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FLUCTUATION PRESSURE OF MEMBRANE BETWEEN WALLS

W. JANKE !

Institwt fur Theorie der Elementarteilchen, Freie Universitit Berlin, Arnimallee 14, 1000 Berlin 33, Germany

and

H. KLEINERT !

University of California, San Diego, La Jolla, CA 92093, USA

Received 9 May 1986; accepted for publication 20 June 1986

We prove that a tensionless membrane, fluctuating harmonically with free ends between two parallel plates of spacing 24,
generates a pressure of the functional form p = (7/4d)ra(r), where r is the dimensionless variable 7 = (T/k)A4/d?, « is the
curvature elastic constant, and 4 the area of the plates. For large A4, a(r) becomes a constant which we determine by Monte

Carlo simulation to be a., = 0.060 + 0.003.

Membrane layers are attracted to each other by
van der Waals forces [1] which decrease at inter-
mediate distances d (20 < d < 100 A) like 1/d3 *'.
The most important repulsive force to keep them
apart is provided by thermal out-of-plane fluctua-
tions [3,4]. In the absence of areal tension, these
are so violent that they can be seen in an ordinary
microscope [5]. The reason for this is that they are
controlled only by the curvature energy [6]

e=%l<(c1 +cz)2, (1)

where ¢;=1/R,, ¢,=1/R, are the principal
curvatures of the membrane and « is the elastic
modulus (= (2.3 + 0.3) X 10~ 2 erg for egg lecithin
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*1 The 1/d% law Pgy = —1.4%107"5 erg/d> is valid for
intermediate distances (see ref. [1]) as long as retardation
effects are negligible. These change the falloff to 1/d° for
larger distances. For very short distances of order 2-20 A
there are also repulsive hydration forces and electrostatic
forces which overwhelm the van der Walls attraction but
which drop of exponentially (see ref. [2]).

membranes at room temperatures). If the mem-
brane is parametrized by the vertical displacement
u(x, y) over an (x, y)-plane, this has the lowest
approximation e = 3«[(37 + 37)u]*. The two-di-
mensional laplacian 92 =92 + 92 leaves all
harmonic field configurations without energy and
this causes the violence of the fluctuations. We are
thus confronted with the interesting problem of
finding the size of the repulsive force between
membranes.

For a first estimate we shall study two sim-
plified idealizations of the physical system, as
proposed by Helfrich [3,5]. The first is to imagine
that the undulating neighboring membranes con-
strain the fluctuations of each membrane on the
average, in a similar way as a harmonic potential
would do. Then the partition function of each
membrane is

Z=e A/TY

_ © du(x)
B W—wm

Xexp(—%/dzx[(azu)2+m4u2]), 2)

where A denotes the area of the membrane at
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T =0. The integral can easily be done giving the
free energy density

/= f

log(k4+ m*) = tm?* + const.

(3)

The dlsplacement varlable has a gaussian distribu-
tion P(u)~e~*/2°" with a squared width

o _ T &% 1T
o =(u?) f(z ) K+ m*  8xkm? “

Combining (3) and (4), we find that the energy
changes with average width as follows
T2

T 6an(u?y ©)

For not too small distances d from the neighbor-
ing membranes, we may follow Helfrich [3] and
expect (u’) to satisfy

(u*y =pd?, (6)

with p varying only slowly with temperature, in
which case we obtain the free energy density

T2
f= Tose ™3 (7)
with

1
o= Gan (8)

resulting in a pressure

2
P = S = s ©)
The size of p is unknown. If we assume somewhat
arbitrarily that the membranes at u= +d coin-
cide with the 20 interval of the u distribution,
implying that they enclose 95.45% of all possible
configurations, we estimate

p=(u?y/d* =1} (10)
and
Ao = 15 = 0.0625. (11)

Let us now turn to the second idealization
which consists of a harmonically fluctuating mem-
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brane between two rigid plates. This model has a
partition function

