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SUPERFLOW IN 3He-B IN THE PRESENCE OF A MAGNETIC FIELD AT ALL TEMPERATURES *
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We calculate gap functions, superfluid densities, critical currents, and susceptibilities for the B phase of 3He in the
presence of currents and a magnetic field. The distortion of the gap function is properly taken into account.

As laboratories begin exploring the flow properties of superfluid 3He [1], external magnetic fields play a sig-
nificant role in modifying experimental conditions. It is therefore desirable to understand theoretically the inter-
play of flow J and field H. For T < T, this has been done some time ago [2]. For arbitrary T < T, only the flow
at H = 0 has been treated without. [3] and now also including the distortion of the energy gap [4,5].

It is the purpose of this note to complete the picture by studying the situation with both J# 0 and H #0.

Neglecting fluctuations in the order parameter 4 ,; of 3He, the free energy density may be written as

f=—3T 23 [tryyqlog G-1(w,,p)] +(38)~114,;1? + const. (1)
wn,
where
; 2
iw, —p /2m+u+Q,a/2 A
Gleonm)=( " i ) @
Ay 0,D iw, +p2/2m — p+ Qaaa/Z

is the Green’s function of the quasiparticles (Y, iog ¥*) [6] in the presence of a magnetic field H, = ,/vyand a
constant mean pair field 4,; {7,8]. [y =~ 2.04 X 104 (G 5)~1 is the magnetic moment of 3He atoms.] Dlagonahzmg
G~ we find i iw, tE*,iw, + E™ along the diagonal thh the quasiparticle energies (¢ = p2/2m — y)

Et = [22 +zﬂ2 + 'Aaipilz + |n|(z52 + I‘QaAaz'pilz)l/z]l/Z . 3)
Flow is established by adding to the quasiparticle hamiltonian an external source term
<>
~V-3rivy =—Vp, 4)

which enters into f with —¥p along the diagonal of G—1 [7-9], i.e. it simply changes w,, to w, +iVp = ZJ,, in all
formulas. Because of the invariance-of f under orbital and spin rotations we may choose v and H along the z-axis.
(Notice, however, that fluctuations [10] will be sensitive to the relative angle between v and H.) Then the constant
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mean pair field 4 ; in the B phase can be assumed to be of the form
A, =diag(A, AL, A), &)

allowing the gap parameter A parallel to the flow to differ from the orthogonal one A, . Denoting the parameter
of gap distortion by

rP=1- Aﬁ/Af , (©)
the quasiparticle energies are
E* =182 +307 + A[(1 - P20 £ Qg7 + AF(1 - )22 2)2 ()

The case 7 = 1 reduces to the planar phase E* = [( Q)2 + Af(l - z%)] 172 which at the BCS level under con-
sideration is degenerate with the A phase [which is obtained from eq. (3) by inserting 4,; = x,(%; +i5;)].
With eq. (7), the free energy density becomes simply

g=f—VP=—5T 25 {{log(ic, — E¥)+ (E* > —E")] + [2 > -]} + 3g) 1242 + A2) + const. ®)
Wy, P
Derivatives with respect to Af and Aﬁ lead to the orthogonal and longitudinal gap equations
1 3 2
T _,dz 2(1-2%)
log Tc - .!; 2 { 322 'hﬁ(aa v, K) ’ (9)
with the gap functions
- w2424 y2 > , o2+ 2
y, =2 2 Re fdg( ot )=32 Re[ i (1—" )—1—], (10)
I 6 n=0 A d, x2 ¥ EZ 8 =0 n; +n n;n; Xy
where
cﬁ =(x, — wz)? +1 1222, d, = (£ +c,2, +k2)72 —ak? (g2 + (1 - )22,
nt={xk? - c2 £ 2% [(1 - r?)z? — 21V2}1/2 (1)
Here we have introduced the dimensionless variables
§=A,/nT, v=EVpp/d,, k=vH2A, =Q24,, x,=w,/A =2nH[s , (12)

for convenience.
For T ST, x,, becomes very large and we can pick up the leading l/xg terms in the gap equations (9), obtain-
ing

10,2 _ 2
1_T1z52[1+{5(2v ) }]§§(3)+..., (13)

c 322 — 12y + 22
which reduces to {with A% = #2T2[8/7¢(3)1(1 — TIT,)],
A A ~1-32 —6n?,  AljaR~1+3R?, (14)

in agreement with the Ginzburg—Landau calculations of refs. [2,4]. In egs. (14) we have used v? =12 V& (1

