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Abstract

It is known that fixed boundary conditions modify the leading finite-size corrections for an L3 lattice in 3d at a first-order phase

transition from 1/L3 to 1/L. We note that an exponential low-temperature phase degeneracy of the form 23L will lead to a different

leading correction of order 1/L2. A 3d gonihedric Ising model with a four-spin interaction, plaquette Hamiltonian displays such a

degeneracy and we confirm the modified scaling behaviour using high-precision multicanonical simulations.

We remark that other models such as the Ising antiferromagnet on the FCC lattice, in which the number of “true” low-temperature

phases is not macroscopically large but which possess an exponentially degenerate number of low lying states may display an ef-

fective version of the modified scaling law for the range of lattice sizes accessible in simulations.
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To some extent first-order phase transitions have been the poor cousins of continuous transitions when it comes to

numerical investigations, in spite of their prevalence in nature, see, e.g., the articles in Herrmann et al. (1992). Initial

studies of finite-size scaling for first-order transitions were carried out by Imry (1980); Binder (1981); Fisher and

Berker (1982) and further pursued by Privman and Fisher (1983); Binder and Landau (1984); Challa et al. (1986);

Peczak and Landau (1989); Privman and Rudnik (1990). Later, rigorous results for periodic boundary conditions were

derived using Pirogov-Sinai theory and similar techniques applied to the case of non-periodic boundary conditions,

for a review see Janke (2003a).

It is possible to derive the finite-size scaling behaviour at first-order phase transitions using straightforward heuristic

arguments discussed in Janke (1993), rather than the more sophisticated approach of Borgs and Kotecký (1990, 1992).

To do this, we introduce a simple two-phase model in which the system spends a fraction Wo of its total time in one of

q ordered phases (as in a q-state Potts model) and a fraction Wd = 1 −Wo in the disordered phase. The corresponding

energies are êo and êd, respectively, where the hat is introduced for quantities evaluated at the inverse phase transition

temperature of the infinite system, β∞. Physically, the model neglects fluctuations within the phases and also treats the

flips between the phases as instantaneous jumps. With these assumptions the energy moments are just the weighted
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average over the phases, 〈en〉 = Woên
o + (1 −Wo)ên

d
, and from this we can calculate various other derived observables.

The specific heat CV (β, L) = −β2∂e(β, L)/∂β is given by

CV (β, L) = Ldβ2
(〈

e2
〉
− 〈e〉2

)
= Ldβ2Wo(1 −Wo)Δê2 (1)

with Δê = êd − êo. Differentiating with respect to Wo then gives a maximum Cmax
V = Ld(β∞Δê/2)2 at βCmax

V (L) for

Wo = Wd = 0.5, where the disordered and ordered peaks of the energy probability density have equal weight. We can

see that this immediately recovers the Ld scaling of the peak in Cmax
V .

The leading corrections can also be obtained by Taylor expanding the ratio of weights around β∞. The probability

of being in any one of the ordered states or the disordered state is related to the free-energy densities f̂o, f̂d of the states

by

po ∝ e−βL
d f̂o and pd ∝ e−βL

d f̂d (2)

and the fraction of time spent in the ordered states is proportional to qpo. The ratio of weights is thus Wo/Wd �
qe−Ldβ f̂o/e−βLd f̂d (up to exponentially small corrections in L, see Borgs and Janke (1992); Janke (1993)). Taking the

logarithm of this ratio gives ln(Wo/Wd) � ln q + Ldβ( f̂d − f̂o) and expanding around β∞ at the finite-size specific-heat

maximum where Wo = Wd gives 0 = ln q + LdΔê(β − β∞) + . . ., which can be solved for the finite-size peak loation of

the specific heat:

βCmax
V (L) = β∞ − ln q

LdΔê
+ . . . . (3)

The 1/Ld leading correction to scaling is immediately apparent. Similar calculations of Janke (1993) for the location

βBmin

(L) of the minimum of the energetic Binder parameter

B(β, L) = 1 − 〈e
4〉

3〈e2〉2 (4)

give

βBmin

(L) = β∞ − ln(qê2
o/ê

2
d
)

LdΔê
+ . . . (5)

which again displays the 1/Ld correction.

