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Using the single cluster Monte Carlo algorithm combined with improved estimators for correlation functions we have simulated
the two-dimensional XY model in Villain’s formulation on large square lattices with up to 1200 1200 sites. Weighted least-
squares fits of the correlation length (10<¢<140) and susceptibility near criticality clearly favor the exponential divergence
predicted by Kosterlitz and Thouless. A conventional power-like critical behavior can be ruled out on a statistically firm basis.

Two-dimensional (2D) systems with short-range
interactions and continuous symmetry are disor-
dered for all non-zero temperatures [1]. Still, for
0O(2) symmetric systems, the Kosterlitz-Thouless
(KT) theory [2] (for reviews see ref. [3]) predicts
a peculiar “topological” phase transition governed
by an essential singularity. Accordingly, as the crit-
ically temperature 7, is approached from high tem-
peratures, the correlation length £ and susceptibility
x diverge exponentially,

Soc exp(bt=?), xoc&?-7, (1)

while the specific heat should stay finite at T,. Here
t=T/T.—1>0 is the reduced temperature, b~ 1.5 is
a non-universal constant, and y=1, =} are uni-
versal critical exponents. In the physical picture un-
derlying the KT theory, the transition is caused by
the dissociation of vortex—-antivortex pairs at 7. Be-
low the critical temperature these pairs are tightly
bound and merely renormalize the spin-wave exci-
tations, which destroy long-range order down to zero
temperature. Both the physical picture and the pre-
diction (1) have been questioned many times [4,5].
Alternative considerations [5] favor power-law sin-
gularities of the form

Cact™v, xoct~?, (2)

with conventional critical exponents » and y

(=v(2-1n)). The goal of this note is to decide be-
tween these two alternatives.

Recent studies in this direction employing high-
temperature series expansions [6] and Monte Carlo
(MC) simulations *! are based on lattice models of
the planar XY type with local spin-spin interactions
taken in the so-called cosine form,

E=— Y% s(x)-s(x+i)

x,i

=— 3 cos[V:0(x)], (3)

where s= (cos 8, sind), and V4(x)=60(x+i)—0(x)
are the lattice gradients in the i direction of a simple
square lattice. It is well known that, with this energy,
vortex and spin-wave degrees of freedom are cou-
pled in a complicated non-linear way [11]. Both ap-
proaches favor the KT scenario, but the MC results
could not give the last degree of certainty.

The KT arguments and subsequent analyses
[12,13] on the other hand assume (sometimes im-
plicitly) that vortices and spin waves are decoupled.
While universal properties should be insensitive to
this assumption, it is quite conceivable that the
quantitative approach of criticality does depend on

# Gupta et al. [7], using an over-relaxation algorithm; Wolff
[8], using the single cluster update, but conventional observ-
ables; Edwards et al. [9], using multigrid MC. For earlier work,
using the Metropolis algorithm, see ref. [10].
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the vortex spin-wave coupling. We found it therefore
worthwhile to investigate the issue of an exponential
versus power-law critical behavior once more by MC
simulations of a related model in which vortices and
spin waves are explicitly decoupled, namely the pe-
riodic Gaussian or Villain model [14]. Its partition
function reads

T

n(] 4

x ¥ exp(—gz_ (V.-e-znni)Z), 4)

{ni(x)}

where the integer variables n;(x) run from —oco to
oo, and B=1/T is the inverse temperature. From a
recent study [15] (for earlier work, see also ref.
[16]) of the dual discrete Gaussian model the lo-
cation of the critical point is known to be around
B.~0.74. A thorough MC study appeared feasible,
since the application of recently developed cluster
algorithms [17,18] combined with low-variance es-
timators for correlation functions [19] promised a
speed-up by several orders of magnitude as com-
pared to the standard Metropolis algorithm. Indeed,
in this note we shall present data for the correlation
length and susceptibility of the Villain model (4) that
are (1) considerably more accurate than previous re-
sults for the cosine model (3), and (ii) invade much
deeper into the critical region.