Z= ]_[fd du(x) (—2—"de2x(azu)2) (12)

also discussed first by Helfrich [3,5]. He resorts to
what may be called an “independent membrane
piece approximation” [5]. Observing that the mean
displacement

o T d% 1 T AA
(u >—;f———(2“)2;(—4—m? (13)
diverges with the size of the area, he mentally
decomposes the membrane into pieces of size AA
and argues that between plates at u= +d, the
average size of u” should be (in contrast to our
estimate (10))

(u?) = 3d>. (14)

This is compatible with (13) if we imagine the
membrane to consist of a set of independent pieces
of area AA = 3n%kd?/T. If these behave like an
ideal gas, they exert a pressure

P= 72444 4n’ kd? (15)

upon the walls thus resulting in the same law as
(9) but with

a=~0.0242, (16)

which is much smaller than (11).

We are able to make decisive progress over
these estimates. First we observe that by going to
the reduced quantities w4 =u/d, x. 4=x/ V4.,
the partition function is seen to have necessarily
the functional form (y2w7TA /kd?)"Z(r), where 7
is the dimensionless variable = (T/k)A/d?, and
N the number of fluctuating degrees of freedom in
the membrane (~ number of molecules). As a
consequence the free energy density has the form
NT (2«7TA)+T (TA), (17)

f= ——2—A—log xd? a8 d?

giving rise to a general pressure ‘law, due to the
walls,

ar _ 1T
S 3(2d) a7 (9
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where Af is the second term in (17) and a(7) =
dg(r)/dr.

Our second point is that the existence of a
non-trivial thermodynamic limit 4 — oo implies
that the function g(7) has the limiting behavior
g(7) = a1 for T — oo. Moreover, since the mem-
brane becomes free for d — oo, the function g(r)
cannot contain any powers 1 /7 in this limit. Thus,
we expect the only corrections to be of the ex-
ponential type (for instance e~ onst*7),

Our third and main result is a Monte Carlo
determination of the limiting value a_,. We were
fortunate to have recently finished a study of the
partition function (12) on a lattice for the purpose
of understanding a completely different physical
process, namely that of defect melting in two-di-
mensional crystals. The fundamental defects are
disclinations [7] and these interact with each other
elastically by a potential

2
f d k2 —1—4e""‘

(2m)” K
i.e. with the same 1/k* correlations as in the
partition function (12). The elastic fluctuations are
therefore described by the model (12). The dis-
clinations are brought in by restricting the values
of u to integer numbers [8]. We had studied such
a model on a square lattice of unit spacing, letting
u run over integer values from —h to k with
h=35. Thus our data contained the effect of walls
at distance 2d = 10. For increasing temperature,
the model shows a first-order roughening transi-
tion (Tg/k = 1.63) at which the variables u over-
come their discrete energy barriers. This relates
via duality to the transition of defect melting (in
the freezing direction). Above this transition, the
discreteness of u no longer matters. This is why
we can use the model with discrete u’s as an
approximation to the membrane partition func-
tion (12).

We update the configurations by sweeping
through the entire lattice according to a permuta-
tion chosen randomly after each sweep, and apply
the standard heat-bath algorithm to each variable
u(x) [9]. Using at each temperature 250 sweeps
for equilibration and 500 sweeps for measure-
ments, we found for a 322 square lattice with
periodic boundary conditions the internal energy

]
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g= —(dlog Z/dT"')/A shown in fig. 1a (k= 1).
Right above the roughening (= freezing) transi-
tion, it displays the Dulong—Petit law & = T char-
acteristic for the harmonic elastic fluctuations (in
the crystalline state) thus demonstrating the irrele-
vance of the discreteness of u. Further, above the
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Fig. 1. (a) The internal energy &= —~ (9 log Z/87 " ')/area of
the roughening model (12) on a 32X 32 square lattice with
periodic boundary conditions (x =1), For T =1.63 it shows the
first-order [8] roughening transition dual to the 2D model of
disclination melting. For larger T it goes over into the Du-
long—Petit law, 2~=T/2, and for T > 5 we begin seeing the
effect of the “walls” at u = + 5 confining the membrane. The
deviations from the Dulong—Petit law Aé = T/2 — # are shown
in (b). From these we extract Aé = —(0.0024 +0.0001)7T" such
that a_, = 0.060+0.003. The independence of this number on
the lattice structure is demonstrated by the data points of a
similar run on a triangular lattice which are fitted very well by
the same straight line.
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transition, the fluctuations begin “feeling” the
restrictions of the “walls” at u= +5 and the
internal energy begins deviating from the Du-
long—Petit law. The deviations Ae=¢ — T/2 are
plotted against T2 in fig. 1b for x = 1. They are
well-fitted by the straight line

