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The Monte Carlo cluster update in Wolff’s single cluster formulation is tested for the three-dimensional XY model on simple
cubic lattices. A significant reduction of critical slowing down near the phase transition is observed. Combined with the use of
improved estimators and histogram sampling, this allows accurate computations of the transition temperature and the critical

exponents in reasonable computer time.

It is well known that importance sampling Monte
Carlo (MC) algorithms based on local update
schemes suffer near a phase transition from so-called
“critical slowing down” [1]. By this one means that
successive configurations are strongly correlated with
a correlation time 7ocL? (z~2 and L is the linear
size of the system) and cannot be used for statisti-
cally independent measurements. Consequently, for
fixed finite computer budget, the available statistics
and thus the accuracy of the data are dramatically
reduced in the most interesting regions of a phase
diagram. Apart from overrelaxation [2] and mul-
tigrid [ 3] ideas, this problem has recently been over-
come by means of physically very appealing global
update algorithms in which whole clusters are up-
dated in a coherent way [4,5]. It is intuitively clear
that this leads to a much more efficient sampling of
long wavelength fluctuations than in local update
schemes. Currently there are two related formula-
tions available. First, the Swendsen-Wang (SW) [4]
formulation, in which the whole lattice is decom-
posed into clusters, and second, Wolff’s [5] for-
mulation, which is based on the generation of a sin-
gle cluster in each step. Tests of these cluster
algorithms for two-dimensional O(n) (n=1, 2,3)
spin models {5-8] and the three-dimensional Ising
model [9] have clearly demonstrated that critical
slowing down is significantly reduced (with expo-
nent z<K 1).

The purpose of this note is to report additional tests

of the single cluster (SC) formulation for a three-di-
mensional model with continuous symmetry, the XY
(or O(2)) model. The partition function is given by

[ de
Z=U( j sz’)exp(—ﬂE), (1)

where f=1/T is the (reduced) inverse temperature
and the energy is

E= Z [1—s(x)-s(x+i)]
=Y, {1-cos[ViB(x)]}. (2)

As usual s= (cos 8, sin @) denote two-dimensional
unit spins at the sites x of a simple cubic lattice with
periodic boundary conditions, and V.©O=
O(x+i)—6(x) are the lattice gradients. It is well
known that the three-dimensional XY model is the
simplest lattice model [10] describing many prop-
erties of liquid helium and its A-transition at 7, =2.18
K [11] to the superfluid state. On the lattice, high-
temperature series (HTS) analyses predict a contin-
uous transition of this type at 7775 =2.203+0.006
(BHTS=0.453910.0013) [12]. Itis also known that
the lattice model can be rewritten in terms of line-
like topological excitations which can be interpreted
as vortex lines meandering through the superfluid
helium at any non-zero temperature [13,14}. Ever
since Onsager’s [15] early comments and Feyn-
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man’s [16] more detailed analysis, there have been
several attempts to understand the A-transition as
proliferation of these vortex lines or their lattice an-
alogs [17]. Recently, phenomenological renormali-
zation group ideas have been applied to the line rep-
resentation [18,19], and it is clearly important to
have precise MC data for comparison. Previous sim-
ulations using standard updates are much less ac-
curate [20].

Initially we planned to perform a similar study also
for the multiple cluster SW algorithm in order to
compare the two new update schemes. Fortunately,
after our single cluster update runs had essentially
been completed, we received a preprint by Hasen-
busch and Meyer [21], reporting tests of just this
SW algorithm. Clearly, to avoid unnecessary dupli-
cation, we have used their data for the planned
comparison.

In Wolff’s single cluster formulation, one update
consists of choosing (a) a random mirror direction
and (b) a random site, which is the starting point for
(c) growing a cluster of reflected spins. The size and
shape of the cluster is controlled by a Metropolis-like
accept/reject criterion, satisfying detailed balance
[5]. Compared with the multiple cluster SW algo-
rithm this formulation is technically somewhat sim-
pler to implement, and, as we shall see below, nu-
merically more efficient. The reason is that, on the
average, larger clusters are moved.

To test its performance for the three-dimensional

XY model, we have concentrated on the internal en-

ergy per site, e=(E)/V ({ > denote thermal av-
erages, and V'=L3 is the lattice volume), and the
susceptibility in the disordered state,

x=V(m®, m=%s), 3)

and recorded the autocorrelation functions of these
two observables,

<0i0i+k>—<0i>2 (4)
Here O; stands short for the ith measurement of E or

m?. Of practical importance is the integrated auto-
correlation time

A(k)=

rs§+k§lA(k), (5)
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which enters directly in the error estimate ¢ for the
mean of N correlated measurements with variance o,

e= \Jo?/N /27. (6)
For completely uncorrelated measurements,
A(k)=0d,0 and t=4. Hence \/2-1 measures directly
the enhancement of statistical errors due to temporal
correlations.

