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LAPLACIAN ROUGHENING ON A TRIANGULAR LATTICE 
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Monte Carlo simulation of the laplacian roughening model on a triangular lattice indicates that the model has a single 
first-order phase transition. 

1. Introduction 

The phase structure of the two-dimensional 
laplacian roughening model is of special interest 
because it is related by a duality transformation to 
a defect model of two-dimensional melting [1]. 
Inspired by the Kosterlitz-Thouless theory of the 
vortex induced superfluid transition, Halperin, 
Nelson and Young [2] (KTHNY) have argued that 
two-dimensional defect melting should take place 
through two successive Kosterlitz-Thouless transi- 
tions. In contrast to this, the work of Kleinert [3] 
suggests that due to the possibility of a pile up of 
neighboring dislocations, defect models of two-di- 
mensional melting should have a single first-order 
transition. On square lattices, the first-order tran- 
sition is supported by several analytic [4] and 
Monte Carlo studies [5,6]. However, in an earlier 
Monte Carlo simulation of this model on a trian- 
gular lattice Strandburg, Solla and Chester [7] 
(SSC) studied the large distance behavior of corre- 
lation functions and concluded that the model has 
two closely spaced continuous phase transitions of 
the Kosterlitz-Thouless type, as predicted by the 
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K T H N Y  theory. According to this study, in the 
first transition (as temperature increases) the 
surface becomes rough and in the second transi- 
tion the local orientation becomes disordered. 
However, a Monte Carlo study of the model on a 
square lattice by Janke and Kleinert (JK) found a 
single first-order transition, with clear evidence for 
metastable states [6]. In this study an equivalent 
model (using another duality transformation) in- 
volving a "periodic gaussian" form of strain was 
simulated [3]. This model in turn can be mapped 
very precisely onto a mixed cosine model 

H = - f l ~ _ , c o s ( v i u j  + V j u i )  - 2 f lgz~ . , cos (Viu i )  

- y E  cos(2V, ui) (1) 

along a particular path in the fl-3' plane, and this 
mixed cosine model was also simulated. Here the 
additional parameter y allows one to harden or 
soften the transition. Extrapolating the somewhat 
larger and therefore more reliable entropy jumps 
for 3' > 0 to negative values of y, both the pure 
cosine model (y--= 0) [5] and the "periodic gaus- 
sian" model (3' = -0 .4 )  were found to undergo a 
single first-order transition with As -- 0.2. 

The results of SSC and JK are not necessarily 
contradictory - it is conceivable that the dif- 
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ference in lattice structure changes the parameters 
of  the long distance theory enough that the phase 
structure of  the theory is changed. In order to 
clarify this situation we have undertaken a high 
statistics study of  the thermodynamic  properties 
of the model on larger triangular lattices. We find 
a single peak in the specific heat between the 
temperature quoted by SSC. The height of  this 
peak increases with lattice size in a manner  con- 
sistent with a first-order transition. Near  the tran- 
sition we see the system tunneling between two 
phases with distinct energies. The interface width 
and ~-, a measure of local fluctuations in orienta- 
tion, are both correlated with the jumps  in the 
energy. 

2. The simulation 

We adopt  the notat ional  conventions of  SSC. 
The surface height is denoted by h(x) ,  with h 
restricted to integral values. The hamil tonian is 
the square of the lattice laplacian 

H=8B~ h(x)--~Eh(x +~j) , ( 2 )  
h7 

where the hj are the displacement vectors to the 
six nearest neighbors and fl = J/kT. 

We used 37 by 37, 44 by 44, and 58 by 58 
lattices in this work. (SSC used a 32 by 32 lattice.) 
Skewed periodic (helical) boundary  condit ions 
were used, so that except for an overall modu!us  
with respect to the volume the neighbors of a site 
can be found by adding single fixed integers to the 
index of  the site being updated.  Since we are using 
a vectorized updating,  some care was required in 
p rogramming  the simulation. Fig. 1 shows the 
locations of  the neighboring sites whose values are 
needed to update  a single site. Clearly it is forbid- 
den to update  any other site in this neighborhood 
until the update  of the central site has been com- 
pleted. This can be accomplished by an ap- 
propriate  choice of  the stride, or  distance between 
points  being simultaneously updated.  In particu- 
lar, if the stride is seven and the x dimension of  
the lattice modulo  7 is equal to 2 (and the vector 
length is not  so long that we go completely through 
the lattice before the first vector of  updates is 
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Fig. 1. The neighborhood of a point. Updating the central 
point requires knowledge of the values at all points in the 
hexagon. The arrows indicate the skewing of the boundary 
conditions. When you leave the lattice along the arrow on the 
right side, you reenter it along the arrow on the left side. The 
signs on the nearest neighbor points indicate the sign of the 
contribution to T. 

completed), all these constraints are satisfied. This 
is the solution we used, which explains our seem- 
ingly perverse choice of  lattice sizes. 