The key observation is now that an exponential degeneracy in q, the number of low-temperature phases, will alter

the scaling behaviour because of the presence of the various ln(q) factors in the leading scaling terms in Eqs. (3), (5).

One model with precisely this feature is a 3d plaquette (4-spin) interaction Ising model on a cubic lattice,

H = −1

2

∑
[i, j,k,l]

σiσ jσkσl , (6)

where the ground-state degeneracy of q = 23L on an L3 lattice (cf. Fig. 1) was shown by Pietig and Wegner (1996)

to be unbroken throughout the low-temperature phase. This is a member of a family of so-called gonihedric Ising

models which were originally formulated as a lattice discretization of string-theory actions in high-energy physics

which depend solely on the extrinsic curvature of the string worldsheet, for a review see Johnston et al. (2008). This

Fig. 1. A typical ground state of the 3d plaquette Hamiltonian showing planes of spins flipped with respect to a purely ferromagnetic ground state

dotted. Since any plane of spins may be flipped, the degeneracy is q = 23L.
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plaquette Hamiltonian has attracted attention because it displays a strong first-order transition observed first by Espriu

et al. (1997) and evidence of glass-like behaviour at low temperatures discovered by Lipowski (1997); Johnston et al.

(2008).

In the plaquette gonihedric model with q = 23L, Eqs. (3), (5) become

βCmax
V (L) = β∞ − ln 23L

L3Δê
+ O
(
(ln 23L)2L−6

)
= β∞ − 3 ln 2

L2Δê
+ O
(
L−4
)

(7)

and

βBmin

(L) = β∞ − ln(23Lê2
o/ê

2
d
)

L3Δê
+ O
(
(ln(23Lê2

o/ê
2
d))2L−6

)
= β∞ − 3 ln 2

L2Δê
− ln(ê2

o/ê
2
d
)

L3Δê
+ O
(
L−4
)

(8)

so the leading contribution to the finite-size corrections is now, as expected with the exponential degeneracy, ∝ L−2.

For the extremal values one also finds non-standard scaling corrections

Cmax
V (L) = L3

(
β∞Δê

2

)2
+ O(L) (9)

and

Bmin(L) = 1 − 1

12

(
êo

êd

+
êd

êo

)2
+ O(L−2) , (10)

where the leading correction terms are also modified by a factor of L due to the exponential degeneracy compared

with the standard case.

To verify the modified scaling we used in Mueller et al. (2014) the multicanonical Monte Carlo algorithm of Berg

and Neuhaus (1991, 1992); Janke (1992, 1998) where rare states lying between the ordered and disordered phases are

promoted artificially, decreasing the autocorrelation time and allowing the system to oscillate more rapidly between

phases. We systematically improve guesses of the energy probability distribution using recursive estimates of Janke

(2003b) before the actual production run with of the order of (100−1000)×106 sweeps. Canonical estimators can then

be retrieved by weighting the multicanonical data to yield Boltzmann-distributed energies. Reweighting techniques

are very powerful when combined with multicanonical simulations, and allow the calculation of observables over a

broad range of temperatures. Errors on the measured quantities have been extracted by jackknife analysis using 20

blocks for each lattice size. The observables such as the specific heat (1) and Binder’s energy parameter (4) have been

calculated from the data as function of temperature by reweighting. This enables us to determine the positions of their

peaks, βCmax
V (L) and βBmin

(L), with high precision.
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Fig. 2. (a) Specific-heat curves as function of β and (b) their maxima, Cmax
V (L)/V , vs 1/L2 showing clearly the (non-standard) O(L−2) behaviour of

the leading correction. The best fit line of 0.055072(4) + 0.1693(21)L−2 through the measured values is drawn.
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Fig. 3. (a) Curves of the Binder parameter as function of β and (b) their minima, Bmin(L), vs 1/L2 also showing the (non-standard)O(L−2) behaviour

of the leading correction. The best fit line of 0.34729(7) − 9.12(4)L−2 through the measured values is drawn.
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Fig. 4. Best fits using the leading 1/L2 scaling for the (finite lattice) peak locations of the specific heat Cmax
V , Binder’s energy parameter Bmin; or

inverse temperatures βeqw and βeqh, where the two peaks of the energy probability density are of same weight or have equal height, respectively.