In our MC simulations we worked with the single-
cluster (1C) algorithm of ref. [18] slightly adapted
to the Villain case. While the necessary modifica-
tions are easy to write down analytically, their actual
evaluation is much more time-consuming than for
the cosine model. In order to reduce computer-time
requirements we have therefore employed the Z,
(with N=100) approximation of the O(2) sym-
metry, which is known to be extremely accurate and
which is straightforward to implement in the cluster
algorithm.

In this brief note we shall concentrate on our mea-
surements of the zero-momentum (“projected”)
correlation function,

1 L
gllx=x"1)= 7 Zl<S(x,y)‘s(x’,y’)>, (5)

»y'=

and the susceptibility,
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in the high-temperature phase. Here V=L X L is the
volume of our square lattices (with periodic bound-
ary conditions), and the angular brackets denote av-
erages with respect to the partition function (4). As
sample estimators for g and y we have used the
“cluster observables” [19]

=L s )88, (D)
g—Ly‘yZ:] ol s(x) r-s(x')6.(x)6.(x'),
1L i :
X=zx‘x2=1g=zc(a§f‘<") ’ (®)

where r is the random unit vector used in the (sto-
chastic) construction of the cluster % of reflected
spins (s—s' =s—2r(r-s)), C is the size or weight of
the cluster, and 6.(x) denotes its characteristic
function (=1 if xe ¥ and 0 otherwise). The factor
2 accounts for the O(2) symmetry. It has been dem-
onstrated [19] that (§) =g, {¥) =¥, and argued (or
verified numerically for the O(3) model [19]) that
averages over many cluster steps have much smaller
variances than the conventional estimators in (5),
(6).

These arguments remain valid for the Z, approx-
imation if one keeps the trivial single-site clusters
{generated for r L s(x,) ). Alternatively, since trivial
single-site clusters only replicate the old configura-
tions in a uniform way, one may avoid them by a
suitable prescription in the update procedure. Then
the factor 2 has to be replaced by 2—2/N. This gives
a smooth interpolation between the Ising
(Z,=0(1)) and XY (Z,,=0(2)) model. A useful
check of these relations is provided by the identity
1=2¢C~" Z,ce[rs(x)]?.

From g(x) we have extracted the correlation length
£ by weighted least-squares fits to a hyberbolic cosine,

g(x)=acosh[(L/2-x)/{] (x>»1), (9)

thereby taking properly into account the periodic
boundary condition. To avoid systematic errors due
to “higher mass™ states with smaller correlation
lengths, we have discarded all g(x) with x<¢&in these
fits. We have checked that discarding all points with
x < 2¢&yields statistically consistent results. Since this
naturally increases the error bars (by a factor of
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~1.3), we have always quoted the former fits. The
error bars were estimated by the usual binning pro-
cedure, i.e., by decomposing the whole run into large
non-overlapping blocks of many measurements of
g(x), determining ¢ for each block, and calculating
the variance.

The main results of our simulations are given in
table 1, where we have compiled the raw data for the
correlation length and susceptibility in the high-tem-
perature phase. Only data points with £> 10 are taken
into account. To avoid finite-size effects, we have
carefully chosen our lattice sizes to satisfy the con-
dition L> 8¢& (except for one instance with L=7.3&).
Quite elaborate finite-size scaling analyses for $=0.55
(¢~6) and $=0.63 with L/& varying from ~4 to
~ 14 clearly confirm that this is a very safe condition
(L > 6£ would probably suffice also). It is one of the
main advantages of the single cluster algorithm com-
bined with the “cluster estimators” (7), (8) that an
overly large lattice does not increase the run-time
(apart from a small equilibration overhead). On the
average, in each update step only { C) spins are re-
flected and simultaneously used for the measure-
ments, independent of L. The true limiting factor is
now the memory requirement. In table 1 we give the
ratio { C) /x, which is roughly constant as for the co-

Table 1
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sine model [8] and approaches ~0.8105 for £>40.
Also given is the total run-time in units comparable
to Metropolis sweeps (.., = number of cluster steps
X (C>/V). We have adjusted the run-time to en-
sure that all errors are less than 0.25%. From a “sim-
ulation of our simulation” we knew that under this
condition it is very improbable to misinterpret a true
exponential behavior as a power law by chance. Note
that the reverse question is not meaningful, since the
power law (2) is a special limiting case of the ex-
ponential ansatz (1).