We used the s tandard Metropolis algorithm 
with trial values for h(x) chosen randomly from 
one above or below the current value at each 
point. Our calculations were done  on an ST100 
array processor, and our  programs were written in 
a specialized language for lattice simulations on 
this machine [8]. The time per update  of  a single 
site was 2.8 microseconds. 

3. Results 

In fig. 2 we plot the specific heat for the three 
sizes of  lattices studied. For  most  of  these points 
we used 500000 Monte  Carlo sweeps through the 
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lattice, after discarding 50000 sweeps for ther- 
malization. The values of  fl quoted by SSC for the 
transitions are 0.519 and 0.543. It can be seen that 
on a 32 by 32 lattice these values would both fall 
inside the broadened peak in the specific heat. 
However,  as the lattice size is increased the peak 
narrows and becomes higher. 

The time histories of  our simulations near the 
phase transition show transitions between two dif- 
fering phases. In fig. 3 we show a time history of  a 
run on a 58 by 58 lattice, omitt ing the first 50000 
sweeps for thermalization. In addit ion to the en- 
ergy we graph the squared width of  the interface 
and the local f luctuation in orientation of  the 
interface ~'. These quantit ies are defined by [7] 

1 
,o= T E [ h ( x l - h ] 2  (3) 

x 

and 

r = f f  x ~ ~_,(-1)9h(x+hj)^ , (4) 
n /  

where h = V-l~_,xh(x) is the average height of  a 
configurat ion and V is the lattice volume, or num- 
ber of  sites. The signs of the neighbors j are 
indicated in fig. 1. This time history includes a 
particularly dramatic  excursion into the rough 
phase lasting about  100000 sweeps. Note  the 
dramat ic  increase in the interface width and the 
concomitant  increases in the energy and ~" - there 
is an almost perfect correlation among  these three 
observables. 

The specific heat is proport ional  to the variance 
of the distribution of  energies seen in the simu- 
lation. This variance is dominated by the jump  in 
energy between the two phases, al though there is a 
significant contr ibut ion from the variance within 
each phase. Therefore a reliable measurement  of 
the specific heat f rom the variance of  the energies, 
or  f rom numerical differentiation of  the energy, 
requires a simulation long enough to include a 
significant number  of  tunnelings, so that the frac- 
tion of  time spent in each phase can be reasonably 
estimated. Because the tunneling time is very long, 

Fig. 2. The specific heat near the phase transition. Results are 
shown for a 37 by 37 lattice (a), 44 by 44 (b), and 58 by 58 (c). 
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Fig. 3. The time history of a simulation near the phase transi- 

tion (fl = 0.5365). The quantities plotted versus the number of 
Monte Carlo sweeps are the energy (a), ~o (b), and ~-(c). 

our specific heat measurements  have rather large 
errors bars. These error bars were estimated by 
dividing the run into five to ten segments, mea- 
suring the specific heat in each segment, and 
taking the variance of  these partial specific heats. 
However,  the values quoted are obtained from 
averaging the energy and the squared energy over 
the entire run. This always produces a larger result 
than the specific heat within the individual blocks, 
so we have rescaled our  error bars by this ratio. 

In fig. 4 we show an estimate of  the height of  
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Fig. 4. The maxamum specific heat versus the lattice volume. 

the specific heat peak as a function of lattice 
volume. If the transition is first order, and simula- 
tions near the transition are well described by 
tunneling between two states of fixed average 
energy with a finite specific heat within each of  
the two phases, then we expect a specific heat 

C=AV+B,  (4) 

where V is the volume. Although the error bars 
are large, our  result is consistent with this form. It 
is clearly inconsistent with a constant  peak height, 
as. one would expect for a transition of the 
Koster l i tz-Thouless  type. 

The scaling of  the specific heat and the ob- 
served coexistence of metastable phases are strong 
evidence that the laplacian roughening model on 
the triangular lattice has a single first-order transi- 
tion. 
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