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For a singular but solvable potential we test a new variational approach for calculating statistical properties of quantum systems 
proposed recently by Feynman and Kleinert. We consider a potential consisting of a sum of a harmonic oscillator and a delta- 
potential. We solve the Schrijdinger equation analytically, calculate exact free energies and particle densities, and compare with 
the variational approach. We find good agreement in a wide range of temperature and strength of the delta-potential. 

1. Introduction 

Recently, Feynman and Kleinert [ 1 ] #’ proposed 
a new variational method for calculating statistical 
properties of quantum mechanical systems. It is a 
generalization of a well-known approximation given 
a long time ago by Feynman [ 31 to which it reduces 
for a special, non-optimal choice of the variational 
parameters. Up to now, it has been used to study free 
energies and particle densities for the one-dimen- 
sional anharmonic oscillator and double-well poten- 
tial [ 1,4-61 and to investigate the radial distribution 
function of the three-dimensional Coulomb problem 
[ 7 1. In all cases, the new approximation gives rea- 
sonably good results even at relatively low temper- 
atures. In this note, we test the method for a much 
more singular potential: the harmonic oscillator with 
a delta-potential at the origin. Its accuracy is tested 
by comparing free energies and particle densities with 
the exact analytical solution which we derive first. 

2. Exact solution 

Let us start by studying the quantum mechanics of 
a somewhat more general potential, namely the bi- 
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harmonic oscillator with a displaced delta-potential. 
With the oscillator frequency being respectively w, 
for Y> 0 and o2 for Y< 0, the potential is of the form 

V(Y)=tm@:@(Y)+w:@(-Y)lY* 

+aS(Y-Yo) 9 (1) 

where e(y) is the step function, and a and yo> 0 are 
the strength and the location of the delta-potential. 
Introducing dimensionless variables via 

