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In order to understand why Strandburg, Solla and Chester find, in the laplacian roughening model of two-dimensional defect
melting, two successive continuous transitions, we study another form of this model on a square lattice and find a single
first-order phase transition. Since our model equilibrates much faster than theirs we conclude that either there is an essential
dependence on the lattice structure or their result is not trustworthy.

Inspired by the theoretical work on two-dimensional defect melting of Kosterlitz, Thouless, Halperin, Nelson
and Young (KTHNY) [1], Strandburg, Solla and Chester (SSC) [2] have recently studied the correlation lengths
of the laplacian roughening model (LRM) on a triangular lattice in great detail. The partition function reads

= 2 (-t Z aHR) | (1)
where
Bhe)= 5 20 ThCe + W) — ) e

is the lattice laplacian, with p running through the six nearest neighbors of x. Via Poisson’s formula
2 = f dy E exp(2mimyp)

n Y m
this model is seen to describe an ensemble of point disclinations with a partition function

Zdiscl = (ZﬂﬁLR)_N/Z {m%)} exp( —4n? ﬂLR E m— A A ) 3)

where

! Supported in part by Deutsche Forschungsgemeinschaft under grant no. Kl 256.

0.375-9601/86/% 03.50 © Elsevier Science Publishers B.V. 255
(North-Holland Physics Publishing Division)



Volume 114A, number 5 PHYSICS LETTERS 24 February 1986
1 "= ar—1 Z . ' 1 NV
55 X =V 2 fexplike(x X)) + k-~ %)%~ 1)

X {516 —2[cos ky + cos(3ky — 33 kp) + cos(3ky +34/3 k)] 112 )

is the twice subtracted finite triangular lattice version of the 1/k% correlation which behaves asymptotically like
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The disclination gas is neutral (£, m(x) = 0) and has no dipole moment (Z, xm(x) = 0). According to SSC, this

model has two successive continuous phase transitions of the Kosterlitz—Thouless type, one at

TR =18 =184£001, (©)
where the surface formed by the integers h(x) roughens with a height—height correlation
H(x) = ((h(x) —h(0))?) = 2¢h(0)%) — 2¢h(x)h(0)) Q)
changing from a constant to a logarithmic behavior at large distances and another one at
T3 = 1/8%) = 1.925 £ 0,015, @®)

where it changes from logarithmic to |x|2 behavior with a proportionality constant which diverges logarithmically
with the lattice size.

To us, this result came somewhat unexpected. Following a different motivation we had constructed another
model of defect melting, on a simple cubic lattice, in which stresses and defects in a lattice are described by a par-
tition function involving a periodic form of strain

™ du;
Z= ‘_/,, ch_,lz u2l7(rx) {nilz(x)} exp{ [ E (Viu; + Vi, 27m1-]-)2 +tE, g} (V;u; — 2mn;)?
i<j
2

Here 8, = ua?/(2n)? T, is the inverse temperature in reduced units (u times cell volume %) and the constants y =
C44,2=C13, &, = (Cyy — C12)/2C44 account for the elastic properties of the cubic crystal whereas the integer
numbers n;; describe (similar to the Villain model of superfluidity) the plastic properties, i.e. the jumps of u;(x)
across the Volterra surfaces whose boundaries are defect lines. By a standard duality transformation it is possible
to show [3] that for D = 2 the model describes the same gas of disclinations as the laplacian roughening model,
albeit on a square lattice.

When studying a cosine approximation of this model, at A = O (similar to the classical planar spin model)

m d
z= | I1 ) exp(B L cos(Viuy + Vyup) + 28 20 cos(Vl-u,-)) , (10)

x,i 2m x,i<j
-

we found in three [4,5] as well as two dimensions [6], that defect melting proceeds in a single first-order transi-
tion. At first sight, there can be three reasons for the discrepancy:

(1) The approximation of the periodic gaussian by a cosine model can change the order.

(2) Defects on a square lattice can have a phase transition of different order than those on a triangular lattice.

(3) The findings of SSC of two successive Kosterlitz—Thouless transitions is unreliable since the distinction of
different long-range behaviors of correlation functions on a finite lattice (SSC used 32 X 32 points and extracted
the behavior up to x| = 16) can be problematic.