— T/T,) and h? = H?[H}(1 — T/T,), where V, = (2m*£5) ™} ~ 6.3 cm/s and Hyy = pp/m*£yy ~ 16.4 kG are
natural units for the velocity and the magnetic field with &, = [7¢(3)/4872] 12pc/m* T, ~ 559 A being the co-
herence length, and the numbers holding for zero pressure {11] (m* ~ 3mjay,)- We can now obtain the superfluid
density pg parallel to flow and field by forming the derivative with respect to V:
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Fig. 1. The gap function A orthogonal to flow and field is displayed in the form (a)/Apcs)?(1 — T/Tc) ™2, where Agcg = 1.76
T, as a function of the reduced magnetic field (Fermi-liquid uncorrected) h2 = (H/Hg)* (1 — T/T,)™! at different fixed super-
currents j = (J/Jo)(1 — T/T¢)"32. The natural units are Ho ~ 16.4 kG and Jo = pVg ~ p X 6.3 cm/s. For T < Ty, the curves are
straight lines lying on the top of each other, as they start out at (0, 3.02), but ending at different values of H where the fixed cur-

rent becomes critical. For lower temperatures, the curves become quite different.

365



Volume 78A, number 4 PHYSICS LETTERS 18 August 1980

(AfAge (1-TI)

10 012 0.4
1 1 — i 1 1 ]

(HIHG 1 1-TIT)

Fig. 2. The gap function Ay parallel to flow and magnetic field is displayed in the form (&/ Apcs)?( — TITe)™ similarly to
fig. 1. For larger values of j, A touches the abscissa. This amounts to a smooth transition into the A-phase before reaching the

critical current.
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Fig. 3. The superfluid density (p_l,l/p)(l — T/T)™! is shown, with the same conventions as in fig. 1.
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Fig. 4. The magnetization m = (M/Mg)(1 — T/Tc)'a’2 = (xg/x0)h(1 — T/T)™* as a function of the uncorrected reduced magnetic

field 4. For a geometric Fermi-liquid correction see the text.
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il 1 hnd 2 2 2
Ps_d(f-VP1 .. _6 dz . . dg £ et
PRy pV+1—6vRe_jl‘22r§)1(xn—wz)—j;n a,
1 i n— vz 2 +x2
=—5iRe f%z E (1— " ) , (15)
o4 =0ny +n- i,

In the Ginzburg—Landau domain 7 < T, the expansion in 1/x,, leads to
pl/p ~2(1— 3v? —3K?), (16)

| again in agreement with refs. [2,4].
The susceptibility x'S' is obtained in complete analogy as

oo

w g2 2.2 2,2
X_£=a(f—VP) L, 1=2ge lgi FdpE —cp Kk +2l-r)z
Xo oH H ) f12 ;} T dn
1, = 2+ 2,2
2 dz i eyt k2 —2(1-r)z
sRe ) 2 T+ ; 17
8 j;zz:l o+ ;l: ntn__ jl (7

where xq = 2N(0)(v/ 2)2 = z'yzp/p% is the value for the degenerate electron gas. In the Ginzburg—Landau limit
T - T this becomes

Xixo = 3a3/a3 =3(1 - 30 —6n?). (18)

The results are displayed in figs. 1—4. We have plotted gaps and superfluid density for fixed currents against the
magnetic field. Instead of the susceptibility, however, we have preferred to show the reduced magnetization.

m=MIMo(1 — T/T)=3/2 = (x/xo) H/Hy)(L — TIT )32 = (xs/xo)h(1 — TIT )~} .

This has an advantage when it comes to including Fermi-liquid corrections: for these we have to read the velocities
and magnetic fields in all our formulas as the local quantities V*, H* which are related to the physical V', H by an
additional molecular field:

{1 +3F5[1—o)(v*, H*)p}V* =V, , (19)
{L+F3[1—x,(V*, H")/xgl} H* =H . (20)

Under this replacement, currents [3,4] and magnetizations remain invariant. Thus the plots for A, A, can be
used directly the way they are in order to extract the corrected functlons of current and magnetization. The super
fluid density p on the other hand, has to be divided by a factor [1+ 3F1(1 - p I/0)]. Experimentally, it is usual-
ly the magnetic field which is given. Then we may find H* and M(H*) by writing eq. (20) as

R*(1+ F§)/F3 — h[F3 = m(h"), (1)

which amounts to the following geometric construction: In fig. 4, draw a straight line of slope (1 + F§)/F§ through
the point —h/F§ on the ordinate. The intersection of this line with our curves gives the reduced magnetization
m(h*) together with the uncorrected magnetic field #* to be used in figs. 1—3 for reading off gaps and superfluid
densities.

Notice that the Fermi-liquid corrected velocities are simply V= J[1+ }F: HOE /p)/p ]. By plotting curves of
constant j we have eliminated the local velocity v*.

Our results agree with previous calculations at zero H [12] and zero V [13].

We thank K. Maki for a useful discussion.
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