Clearly, in an actual simulation with finite run-
ning time, the summation in (5) must be cut off at
a finite k=n, say, and some extrapolation procedure
is needed. Assuming a purely exponential decay *!
for k>ky, A(k)~aexp(—k/t,), one readily finds
for n>k,

w(my=4+ ¥ A(k)

_ exp(—1/7)
_T_a———-—l—exp(——l/to) exp(—n/17) N

_ A(n+1)
=TT I A(n+ 1) /A(n) (®)

showing that

A(n+1)
1—-A(n+1)/A(n)

t(n)+

is an improved extrapolant for 7 [9]. Alternatively,
for n>k,, one may simply employ a (non-linear)
three-parameter fit of 7(#n) to the right-hand side of
eq. (7) to determine 7. A useful check is provided
by the usual block averages and their associated er-
rors which, for large blocks, should also approach (6)
(but with different correction terms). As discussed
previously [5], for the single cluster update some care
is necessary in defining the unit of time, since in each
update step only a relatively small fraction of the
spins is moved, depending on temperature and lat-
tice size. More precisely, our results show that, near
T, and for all lattice sizes, the average cluster size,
{C>, is proportional to the susceptibility,

(CO=cy(L, T), 9)

with ¢~ 0.81 (as in two dimensions [5]). At T, the
susceptibility behaves like yoc L**=L?~" (with very

¥ For a bivariate Gaussian distribution with A(1)=p=
exp(—1/1,) this is exactly valid for all k with a=1, and
t=4(1+p)/(1-p)=1[1+1/1275+0(1/13)].
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small nx~0.04), so that with increasing lattice size
the fraction of moved spins in each update step de-
creases like (C)/VaL-U*7) ie., roughly
oc 1 /L. Since the CPU time needed for a single clus-
ter update is roughly proportional to the number of
moved spins, it is appropriate to use No=V/
{CY o« L'*" single update steps as unit of time. This
is then directly comparable with other update
schemes that attempt moves for all spins in one up-
date step. All our integrated autocorrelation times
refer to this unit of time (which can always be
achieved by a rescaling). Near 7, with our Fortran
program on a CRAY-XMP, the update of one spin
took about 8-9 us.

Our first runs were performed at the HTS esti-
mate, f=p15-0.4539 [12]. In fig. 1 the integrated
autocorrelation times on a 323 lattice for energy and
susceptibility, 1., 7,, are shown as thick vertical bars.
The lengths of the vertical bars indicate the statis-
tical errors which are estimated by dividing the whole
run into five blocks, calculating 7(n) in each of them,
and taking the variance. In this run E and m? were
computed every 10th update step, corresponding on
the average to 0.284) moved spins between mea-
surements. We have checked that increasing the in-
terval between measurements to Ny = 36 steps, so that
roughly all spins are moved, gives the same final re-
sults within the error bars. Fitting the data for n=12,
. 32 to the ansatz (7) (using the subroutine
MRQMIN of ref. [22]), we find the solid interpo-
lating curves. The resulting values of 7. and 7, (and
their errors) are shown as the solid (dashed) hori-
zontal lines at 7.~ 3 and 7,~ 1.6, respectively. The
crosses finally are the improved extrapolants for 7,
and 1, according to eq. (8). We see that both meth-
ods are in very good agreement. Estimates of 7 based
on the block errors mentioned above gave also al-
ways consistent results within 5%. Without any ex-
trapolation procedure, however, they systematically
underestimate 7, as expected. Repeating such an
analysis for various lattice sizes up to 48° at
Fo=0.4539 and B,=0.4543, we have determined the
values for 7. and 7, shown in fig. 2. Obviously, 7, is
essentially independent of L, and for all practical
purposes we may conclude that

7, ~ 1.7=const. (10)

While also small, the behaviour of 7. is clearly dif-
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Fig. 1. Integrated autocorrelation times (thick vertical bars) for
(a) the energy and (b) the susceptibility versus the upper sum-
mation limit n at f,=0.4539 on a 32° lattice. The solid line inter-
polating the data is a fit (for n>> 12) to the right-hand side of eq.
(7), and the crosses are the improved extrapolants according to
eq. (8). The fitted values of 7. and 1, and their errors are dis-
played by the horizontal solid and dashed lines, respectively.

ferent. It increases with lattice size, and a rough fit
gives

1.~ 1.3L0% (11)

The data labeled “SW” show the corresponding re-
sults of ref. [21] for the multiple cluster Swendsen—
Wang update. Compared with the single cluster up-
date the SWcorrelation times toc L? are growing ob-
viously much faster with L, and are larger in mag-
nitude for all lattice sizes (this is of course what really
matters — a constant 7=100, say, would not really
help, even though the exponent z is reduced to zero).
We can thus conclude that for the three-dimensional
XY model the single cluster update is more efficient
than the multiple cluster SW algorithm, which is, of
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Fig. 2. Double logarithmic plot of the integrated autocorrelation
times near criticality ( (o) £;=0.4539, (o) £5=0.4543, (A)
B60.45415) versus the linear size of the lattice, L. The data la-
beled “SW” are taken from ref. [21] ($=0.45421), employing
the multiple cluster Swendsen-Wang update.

course, already a significant improvement on the by
now “old fashioned” local Metropolis update.

