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Abstract

The loop-gas approach to statistical physics provides an alternative, geometrical description of phase transitions

in terms of line-like objects. The resulting statistical random-graph ensemble composed of loops and (open) chains

can be efficiently generated by Monte Carlo simulations using the so-called “worm” update algorithm. Concepts from

percolation theory and the theory of self-avoiding random walks are used to derive estimators of physical observables

that utilize the nature of the worm algorithm. The fractal structure of random loops and chains as well as their scaling

properties encode the critical behavior of the statistical system. The general approach is illustrated for the high-

temperature series expansion of the Ising model, or O(1) loop model, on a honeycomb lattice, with its known exact

results as valuable benchmarks.
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1. Introduction

The loop-gas approach to lattice spin systems provides an alternative, geometrical description in terms of fluctuat-

ing loops which is based on their high-temperature series expansions [1]. The standard approach involves estimating

observables (expressed in terms of spins) by sampling a representative set of spin configurations. New configura-

tions are typically generated by means of importance sampling Monte Carlo techniques with each spin configuration

weighted according to the probability that it occurs. In contrast, the geometrical loop-gas approach based on the high-

temperature series expansion involves line-like objects. Physical observables are no longer estimated by sampling an

ensemble of spin configurations, but by sampling a grand canonical ensemble of (mostly closed) lines, known as a

loop gas, instead. The weight of a given high-temperature graph is typically determined by its total size, the number

of intersections, and the number of loops contained in the tangle.

In relativistic quantum field theories formulated on a space-time lattice, the high-temperature expansion is replaced

by the strong-coupling expansion, representing the hopping of particles from one lattice site to the next, which is

closely connected to Feynman’s space-time approach to quantum theory [2].

About a decade ago, Prokof’ev and Svistunov [3] have introduced a Monte Carlo worm algorithm that, although

based on local updates, does away with critical slowing down almost completely. Its name derives from the property

that loop configurations are generated through the motion of the end points of an open chain – the “head” and “tail”

of a “worm”. A loop is generated in this scheme when the head bites the tail, or through a “back bite” where the head

erases a piece (bond) of its own body and thereby leaves behind a detached loop and a (possibly drastically) shortened

open chain.



Wolfhard Janke et al. / Physics Procedia 15 (2011) 54–58 55

Besides this outstanding technical advantage, the worm algorithm has the additional advantage that the complete

set of standard critical exponents can be determined at a stroke. This set is known to split into two, namely the

thermal and the magnetic exponents. While the thermal exponents, such as the specific-heat exponent α, pertain to

closed lines, the magnetic exponents, such as the magnetic susceptibility exponent γ, pertain to open chains in the

geometrical approach. By the nature of the worm algorithm, which features an open chain to update the loops, data for

both sectors are generated on the fly. More specifically, the open chains directly sample the spin-spin, or two-point,

correlation function.

In this project, which extends previous work by two of us on the subject [4, 5], we describe estimators of physical

observables that naturally arise in a loop gas and that allow determining the standard critical exponents. Our approach

amalgamates concepts from percolation theory – the paradigm of a geometrical phase transition – and the theory of

self-avoiding random walks. To support our arguments we performed Monte Carlo “worm” simulations for the two-

dimensional Ising or O(1) loop model on a honeycomb lattice [6]. This model serves as a prototype with its various

exact results providing a yardstick for our numerical results and also for the feasibility of our approach.

2. High-temperature graphs

Let us first briefly recall the high-temperature series expansion of the Ising model on an arbitrary lattice or graph

with Vs spins si = ±1 and Vb bonds. By a Taylor expansion one readily derives

Z =
∑
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eβ
∑
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∑
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where on each bond b the bond variable nb = 0, 1, 2, . . . runs over all non-negative integers. The last equality follows

by carrying out the summation over all spins si, i = 1, . . . ,Vs. Since si = ±1 only those bond configurations contribute

(a factor of 2) for which
∑

nb is even at each site, so that no open lines can occur which is indicated by {nb}′. The

resulting loop tangle thus contains lines of variable strength nb = 0, 1, 2, . . . and hence has a rather complicated

interpretation in terms of a loop gas.