In the final analysis we focused on the question
whether our data in table 1 support a KT transition
governed by an exponential divergence (1) or a con-
ventional transition with a pure power-law singular-
ity (2). In order to decide between the two alter-
natives, we have performed y-fits to £ and x. To be
precise, we have fitted our 18 data points to the log-
arithms of the hypotheses (1) or (2),

log&(T)=A+b(T/T.-1)"" (KT), (10)
or
logé(T)Y=A—vlog(T/T.—1) (power), (1)

with similar expressions for y. Furthermore, we can
rewrite these expressions also as functions of 8. Near

Correlation length ¢, susceptibility y, and mean cluster size {C) in the high-temperature phase. ¢,,, = number of cluster steps X (C)/

L?is the total run-time in units comparable to Metropolis sweeps.

8 L L/¢ Frn/ 10° ; x O/

0.590 200 17.81 39.58 11.231(16) 177.74(17) 0.811544
0.595 200 16.24 69.63 12.313(11) 207.49(16) 0.811415
0.600 200 14.74 39.01 13.567(19) 244.36(27) 0.811261
0.605 200 13.34 73.61 14.991(14) 289.82(26) 0.811126
0.610 200 12.03 88.72 16.625(15) 345.94(31) 0.811045
0.615 200 10.76 76.68 18.591(20) 417.93(44) 0.810937
0.620 200 9.60 89.06 20.831(22) 509.21(56) 0.810858
0.625 400 16.98 19.51 23.563(37) 628.78(84) 0.810773
0.630 400 14.92 15.14 26.812(50) 784.2(1.4) 0.810678
0.635 400 12.99 21.27 30.786(52) 995.1(1.7) 0.810644
0.640 400 11.22 21.72 35.638(65) 1278.9(2.4) 0.810603
0.645 400 9.62 26.27 41.597(81) 1665.2(3.3) 0.810572
0.650 400 8.14 34.93 49.160(88) 2221.8(4.4) 0.810536
0.655 600 10.23 21.00 58.68(12) 3015.7(6.4) 0.810514
0.660 600 8.45 21.51 70.97(15) 4190(10) 0.810488
0.665 800 9.15 24.93 87.42(17) 6015(13) 0.810479
0.670 800 7.28 35.50 109.91(21) 8896(20) 0.810457
0.675 1200 8.57 19.37 139.97(30) 13604(33) 0.810457
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x fits of the data for the correlation length & and susceptibility y to the KT and power-law hypotheses (10), (11). The argument of £ and
x indicates the specific form of the ansatz, and Q is the standard goodness-of-fit parameter.

Fit 0 4 b B v
unconstrained KT fits (14 d.o.f.) &) 9.41 080 —1.89(37)  218(31)  0.7539(49)  0.532(55)

&B) 9.68 0.79 —5.5(14)  46(1.3)  0.7466(53)  0.353(68)

2(T) 1005 076 ~1.53(29)  3.19(24)  0.7566(28)  0.588(32)

X8 9.81 0.78 —6.32(90)  6.00(81)  0.7497(31)  0.421(40)
constrained KT fits: =} (15d.of.)  &(T) 9.79 083 —2.117(15)  2.370(11)  0.75106(36) 0.5

