In fact, the fitted val- 
ues of [d turn out to be even smaller than in the cor- 
responding real space fits (if comparable fit intervals 
are used). 

Of course, the problem is that at the distances we 
have studied so far ( xmax = 3 L w 7&j) even higher ex- 
citations cannot be neglected. Due to convexity prop- 

erties it is then natural that td is underestimated by 
using the truncated ansatz ( 11) . This general trend is 
illustrated in another way in Fig. 3b where we plot for 

q = 10 an effective correlation length defined by the 

local slopes of g(x) , 

s”d” = l/in [d-W&+ I)], (12) 

as a function of the distance x for both the L x L as 
well as the 2L x L data. For large x we expect gff = 

#$d. We do oberserve a clear increase of pdff, but it is 
of course still a long way to &d = 10.56. In particular 
with the L x L data is difficult to extrapolate to the 
correct value since the effects of the periodic bound- 
ary conditions set in much too early. For the 2L x L 
data, on the other hand, the three-parameter fit (with 
ld held fixed at its theoretical value) indicates how 
the data should behave for very large distances in the 
long direction of the lattice. At x = 100, however, 
g(x) /g(O) x 5 x 1O-6 which is very difficult to mea- 
sure accurately, even with cluster algorithms and im- 
proved observables. In fact, this number reflects how 
improbable it is to generate a cluster with diameter 

of about 100 (recall the improved estimator (6) ) . To 
cope with this problem we are currently investigating 
a special type of simulation with a reweighted Hamil- 
tonian designed to increase these probabilities. Using 
standard simulation techniques it would take an enor- 
mous amount of computing time to follow the decay 
of correlation functions over more than 5 or 6 decades 
with the necessary accuracy. 
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Fig. 2. Semi-log plots of the correlation functions g(x) versus 

distance x on L x L and 2L x L lattices for (a) q = IO, (b) q = 15, 
and (c) q = 20. The solid and dotted lines are three-parameter fits 

to the ansatz (11) with & held fixed at its theoretical value. The 
short and long dashed lines show unconstrained four-parameter fits 

over the same x range. For clarity some data points are discarded. 

As a check of our analysis we put q = 2 in our pro- 
grams, and thus simulated the Ising model in the dis- 
ordered phase at p = 0.7 1 w 0.80&. Here the exactly 
known con-elation length is [d = 2.728865 . . . [ 11, a 
value that is comparable to sd( pt> of the q = 20 Potts 

I I r 1 

: MC Data L x L 0 - 
3. ara-fit L x L 

:’ MgData2LxL 0 
o bpara-fit 2L x L _ 

I I I 

0 20 40 60 80 100 

Fig. 3. (a) Results for & of the various fits for q = 10 using all 

data points with X,in < x < xmax = L/2 as a function of X,in. 

(b) The effective correlation length (12) versus distance for 

q = 10. The dashed lines are constrained three-parameter fits to 

the data and the horizontal line shows the theoretically expected 

result for &j. 
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Fig 4. Semi-log plot of the correlation function g(x) of the 

2D lsing model at /3 = 0.71 x 0.80& The two curves are 

fits to the ansatz (10) with .$j = 2.7232(35) (L x L) and 
&j = 2.7275(24) (2L x L), in excellent agreement with the exact 

result eV = 2.728865.. . . 
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model. Our data points for g(x) on L x L and 2L x L 
lattices with L = 40 shown in Fig. 4 look perfectly 
straight in a semi-log plot. Consequently, the much 

simpler fit of the form (10) was sufficient. As a re- 

sult we obtained from the fits (with x,,,in = 1) shown 
in Fig. 4 the estimates of [d = 2.7232(35) (L x L) 
and td = 2.7275( 24) (2L x L), and for a fit in the 
short direction of the 2L x L lattice &d = 2.7283( 20). 

All these estimates are in very good agreement with 

the theoretical value, showing that the employed tech- 

niques work at least in principle. 

5. Discussion 

Previous numerical estimates of the correlation 

length at PI for q = 10 [ 21-231 resulted in values of 

about 5 Z=Z 6 which are much smaller than the theo- 
retical prediction of .$d = 10.56. The Fernandez et al. 

[ 221 value of 6.1(5) is obtained from an extrapola- 
tion of simulations at p < & and thus definitely refers 

to the correlation length in the disordered phase. From 
our experience with correlation function fits and direct 
tests we believe that their values of td for p < pt are 
already underestimated. Since the simulation points 
are relatively far away from fit, the systematic errors 

are further enhanced by the extrapolation procedure 
used in Ref. [ 221. The interpretation of the data of 
Peczak and Landau [ 211 and Gupta and Irback [ 231 
is less clear to us. By repeating the simulations of 
Ref. [ 231 we are quite convinced that their technique 
yields a weighted average of the ordered and disor- 
dered correlation function, which is then analyzed 

to obtain 5. By using a projection to a momentum 
kr = 29r/L, the ordered phase is treated properly, but 
the weighted average makes the final interpretation 
somewhat unclear. Similarly, since the simulations in 

Ref. [ 211 are performed at the specific-heat maxi- 
mum whose finite-size scaling behaviour is governed 
by the transitions between the ordered and disordered 
phase, it is very unlikely that their 5 refers to a pure 

phase correlation length. In view of these problems it 

is astonishing that all three methods yield about the 
same value for 5. In order to understand this puzzling 
coincidence we are currently investigating also the 
correlation length in the ordered phase and first results 
will be available soon in a separate publication [ 241. 

Constrained fits with td(/$) held fixed at its the- 

oretical value clearly indicate that our data for the 
projected correlation function g(x) in the disordered 
phase at pt are compatible with the analytical pre- 

diction of Refs. [ 2,3]. By performing unconstrained 
fits, however, we cannot really confirm the theoretical 

values. Rather we systematically underestimate &d by 
about lo%-20% in simulations of L x L as well as 
2L x L lattices. We attribute this to higher mass ex- 

citations which cannot be neglected at the distances 

investigated so far. To include these corrections in the 

fits, however, would require much more precise data. 

In a comparative study of 2D Ising correlation func- 
tions no such problems were encountered and the ex- 
act value of the correlation length could be reproduced 

with high precision. 
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