Aé = —(0.0024 £ 0.0001)T>. (19)
This is to be compared with the general form

i) 1 .

= ————|=f|— 3T

3(1/T) ( T/ ) :

= —(T/A)ra(r) = —(T*/kd*)a(7), (20)

Ae

following from eq. (17). Inserting d = A =5, this
implies a(7) = a,, with

a,, =0.060 + 0.003 (21)

and confirms that the free energy and the pressure
have indeed the forms (17), (18) with g(7) = a_r.
We have checked that our lattice was large enough
for this calculation by doing the same run on a
162 lattice which gave the same result. The Monte
Carlo number for a., is much larger than Helfrich’s
theoretical estimate (16) and in good agreement
with our harmonic oscillator value (11).

It is interesting to see that the distribution of
u’s between the walls is very close to being gaus-
sian just as assumed in the harmonic oscillator
approximation. For T=20 (x=1) this is dem-
onstrated in fig. 2a. The squared width o2, how-
ever, is smaller than what is estimated in eq. (10).
It is more like d2/5 than the assumed d?/4. If we
plot how (u?) varies with temperature in fig. 2b,
we find that even though the curve saturates rea-
sonably fast, it is not at all constant in the range
T (2, 20) where the pressure has the limiting
functional form (9).

An important point is to make sure that our
number for a,, is a universal result and does not
depend on the lattice structure. This was done by
repeating the study for a triangular lattice which
gave, indeed, the same number as before (see fig.
1b). In this comparison, we have to use the energy

Kk 3 28 . :
—27,Zx Eigl[u(x)—u(x-kl)] ,

356

PHYSICS LETTERS A

1 September 1986

N(u)

u
8 i A 121 i ERAAE AL B
i 16® Latt., h_, =5 ]
5'— m/;—ga
L =%
| m ++E/D/m/"” )
£+ _Ob * -3 1
E 41 +m e [} /8’ -
*\-7 - 5 ,{ -
L 5,7 i
- 4 -
. x%f |
3 , —
L X,+: heat.
0
L (b) 0.,0: cool. (1000+20000) |
- 4
5 PN N R B
0 5 10 15 20

T

Fig. 2. (a) The discrete distribution of u’s of the model (12) on
a 162 square lattice for T =20 (x =1) in comparison with the
continuous gaussian distribution of the harmonic oscillator
model (with 62 =d?/4 =25/4 such as to include 95.45% of
the data within [—5, 5]). (b) The squared width o= (u?) of
the model (12) on a 162 square lattice against temperature
(upper data). The center-of-mass movement of the membrane
is included since it contributes to the pressure. Without this
movement, we find the lower data points. The squared width
of the center-of-mass distribution is given by the difference.
The data points are taken in a thermal cycle with 1000 sweeps
for equilibration and 20000 sweeps for measurement. The
curves are eye-ball fits.
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with x + i denoting the next-neighbors such as to
have the same continuum limit

K [ 2,32
2dek(a u)’.

Finally, let us remark that our study was re-
stricted to the harmonic approximation (12) of the
curvature energy (1). For physical membranes, the
non-linear pieces will have to be considered as
well. This will be done in a separate work.

The authors are grateful to Professors N. Kroll
and J. Kuti for their kind hospitality at UCSD
and to Professor W. Helfrich for discussions.
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