&B) 1387 0.54 -3.551(24)  2.812(14) 0.75814(40) 0.5

AT) 1882 022 —2.460(14)  3.964(10) 0.74890(20) 0.5

B 1339 057 -4.855(22)  4.702(13) 0.75591(23) 0.5
power-law fits (15 d.o.f.) T) 25720 4x107%  —0.5749(54) - 0.71069(20)  1.8818(50)

&B) 6596 2x107°  —1.638(11) - 0.71915(26)  2.3610(79)

x(T) 94274 2X107'%  0.1174(50) - 0.70889(11)  3.1533(46)

x(B) 25033 IX107*  —1.6638(94) - 0.71723(14)  3.9543(73)

T., in leading order, this amounts to replacing 7/
T.—1by 1-8/8.in (10) and (11).

The resulting fit parameters are given in table 2.
A glance at the entry displaying x> immediately shows
our main result — on the basis of the data in table 1
the power-law hypothesis can be ruled out with high
confidence. Even the “best” y?~66 for the &(B)
power-law fit corresponds to an extremely small
goodness-of-fit parameter Q~2Xx 10~8 (recall that
this is the probability to find a set of simulation data
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Fig. 1. KT fits (solid lines) and the 8 dependent power-law fit
(dashed line) to the correlation length data, using the 8 depen-
dent KT fit as a reference line. In a simple log € versus S plot, the
three fits can hardly be distinguished. Note that in evaluating the
fits it is not sufficient to simply insert the rounded values of the
fitted parameters (with the significant digits determined by their
individual error bars) as given in table 2. Due to the strong mu-
tual correlations of the parameters (see fig. 2) it is necessary to
use much higher precision values. The corresponding plot for the
susceptibility looks very similar.

14

with 2> 66 by chance fluctuations, assuming that
the power-law hypothesis is correct). On the other
hand all KT fits look equally consistent with a x?
around 10. The quality of the fits can be inspected
in fig. 1 (with the f-dependent KT fit as reference
line). We interpret this result as unambiguous sup-
port for a KT-like transition in the 2D Villain model.
Note that the currently available evidence against the
power-law hypothesis from MC simulations of the
cosine model is much weaker (Q=x2x10-3 for x(8)
{81). Finally it should be stressed that statistical tests
can in principle only provide evidence against a given
hypothesis but never prove it in a strict sense. For
example, a generalized power-law ansatz with ad-
ditional confluent corrections yields good fits also,
albeit with unreasonably large correction terms.

To be certain, we have performed all fits twice with
(i) independently written programs using (ii) com-
pletely different algorithms, and (iii) running on two
different computers (with 32 and 64 bit arithmetic).
The power-law fits always agreed within a fraction of
a percent. The KT fits require more care, but we
never run into the “spurious minima” discussed in
ref. [7]. In fact, since 4 and b enter as linear pa-
rameters in (10), we can easily determine their op-
timal values for fixed B, and », and thus map out the
x? landscape over the f.—»v plane. As a result, we find
the approximately elliptic contour lines of constant
x? shown in fig. 2 which clearly imply a unique min-
imum. As a check, inserting the data of ref. [7] in
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0.75 LIRS SR R E S B V=048i010, (13)
v (M) -

0.60 | A where thf: (rgugh) error estlplgte a.ccounts for the

| systematic shifts. This value is in fairly good agree-

I ) ment with the KT prediction. Using a constrained

0.45 | e KT ansatz with fixed =1 we also obtain fits with

; reasonable goodness-of-fit parameters (see table 2).

i 1 When compared with the unconstrained ansatz,

0.30 I T however, these fits do not look really acceptable. In

| { addition we have tested the influence of the leading

0.1 I T S correction to the KT prediction for the susceptibility

5
0.73 0.74 0.7530.7'5_0'.77

Fig. 2. Confidence regions in the 8- plane for the KT fits to the
correlation length data. Shown are the contour lines for Ax*=
X2—xZm=1,2.30,4.61, and 9.21. For a linear fit model and nor-
mally distributed errors, the projection of the Ay?=1 region onto
the axes gives the 68.3% confidence interval for a single parame-
ter without regard to the other, while the other three regions are
the 68.3%, 90%, and 99% confidence intervals for §. and » jointly
[20]. For the non-linear KT fits this interpretation is only ap-
proximately valid.