x=,/ay, w*=o;lw:, E=hw,~, 

a~Jiip&ycY 

the SchSdinger equation [ ( -fi2/2m)d2/dy2+ 

V(Y)]~(Y)=~W(Y) becomes 

- ~~~(x)+{i[s(x)+w’e(-x)]r’ 

+ad(x-x,)}ty(x)=Ey(x) . (2) 

Since the wave functions must vanish as x-+ + co, it 
is easy to show that the solutions of (2 ) are of the 
form (z=$x) 

W(x)=A&(-Jwz) 9 ZGO, 

=BD,(z)+CD,( -z) ) o<z<zo ) (3) 

=OQ(z) > ZOGZ, 

with E=p+$=o(u+j). D,( ) and O,( ) denote 
parabolic cylinder functions [ 8 1, and the constants 
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A, B, C, D have to be determined by the matching 
conditions at x=0 and x=x0. From the continuity 
of the wave functions at both places, we have 

AD,(O)-BD,(O)-CD,(O)=0 

and 

(4) 

BD,(z,)+CD,(-z,)-DD,(z,,)=O. (5) 

At x= 0, also the derivative r,u’ = dy//d_x must be con- 
tinuous. At x=x0, however, the delta-potential en- 

forces a jump w’ (xg+ ) -w’ (xc ) =2av(x,). Using 
these matching conditions for w’, we obtain 

A&D:(O)+BD;(O)-CD;(O)=0 (6) 

and 

BD;(z,)-CDj,(-z,) 

-D[D;(z,)-a~D,(z,)l=O, (7) 

where 0; (0 denotes the derivative of the parabolic 
cylinder function with respect to the whole argument 
evaluated at e.g. r= -z,. In order to find a non-triv- 
ial solution of (4 )- ( 7 ), the parameters v and p must 
satisfy the relation 

[Dl(O)D,(O)+&D,(O)D:(O)l 

x [D,(--zo)+D,(zo)l 

which determines the energy eigenvalues 

E=p+ 1 =u( V+ f ) of the biharmonic oscillator with 

displaced delta-potential. Using the recurrence re- 
lationD;({)=$@l(~)-D~+,(<),it iseasytoshow 
that all 0; ( ) in eq. (8) can be replaced by 

-Da+,( ). 
Let us now consider some special cases in more 

detail. In the case of a delta-potential at the origin 

( zo= 0)) eq. ( 8 ) simplifies to 

fi D/i+, (0) 
-( D,(O) +fiD;$;))=-aT 2 (9) 

with f~D~+,(O)/D,(O)=r(t-tiE)/r(-11)= 
-tan(iti)r(l+t;O/T(++tl). For a=O, i.e. for 
the biharmonic oscillator without delta-potential, this 

-1 
C 

x0 

Fig. 1. Energy eigenvalues of the harmonic oscillator (w = 1) with 

displaced delta-potential versus displacement x0 in the attractive 

(a= - I, dashed lines) and repulsive (a= 1, solid lines) case. The 

short-dashed curves show the energies in first-order perturbation 

theory. 

reduces to eq. (7) of ref. [ 9 ] as expected. 

For later purposes, we concentrate hereafter on the 
harmonic case o, = w2 (w= 1) in which eq. (8) 

becomes 

$ 
-( 2 

(10) 

with E=p+ 4. From (3)-(7) with P=V, we obtain 
the eigenfunctions H2 (z= $x) 

w(x)=CD,(-z), ZGZO, 

=C[D,(--zo)lD,(zo) ID,(z), zoGz> (11) 

where the normalization constant is 
x0 

c= H dx [D,(-,,b12+ 
DJ-$xo, ’ 
W&o, > --m 

(12) 

The transcendental equation ( 10) for the energy ei- 
genvalues has to be solved numerically. For a = f 1, 
the solutions are shown in fig. 1 where the eigen- 
values E,=p+ 4 of the the first four states are plot- 
ted versus the displacement variable x0. The short- 
dashed curves are the energies in first-order pertur- 
bationtheory, E~1)=n+f:+aI@,(xo)12 with&,(x,) 
being the well-known harmonic oscillator eigenfunc- 

” Eigenfunctions and energies are labeled according to the states 
of the unperturbed harmonic oscillator. 
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Fig. 2. Probability densities of the first three states of the har- 

monic oscillator (w= I ) with a delta-potential at x,=0.5 in the 

attractive (a= - 1, upper part) and repulsive (a= 1, lower part) 

case. In the upper left plot, the vertical scale has to be multiplied 

by a factor 2. 

tions. Note that in case x0 hits a zero of @,, (x0), the 
nth energy level of the pure harmonic oscillator is 
not perturbed at all, since then the delta-potential can- 
not be “felt” by the wave function #3. Hence, for 
x0=0, all odd levels are unperturbed. For the delta- 
potential at x0=0.5, the normalized probability den- 
sities 1 y,(x) I* of the first three states are displayed 
in fig. 2 for the attractive (a= - 1, upper part) and 
repulsive (a = 1, lower part) case. 

Finally, let us consider the most symmetric situ- 
ation with the delta-potential being located at the or- 
igin. Then, we find from ( 10) the simple relation 

(13) 

for the even energy eigenvalues E=p+ 4, and the 
normalized eigenfunctions of the even states are 

x4($ 1x1) > (14) 

where Y( ) =r’ ( ) /r( ) denotes the logarithmic 
derivative of the gamma function. As mentioned 

R3 From the non-trivial zeroes of the Hermite polynomials 

we find for n=2: x6’)= J1/2; n=3: x/jl)=m, n=4: 

X0 (‘.*I =J[ (3+$)/2] ~0.5246, 1.6507; n=5: x6’.“= 

J[ (5?~%)/2]=0.9586,2.0202; etc. 

Table 1 

Energies of even states for a harmonic oscillator plus delta-poten- 

tial V(x) = +x2+&(x) for various strengths a. The odd states 

are not affected by the delta-potential. 

n a 

-1.0 -0.5 0 0.5 1.0 

0 -0.3424 0.1556 0.5 0.7335 0.8927 

2 2.2208 2.3573 2.5 2.6354 2.1546 

4 4.2912 4.3940 4.5 4.6037 4.7002 

6 6.3258 6.4118 6.5 6.5870 6.6699 

8 8.3473 8.4229 8.5 8.5764 8.6501 

10 10.3624 10.4306 10.5 10.5689 10.6359 

above, the odd eigenfunctions and eigenvalues are 
the same as those of the harmonic oscillator. For 