256



Volume 114A, number 5 PHYSICS LETTERS 24 February 1986

The purpose of this note is to eliminate the first of the three possibilities. Before starting it is worth noting
that the difference between cosine and Villain types of models have recently become a subject of interest in con-
nection with U(1) lattice gauge theories. The motivation is the equivalence of this model to an abelian Higgs mod-
el [7], for which there are theorems that the transition should always be of first order [8]. According to a more
subtle analysis [9,10], however, there should exist a tricritical point and the discovery of such a point has been
claimed [11]. It lies somewhere between the cosine and the periodic gaussian version of the pure U(1) lattice
gauge models. The latter can be shown to be equivalent to the former with a mixed field energy (‘“‘action”) [12]

B cos “9” + cos “20” an

where ¥ & —0.18. The tricritical point is estimated to lie at y =~ —0.11, implying a first-order transition for the
cosine version and a second-order transition for the Villain model, respectively.

A similar study was recently undertaken for the D = 3 classical planar spin model [13]. There, the tricritical
point seems to lie at vy = 0.33, which explains why both forms of the model have a second order transition. Thus
the crucial question to be answered in this note is whether the D = 2 melting transition is more like the U(1) lat-
tice gauge theory or like the D = 3 classical planar spin model, or whether it chooses the third option that both
forms of the model have a first-order transition. It turns out that the evidence is for the last option. We have there-
fore investigated the 2D Villain model (9) and the cosine model with mixed field energy (11) with great care by
Monte Carlo simulations *1.

*1 In all Monte Carlo simulations, we worked with the heat-bath algorithm and approximated the phase variables 6; by V discrete
angles 2a/N)ns,n;=0,...,N — 1 with N = 16...32. All data shown in this note were taken on 60 X 60 square lattices with pe-
riodic boundary conditions.

D=2 Melt.Cos-mixed, 60%Lattice, &1

ordered/random starts

5000 10000 15000 ’ 5000 10000 15000
iterations iterations

T T

L
5000 10000 15000 5000 10000 15000
iterations iterations

Fig. 1. The development of the internal energies of the crystalline and disordered initial state in the mixed cosine model for vari-
ous vy near the transition point.
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Our work consists of three parts:

(1) First we confirm once more the first-order nature of the transition in the cosine melting model by going to
the transition point, putting the system once in the ordered (0.s.) and once in a random initial state (r.s.) and
study the development of the internal energy over 15000 (!) sweeps. The energies converge very fast to two very
stable states which we identify with the uniform crystal and liquid, respectively (see fig. 1a). From the energy dif-
ference AU = 0.25 and 8, ~ 1.155 we find the transition entropy AS ~ 0.29 (£ = 1).

1t should be pointed out that after waiting for many sweeps the model presents us with a phenomenon which
we had not seen in the earlier investigation [6] since there the number of sweeps had been limited to 4000. The
crystalline state makes a sudden jump towards the liquid state (about 1/3 of the distance), and continues to re-
main in that state for another large number of sweeps. A look at the defect picture informs us that what has hap-
pened is the formation of a mixed state in which chunks of crystal have molten. Since the size of these chunks is
about 102 lattice sizes we conclude that the mutual approach of the two internal energies is not a signal of a sec-
ond-order transition (in which there would be no finite length scale).

(2) The second part of our work consisted in looking at the modified model in which the cosine term involving
the links (i.e. the 8¢ term) is modified to
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Fig. 3. The solution of eq. (14) for £ = 1. Along the continuous curve in (a), the mixed cosine model is a good approximation of
the Villain model with running &, shown as a continuous line in (b). The stars in (a) and the open circles in (b) mark the transi-
tion line in the §—y and gy—Ey plane, respectively. In (a), they are determined by our Monte Carlo experiments on a 602 lattice
whereas in (b) they follow from a theoretical analysis (comparison of high- and low-temperature expansions of the free energy).
The dotted lines are only guides for the eye. We see that the intersection of the Villain locus and the transition line of the mixed
model in () ((8, v) = (1.37, —0.38)) is mapped precisely onto the transition line of the Villain model in (b) ((8y, &) = (0.87,
0.90)).
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2 ¢ cos(Vu;) > 2% cos(Viup) +y cos(2Vuy) . (12)

According to our earlier analysis [12,13], this permits hardening or softening the transition, depending on y >0
or v < 0. Indeed, when calculating the transition entropy obtained from runs like the previous one for various val-
ues of v, we do find a tendency to harden for y ~ 1.0 and to soften for y =~ —0.2 (see figs. 1b—d). In contrast to
the 3D planar spin model or the 4D U(1) lattice gauge model, however, the v dependence of AS is extremely weak
(see fig. 2).