our programs, we find KT fits which are again in
agreement with each other but have smaller x? than
in ref. {7]. In particular, contrary to the claim in ref.
[7], we have no problems with the f-dependent an-
satz. On the other hand, we find much larger errors
on the fit parameters. These errors are estimated [20]
by drawing synthetic input data sets from Gaussian
distributions with the measured variances, perform-
ing the fits and calculating the variance of the fitted
parameters.

A closer look at the parameters reveals remaining
problems with the KT fits. While the estimates for
B. are consistent with an overall mean

B.=0.75210.005 , (12)

the estimates for ¥ show a systematic dependence on
the form of the ansatz: the T-dependent fits give sig-
nificantly larger values than the f~dependent fits, and
the corresponding confidence regions in the f-»
plane shown in fig. 2 do not overlap. For the other
two parameters, A and b, this discrepancy is even
more pronounced. Unfortunately, since the x2? are
almost equal for all KT fits, we have no numerical
clue to decide which one is the best. Taking the av-
erage as best estimate, we get

[13] #, yoc &2~ "o yact —1/16E2-" As a result we get
slightly modified parameters but do not find a fur-
ther improvement of the fits.

The systematic errors of the parameters indicate
that we are still too far away from the critical point,
so that correction terms cannot be neglected. The
numerical problem is that the KT fits do not signal
this by a large y2. Apparently they are able to absorb
such corrections by generating effective parameters.
We have verified this observation by a straightfor-
ward but tedious calculation which explains at least
the sign and order of magnitude of the systematic
shifts. Fig. 1 shows that even if the error bars are re-
duced by a factor of 10, we could not decide which
KT fit is more trustworthy. Also, adding more mea-
surements up to f=0.7 with the present accuracy,
say, would not help. But this already is extremely de-
manding, since the correlation length at f=0.7 is
roughly 770, thus requiring lattice sizes L> 4500 for
areliable simulation. These and similar estimates in-
dicate that a significant improvement of the present
results would require several months or even years
of central-processing-unit (CPU) time on currently
available computers such as the CRAY X-MP.

Let us finally use the second KT relation ineq. (1)
to estimate the exponent . A simple test of the the-
oretical prediction n=1 is a plot log(x/&7/*) versus
log&. A possible deviation Ap=n—1} would be in-
dicated by a straight line with slope —A7. As is shown
in fig. 3a this is obviously not the case. Rather, the
data follow a curved line whose slope clearly de-
creases with increasing & thus supporting the pos-
sibility that n=14 at the critical point. To demon-

¥2 We thank Professor P. Butera for useful correspondence on
this point.
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Fig. 3. Test of the KT prediction yoc &2~" with =4 (see the text
and eq. (14)). Apart from an upward shift by §, 7*Tin (b) is the
slope of the curve in (a).

strate this more quantitatively, we plot in fig. 3b the
effective exponent

neT=2_ log (Xi+1/Xi—1)
l Tog(&+1/¢—1)

with &=¢&(B;) etc. Apart from an upward shift by {,
this is just the slope of the curve in fig. 3a. From the
point closest to criticality (corresponding to £~ 110-
140) we read off the estimate n~ "%~ 0.267, which
is already reasonably close to the KT prediction.

In conclusion, among the two alternatives a pure
exponential or a pure power-law critical behavior,
we find clear evidence for the former. Estimates of
the KT parameters, however, are affected by rather
large systematic errors. A significant reduction of
these errors would require an enormous computing
power.

(14)

The numerical simulations were performed on a
CRAY X-MP2/4 at the Konrad-Zuse-Zentrum fir
Informationstechnik Berlin (ZIB) and a CRAY X-
MP2/16 at the Computer Center of Universitit Kiel.
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