a= - 1, -0.5, 0.5, 1, the eigenvalues of the first six 
even states are given in table 1, and in fig. 3 we show 
I y”(x) I ’ for the first three even states in the attrac- 
tive (a = - 1, upper part) and repulsive (II = 1, lower 
part) case. As expected, the discontinuities of the de- 
rivatives at the origin are clearly visible. We have 
checked these results by a direct numerical integra- 
tion of the Schrijdinger equation which is straight- 
forward even in the case of a delta-potential at the 
origin. 

Knowing the energies and eigenfunctions from 
( 13) and ( 14), we can then calculate the exact free 
energy F from 

e-“‘= z= ; e --BEn (15) 
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Fig. 3. Probability densities of the first three even states of the 

harmonic oscillator plus delta-potential V(x) = fx*+a&x) in the 

attractive (a = - 1, upper part) and repulsive (a= 1, lower part) 

case. In the upper left plot, the vertical scale has to be multiplied 

by a factor 2. 
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and the exact (normalized) particle distribution 
function 

n 

where j?= 1 /T is the inverse temperature. 

3. Feynman-Kleinert method 

(16) 

Let us now come to the main purpose of this note, 
namely the comparison of these statistical quantities 
with the Feynman-Kleinert variational approxima- 
tion [ 11. Applied to our case, this method can be 
summarized as follows: 

First, calculate from V(x) = fx*+&(x) the 
smeared-out potential 

O” dx’ 
v&(x)= J -$==& V(x’) exp( - (x~~)2) 

-co 

=f(X’+fl*)+ *exp(-x*/20*), (17) 

where 

a* = p+ ( Qsl coth &3Q- 1) . (18) 

Second, determine the parameter @ self-consis- 
tently from 

exp( -x2/2a2) . 

(19) 

Third, calculate the effective classical potential 

w, (x) = ; log 
sinh @sl Q*a* 

tSs2 - 2 +V,*(x). (20) 

An upper bound F, [ 1 ] for the free energy and the 
approximate particle density p, (x) [ 5 ] are then given 

by 

e--BF1=Z, = 
co dx I - e -BWl (X) 

_-m m (21) 

1 

F 
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Fig. 4. Free energy for a harmonic oscillator plus delta-potential 
l’(x)=ix*+aJ(x) with a= - 1, -0.5,0.5, 1. Shown are the ex- 
act results (- - -), the Feynman-Kleinert approximation (-) 
and the original Feynman approximation (- - - ). 

/4(x)=$3 $$exp( - (xis)2) 
-ca 

e-Bwl (x’) 

x’yGjr. (22) 

Note that for the non-optimal choice 8*=0, 
rr* =p/ 12, one recovers the well-known approxima- 
tion proposed a long time ago by Feynman [ 3 1. 

The results of this algorithm are shown in figs. 4 
and 5, where we plot free energies and particle den- 
sities, respectively. In fig. 4, we compare the exact 
free energy F from ( 15) (with nmax= 67, dashed 
curves), F1 from (21) (solid curves) and the orig- 
inal Feynman approximation F. (P = 0, dotted 
curves) for various strengths of the delta-potential. 
We see that Fg F, d F. as we expect from the vari- 
ational principle. At higher temperature (up to 8% 1) , 
F and Fl are in exellent agreement. For ad I 0.5 1, we 
have very good results even up to j?x6. The worst 
case shown is a= - 1 and j?= 6 where the Feyn- 
man-Kleinert approximation is x3OW off. Ob- 
viously, in all cases, the new method gives much 
improved results with respect to the original 
approximation #4. 

W This can be seen most clearly in the limit T-+0 where the orig- 
inal pethod is completely off, whereas the new method gives 
at least reasonable results. and 
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Fig. 5. Normalized particle density for a harmonic oscillator plus 

delta-potential V(x) = tx2+aa(x) at various temperatures 

T=l/~in(a)theattractive(a=-l)and(b)repulsive(a=l) 

case. Compared are the exact results (- - -) and the Feynman- 

Kleinert approximation (-). 

In fig. 5, we compare the exact particle densities 

from ( 16 ) (with nmax = 51, dashed curves) with the 

Feynman-Kleinert approximation ( 22 ) (solid 

curves) for a = k 1 and various temperatures T= 1 l/3. 

At higher temperatures /3< 0.2, the approximation is 

excellent in the whole range of x. For intermediate 

temperatures 0.5 </3< 1, there are small deviations 

near the location of the delta-potential, i.e. for 

Ix] ~0.5. Only for very low temperatures 82 5 and 

small Ix I < 1, the Feynman-Kleinert approximation 

is no longer reliable. 

4. Discussion 

In this note, we have shown by comparison with 
exact results that the Feynman-Kleinert method can 

be applied even to singular potentials with reason- 
able accuracy. In the particular example of the har- 

monic oscillator plus a delta-potential, the smeared- 
out potential is of the smooth gaussian type. While 
preparing our manuscript, we found ref. [ lo] in 
which the harmonic osillator with a delta-potential 
at the origin was also studied analytically, albeit with 
a completely different motivation. As a final remark, 
we would like to point out a printing error in their 
eq. ( 12 ) (a factor 2fi is missing on the right-hand 
side) and that their fig. 1 is correct at best 
schematically. 
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