The fact that AS at ¥~ —0.4 is 20.2 and definitely looks >0 can now be used as evidence that also the Villain
form of the melting model, which is dually equivalent to the laplacian roughening model on a square lattice, has
a first-order transition. The arguments for this are the same as those given in ref. [12] for the planar spin or U(1)
gauge models; so we can restrict ourselves to a few comments why this is so. When performing a high-temperature
analysis of both the cosine and the Villain form of the model, there are diagrams describing the thermal genera-

D=2 Melt.Vill., 60%Lattice, & 1

ordered/random starts

"
5000 10000 15000
iterations

B,=0.810

-~ 1. s
5000 10000 15000 5000 10000 15000

iterations

2.0 T T
ol

B,=0.816

iterations

+

B,=0.818

1.2 . — 2 . .
5000 10000, 15000 5000 10000 15000
iterations iterations

Fig. 4. The development of the internal energies of the crystalline and disordered initial state in the Villain model for ty=1land

varjous 8, near the phase transition.

259



Volume 114A, number § PHYSICS LETTERS 24 February 1986

tion of small stress configurations. These involve exponentials exp(—a,zj/ 28,), exp(—o:,-z,-/46v£v) in the Villain case

and I, ”.(ﬁ), Igﬂ(262) in the cosine case where I, are Bessel functions and for the mixed cosine case (12),

2n
N2 = f —g% cos(c0) exp[2B¢ cos 8 + 7y cos(20)] . (13)
0

The diagramatic analysis shows that a large number of diagrams have at most weights 0 = 0,1;0;4=0,1,2. Thus
it is possible to make the statistical weight of all these graphs agree by equating

(@) exp(—1/28,)=I1;(B)IH(B) ,
() exp[—1/2(28,8,)] =I7QBEIF(2PE),
(ili) exp[—4/2(28,&,)] =17 (2BE)IF(268) . (14)

Hence the Villain model with a running &, is approximated by the mixed cosine models along a curve in the f—y
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Fig. 5. Defect configurations of the Villain model at gy, = 0.81, &, = 1, after several thousand iterations, starting from a crystalline
or disordered state. Notice that the phases are not completely uniform, as discussed in the text.
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plane (see fig. 3) intercepting the line of phase transitions at 8, &~ 1.37, v, ~ —0.38. Inserting these values into
formula (14) we calculate from this the transition values of the Villain model

Bym ~0.87, &,m ~0.90. (15)
From fig. 2, the transition entropy is found to be
AS=~024. (16)

(3) In order to confirm this result we have performed a direct simulation of the Villain model at &, = 1, where
By is only slightly different from (15), namely 8., ~ 0.81—-0.82. The development of the internal energies of
the crystalline and disordered initial state is shown in figs. 4a—e for various 8, near the transition point. For g, =
0.81, the two energies approach very fast the values ~1.4 and ~1.7, which they keep for a long time. After 5000
sweeps there is again a jump in the crystalline energy. Plotting the defects in the crystalline state we can again see
that a mixed state is beginning to form in which domains of liquid (i.e. calescent patterns of defects) invade into
the crystal (see fig. 5). Thus we conclude that the transition is first-order despite the final convergence of the en-
ergy and that the transition entropy is as stated above.

The formation of mixed states in simulations of two-dimensional melting has been observed before by
Toxvaerd and Abraham [14] in molecular dynamics simulations, It has been shown that it is capable of giving rise
to correlations which look just like those of an intermediate phase in a continuous two-step melting process [15].
Our results seem to confirm this phenomenon.

In conclusion we can state that the simple melting model on a square lattice undergoes a first-order transition
in the cosine form, in the Villain form, and in the dual laplacian roughening form. The model’s tendency to form
a mixed phase can easily suggest the existence of two successive continuous transitions. A closer examination of
the evidence seems to rule out this possibility.

Let us finally mention that experimentally, one observes first-order as well as continuous transitions, depend-
ing on the coverage [16].

We are grateful to Professors N. Kroll and J. Kuti for their kind hospitality at UCSD.
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