Using the single cluster update, it is possible to cal-
culate physical quantities like critical exponents in
reasonable computer times with an accuracy com-
parable to the currently best estimates coming from
field theoretic approaches (Borel resummed pertur-
bation series or e-expansions). In order to increase
the efficiency of the MC method further, we have
supplemented the single cluster update by using im-
proved estimators for measurements and histogram
sampling for their analyses. For the susceptibility,
the improved estimator is given by [8]

mereig ) o

where r is the unit vector defining the (orthogonal)
mirror line, and x runs over all sites belonging to the
cluster % of size C. For large lattices and away from
criticality, the statistical errors of ¥'™ are much
smaller than those of y in eq. (3). Near criticality,
however, there is no advantage in using (12) instead
of (3).

The histogram sampling technique [23], on the
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other hand, works best near criticality and is in this
sense thus complementary to the use of improved es-
timators. It is a quite general technique of data anal-
ysis based on the simple idea of recording whole dis-
tribution functions, and not only their first and
second moments (e.g., the average energy and spe-
cific heat), as is usually done. The energy histogram
(normalized to unit area) at §, can be written as

Pg(E)AE=N(E)AE exp(—~BoE)/Z(fo),  (13)

where N(E)AE is the number of states with energy
in the interval E-(E+ AE). It is then easy to see that
an expectation value {f(E) ) can in principle be cal-
culated for any § from

AE)> (B)

_ [§AES(E)Py(E) exp[ — (B— o) E]
J& dE Pg,(E) exp[ — (B— Bo)E]

Clearly, in practice the wings of Py, (E) have large
statistical errors, and (14) gives reliable results only
for § near f,. If B, is near criticality, the distribution
is quite broad and the method works best. In this case
reliable estimates from (14) can be expected for 8
values in an interval around B, of width «c L 1/ i.e.,
just in the finite-size scaling region.

We have used this histogram sampling technique
to find the B dependence of the fourth-order cu-
mulant [24],

(14)

L 1m)®
VB =1~ 37 (15)
from two simulations at f,=0.4539 and

Bo=0.4543 (for each lattice size). It is well known
[24] that the U(B) curves for different L cross
around (8., U*) with slopes oc L!/* (apart from con-
fluent corrections explaining small systematic devia-
tions). This allows an almost unbiased estimate of
B, U*, and the critical exponent v. The U(f) curves
calculated from the histograms at f,=0.4539 and
Bo=0.4543 are shown in fig. 3 as solid and dashed
lines, respectively. In the critical region, they lie
practically on top of each other. Using their aver-
age * for the final analysis (and taking into account
the confluent corrections [27] ), we obtain from the
crossing points

#2 Since the accuracy of both curves is comparable, more refined
averaging procedures [25,26 ] are not necessary.
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Fig. 3. Fourth order cumulant U versus . The curves are calcu-
lated from histograms at f,=0.4539 (solid lines) and
Bo=0.4543 (dashed lines). The crossing point locates
B.=0.4542+0.0001.
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Fig. 4. The slopes of U in fig. 3 near the crossing point versus L
in a double logarithmic plot. The slope of the linear least-square
fit gives an estimate for the critical exponent ».

B.=0.4542+0.0001 , (16)
U*=0.586+0.001, (17)

and from the slope of the siopes of U versus L in the
double logarithmic representation of fig. 4 we read
off

ry=0.670%£0.002 . (18)

For comparison, field theoretical estimates are
U*=0.5518 (\/E-expansion [28]), and »=0.669
+0.002 (resummed perturbation series [29]),
v=0.671£0.005 (resummed e-expansion [30]).
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To compare with the recent MC simulation by Li
and Teitel [20], we have also measured the helicity
modulus [31],

)",~=<%/z s(x)-s(x+i)>

X

1 2
—ﬂ<7,( Y [sy(x)sx(x+i)-sx(x)sy(x+i)]) >
(19)

which is proportional to the superfluid density and
thus of direct physical importance. Another moti-
vation comes from the recent phenomenological re-
normalization group predictions for this quantity
[19]. The solid lines in fig. 5 show our results for
Y'=3,Y,/3 near T.. Each line is an average of two
curves, calculated from the histograms of the sim-
ulations at §,=0.4539 and $,=0.4543. For L. =4, 8,

00l
2.1

Fig. 5. Helicity curves near T, calculated from histograms at
Po=0.4539 and B5=0.4543 versus temperature. For L=4, 8, and
16, the errors are of the thickness of the lines, and for L =24, 32,
and 48, their order of magnitude is indicated by the vertical bars.
For comparison also the less accurate data points ([J, &, V)
from ref. [20] are shown.
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16, they are clearly much more accurate than the data
in ref. [20] which are shown for comparison. Fol-
lowing the finite-size scaling analysis in ref. [20], also
Y can be used to derive estimates of 8, and » which,
however, turn out to be less accurate than (16) and
(18) [27].