A more convenient representation can be derived by noting that for si = ±1 the Boltzmann factor may be rewritten

as exp(βsis j) = cosh β[1 + tanh βsis j]. The summation over si then leads to

Z = 2Vs coshVb β
∑

{nb=0,1}′
KNb , (2)

where {nb = 0, 1}′ indicates that again no open lines are allowed, K = tanh β, and Nb =
∑Vb

b=1
nb is the total number of

“active” bonds (nb = 1).

An additional open chain running from site i0 to j0 immersed into the background of loops can be introduced

using the same arguments by considering the spin-spin, or two-point, correlation function

〈si0 s j0〉 =
∑

{si}
si0 s j0 eβ

∑
b si s j/Z ≡ Z(i0, j0)/Z . (3)

Typical high-temperature graph configurations for a square lattice are depicted in Fig. 1. For the special case j0 = i0,

this ensemble of loops plus an open chain trivially reduces to the pure loop gas.

For general lattice geometries the loop gas contains intersection points (“knots”). At least in two dimensions

this can be avoided by choosing a honeycomb lattice with coordination number z = 3 which we will consider in the

following. The honeycomb lattice is dual to the triangular (hexagonal) lattice [7], mapping high temperatures for the

honeycomb onto low temperatures for the triangular lattice and vice versa via

K = tanh β = e−2β̃ (4)

and high-temperature loops on the honeycomb onto Peierls boundaries of spin clusters on the triangular lattice. The

critical point for these lattices is known to be at Kc = 1/
√

3 or via duality β̃c =
1
4

ln 3.
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Figure 1: Typical high-temperature graph configurations on a 64 × 64 square lattice (where βc = 0.440 686 . . .) with periodic boundary conditions.

3. Worm update algorithm

In our simulations of the Ising model on the honeycomb lattice we focused on the nb = 0, 1 loop-gas representation

(2). The worm update then involves Metropolis flips of single bonds where the current value nb of the bond variable is

attempted to be replaced with 1−nb. During the Monte Carlo simulation, chain endpoints move and, thus, accumulate

information about open chain properties, such as their end-to-end distance. As there is a finite probability for an open

chain to close and form a closed loop, or polygon, the algorithm automatically also acquires information about the

loops. We adapted the original worm algorithm [3] as follows, see, e.g., Ref. [8] for a related adaptation.

For configurations containing, in addition to polygons, a single chain with end-to-end distance larger than one

lattice spacing, the updating scheme proceeds by

1. randomly choosing either endpoint of the chain,

2. randomly choosing any of the links attached to the chosen endpoint,

3. updating the corresponding bond variable nb with a single-hit Metropolis flip proposal nb → n′b = 1 − nb with

acceptance probability

Paccept = min
(
1,K1−2nb

)
(5)

as can be inferred from the weight KNb in the partition function (2), assuming that 0 < K < 1. The exponent

1 − 2nb = ±1 denotes the difference in the number of bonds contained in the proposed and the existing config-

urations. It follows that a proposal to create a bond is accepted with probability Paccept = K (< 1), whereas a

proposal to delete one is always accepted.

These updates are simple and straightforward as long as the chain remains open. Once, however, the chain has an

end-to-end distance of just one lattice spacing, the existing configuration can be turned into a loop-gas configuration

by a single bond flip. Such an update then connects the two different sectors of the model, namely the one with an

open chain which samples the numerator Z(i0, j0) of the correlation function (3), and the loop sector which samples

the partition function Z. In their original work [3], Prokof’ev and Svistunov introduced conditional probabilities,

parameterized by 0 < p0 < 1, for Monte Carlo moves between the two sectors. We in this work put this parameter to

unity and thus always attempt to close such a chain by using the update scheme above with the Metropolis acceptance

probability (5). If the update is accepted, and the open chain turns into a polygon, we proceed by randomly choosing

one link among all links of the lattice as the new location for the worm. The bond variable on that link is then subjected

to a Metropolis trial move with the acceptance probability (5).
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