The values for βeqw and βCmax
V are indistinguishable in the plot. The omitted corrections which we discuss in detail in Mueller et al. (2014) give the

slightly different effective slopes. The inset shows the energy probability density p(e) over e = E/Ld at βeqh for lattice sizes L ∈ {13, 14, . . . , 26, 27}.

We first verify the modified scaling for Cmax
V (L) and Bmin(L) given in Eqs. (9), (10). From Figs. 2 and 3 it is apparent

that the 1/L2 scaling of the leading correction term engendered by the degeneracy q = 23L is clearly displayed by both

quantities. The data and fits in Fig. 4 for the two estimates for the inverse transition temperatures using Eqs. (7), (8)

also clearly display the transmuted scaling laws with 1/L2 corrections. In obtaining the best fit lines we have left out

the smaller lattices systematically, until a goodness-of-fit value of at least Q = 0.5 was found for each observable

individually. We have also included estimates of the transition temperatures using the additional estimators βeqw(L)

and βeqh(L), chosen systematically to minimize

Deqw(β) =

⎛⎜⎜⎜⎜⎜⎜⎝
∑

e<emin

p(e, β) −
∑

e≥emin

p(e, β)

⎞⎟⎟⎟⎟⎟⎟⎠
2

and Deqh(β) =
(
max
e<emin

{p(e, β)} − max
e≥emin

{p(e, β)}
)2
, (11)

respectively, where the energy of the minimum between the two peaks, emin, is determined beforehand to distinguish

between the different phases. From error weighted averages (refraining from a full cross-correlation analysis as

discussed by Weigel and Janke (2010)) of the inverse transition temperatures βCmax
V , βBmin

, βeqw, and βeqh given in Fig. 4

we find β∞ = 0.551 291(7) for the infinite lattice inverse transition temperature, where the final error estimate is taken

as the smallest error bar of the contributing β estimates. The precision of the simulation results and the broad range
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of lattice sizes clearly excludes fits in all cases to the standard finite-size scaling ansatz, where the first correction is

proportional to the inverse volume.

Any model with an exponentially degenerate low-temperature phase will display the modified scaling at a first-

order phase transition described for the 3d gonihedric model here. Apart from higher-dimensional variants of the

gonihedric model or its dual, there are numerous other fields where the scenario could be realized. Examples range

from ANNNI models discussed by Selke (1988) to topological “orbital” models in the context of quantum computing

reviewed by Nussinov and van den Brink (2013) which all share an extensive ground-state degeneracy. Among the

orbital models for transition metal compounds, a particularly promising candidate is the 3d classical compass or t2g

orbital model where a highly degenerate ground state is well known and signatures of a first-order transition into the

disordered phase have recently been found numerically by Gerlach and Janke (2014).

Numerous other systems, such as the Ising antiferromagnet on a 3d FCC lattice, have an exponentially degenerate

number of ground states but a small number of true low-temperature phases. Nonetheless, they do possess an expo-

nentially degenerate number of low-energy excitations so, depending on the nature of the growth of energy barriers

with system size, an effective modified scaling could still be seen at a first-order transition for the lattice sizes acces-

sible in typical simulations. The crossover to the true asymptotic standard scaling would then only appear for very

large lattices. Indeed, previous simulations of Beath and Ryan (2006) appear to have found non-standard scaling for

the first-order transition in the Ising antiferromagnet on a 3d FCC lattice.
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