In order to estimate the exponent y, we have mea-
sured the susceptibility also in the high-temperature
phase down to $=0.40, using the improved esti-
mator (12). Performing a (non-linear) three param-
eter fit [22] of our data on 323 and 483 lattices com-
piled in table 1 to the form

=x+(B—P)7, (20)

we get (omitting the point at $=0.45, which requires
still larger lattices)

B.=0.45408+0.00008 , (21)
X+ =0.363+0.005 , (22)
y=1.316+0.005 . (23)

Notice that this estimate of §. is somewhat smaller,
but still consistent with the value in (16), deter-
mined from the fourth order cumulant. In order to
get an estimate of the systematic dependence of y on
B., we have performed (linear) two parameter fits
with fixed B, also. At the earlier estimate f.=0.4542,
we obtain y, =0.356+0.002 and y=1.32310.002,
and recover (21)-(23) as the fit with the best
“goodness’ Q= 0.9 (relying on the subroutine FIT of

Table 1
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ref. [22]). The purely statistical errors of these fits
are smaller because the parameter . is fixed. Adding
the systematic errors due to the variation in S, we
recover roughly the error estimates in (22) and (23).
This and other tests confirm that the ansatz (20) is
a good approximation for the lattice sizes and the S
interval we have used for the fits. For comparison,
from high-temperature expansions ** we know that
x+=0.36210.018 [12], and the field theory esti-
mates are y=1.316%£0.0026 (resummed perturba-
tion series [29]), y=1.315+0.007 (resummed e-ex-
pansion [30]).

Finally, using the scaling relation p/v=2-—pn, we
can estimate n=0.036+0.014. Fitting our data at
criticality to y oc L?’*, we find the lower value n=0.02.
The latter estimate is, however, very sensitive to the
precise value of 8. [27]. The field theory values are
n=0.03110.004 (resummed perturbation series
[29]), n=0.04010.003 (resummed e-expansion
[30]).

In conclusion we have shown that the single clus-
ter update eliminates critical slowing down in the
three-dimensional XY model almost completely, and
that it is more efficient than the multiple cluster
Swendsen-Wang algorithm. Combined with im-
proved estimators and the histogram sampling
method this allows a precise Monte Carlo determi-
nation of critical indices in three dimensions (in rea-

# Notice the different normalizations, y=2x""S,

Results for energy (e), specific heat (¢), and susceptibility (x, x*™) of the single cluster simulations in the high-temperature phase. N is
the number of measurements taken every N, update steps, and “moved” denotes the fraction (C)N,/V of moved spins between

measurements.

B L N No Moved e c X xime

0.40 32 150000 50 0.0212 2.25901(15) 0.503(10) 16.98(12) 16.887(18)
0.40 48 75000 50 0.00632 2.25917(20) 0.515(29) 16.31(31) 16.849(26)
0.41 32 15000 800 0.442 2.22667(17) 0.559(11) 22.13(17) 22.101(22)
0.42 32 15000 600 0.463 2.19123(17) 0.666(13) 30.98(22) 30.978(40)
0.43 32 20000 400 0.487 2.15131(16) 0.789(11) 48.37(37) 49.020(84)
0.435 48 120000 50 0.0245 2.12948(13) 0.845(22) 66.50(41) 66.60(13)
0.44 32 40000 135 0.333 2.10521(18) 0.983(13) 98.60(50) 99.50(27)
0.44 48 50000 50 0.364 2.10592(24) 1.018(37) 98.00(89) 99.15(35)
0.445 32 40000 100 0.433 2.07842(18) 1.190(16) 175.97(96) 174.81(62)
0.445 48 110000 50 0.0649 2.07880(12) 1.086(19) 178.04(83) 176.88(47)
0.45 32 25000 50 0.534 2.04455(27) 1.637(30) 432.1(3.4) 431.4(2.9)
0.45 48 10000 145 0.518 2.04727(20) 1.538(32) 488.5(4.9) 487.6(3.5)
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sonable computer times), whose accuracy is com-
parable with the best estimates coming from field
theoretical methods. The details of our numerical
analyses as well as numerical tables will be given
elsewhere [27].

The author thanks Professor W. Theis for a useful
discussion.
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