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Abstract

The introduction of a metric onto the space of parameters in models in statistical mechanics
and beyond gives an alternative perspective on their phase structure. In such a geometrisation,
the scalar curvature, R, plays a central role. A non-interacting model has a 1at geometry (R=0),
while R diverges at the critical point of an interacting one. Here, the information geometry is
studied for a number of solvable statistical–mechanical models.
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1. Introduction

As the application of statistical-physics techniques becomes more widespread and
acceptable outside the traditional physics community, it is clear that the phenomena
of phase transitions have important roles to play there. Indeed, phase transitions are
common to a very wide range of disciplines, from physics to biology, economics and
even to sociology. As statistical physics :nds pertinence in these areas, so too can the
:eld draw on concepts outside the con:nes of pure physics.

In all of these disciplines, models are characterised by certain sets of parameters. The
idea of endowing the space of such parameters with a metric and geometrical struc-
ture has been borrowed from parametric statistics [1]. Given a probability distribution
p(x|�), and a sample x1; : : : ; xn, the objective is to estimate the parameter �. This may
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be done by maximising the so-called likelihood function, L(�) =
∏n

i=1 p(xi|�), or its
logarithm (called the log-likelihood function),

ln L(�) =
n∑

i=1

ln p(xi|�) : (1)

The gradient of this quantity is the score function

U (�) =
d ln L(�)

d�
(2)

and the expectation of this random variable is zero (E[U (�)] = 0). Its variance is

Var[U (�)] = −E
[

d2 ln L(�)
d� 2

]
: (3)

This quantity is called the expected or Fisher information. Taylor expanding the log-
likelihood function, one arrives at

ln L(� + 
�) − ln L(�) = 
�
d ln L(�)

d�

∣∣∣∣
�

+
(
�)2

2
d2 ln L(�)

d� 2

∣∣∣∣
�

+ · · · : (4)

The :rst term on the right-hand side is zero at the true �-value. Therefore, the closeness
of two probability distributions, characterised by � and � + 
�, is given by the second
term, or the Fisher information.

For higher-dimensional distributions (which may be continuous), where, instead of
�, one has a set of parameters, �1; �2; : : :, the Fisher information is de:ned as

Gij(�) = −E
[
92 ln p(x|�)
9�i 9�j

]
= −

∫
p(x|�)

92 ln p(x|�)
9�i 9�j

dx : (5)

Rao suggested this is a metric. It is, in fact, the only suitable metric in parametric
statistics and is called the Fisher–Rao metric [1].

In generic statistical-physics models, we have two parameters, �, which we may think
of as the inverse temperature, and h, the external :eld. In this case the Fisher–Rao
metric is simply given by

Gij = 9i9jf ; (6)

where f is the reduced free energy per site and 9i = (9=9�; 9=9h).
For such a metric the scalar curvature may be calculated as

R = − 1
2G2

∣∣∣∣∣∣∣∣
92
�f 9�9hf 92

hf

93
�f 92

�9hf 9�92
hf

92
�9hf 9�92

hf 93
hf

∣∣∣∣∣∣∣∣
; (7)

where G = det(Gij) is the determinant of the metric itself. The scalar curvature plays a
central role in any attempt to look at phase transitions from a geometrical perspective.
Indeed, R measures the complexity of the system. A 1at metric implies that the system
is not interacting. Conversely, and for all the models that have been considered so far,
the curvature diverges at (and only at) a phase transition point for physical ranges of
the parameter values.
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Using standard scaling assumptions, we can anticipate the behaviour of R near a
second-order critical point. With t = 1 − �=�c,

f(�; h) = �−1f(t�at ; h�ah) = t1=at  (ht−ah=at ) ; (8)

where

at =
1
�d

; ah =
�

�d

(9)

are the scaling dimensions for the energy and spin operators and d is the spatial
dimensionality. One :nds for the scalar curvature

R = − 1
2G2

∣∣∣∣∣∣∣∣
t1=at−2 0 t1=at−2ah=at

t1=at−3 0 t1=at−2ah=at−1

0 t1=at−2ah=at−1 t1=at−3ah=at

∣∣∣∣∣∣∣∣
(10)

and

G ∼ t2=at+2ah=at−2 (11)

yielding

R ∼ �d ∼ |� − �c|�−2 ; (12)

where hyperscaling (�d = 2 − �) is assumed and � is the correlation length.
The systems hitherto analysed from the information-geometry perspective include the

Ising model in one dimension [2], the Bethe lattice Ising and mean-:eld models [3].
The main results hitherto established are that R is positive de:nite and diverges (as
�d) only at the critical point.

In an eHort to see how generic these features are, and to discover new ones, we
analyse the Potts model in one dimension, the Ising model in two dimensions coupled
to quantum gravity and the spherical model in three dimensions.

2. Information geometry in speci�c models

2.1. The Potts model in one dimension

The one-dimensional q-state Potts model, like its Ising counterpart (which corre-
sponds to q= 2), is exactly solvable. Although it has no true phase transition, thermo-
dynamic quantities diverge at zero temperature. In the Ising case, explicit calculations
showed that

RIsing = 1 +
cosh h√

sinh2 h + exp(−4�)
: (13)
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Fig. 1. The scalar curvature for the Ising model (left) and the 10-state Potts model (right) in one dimension.

The correlation length is known to behave as � ∼ −1=ln(tanh �), and therefore RIsing ∼
� as � → ∞.

For plotting purposes, it is convenient to introduce

y = exp(�) and z = exp(h) : (14)

The curvature is plotted in Fig. 1. It is clear that RIsing is positive de:nite and exhibits
a h → −h (or z → 1=z) symmetry. Furthermore, given a particular value for y, RIsing

is maximum along the zero-:eld ridge z = 1.
The one-dimensional q-state Potts model is also exactly solvable, so it is sensible

to exploit it in an attempt to decide which of the previous features are generic. An
explicit calculation [4] shows that

RPotts = A(q; y; z) +
B(q; y; z)√
 (q; y; z)

∼ y ∼ � ; (15)

for h=0 and y → ∞. Here,  (q; y; z) is the Potts analogue of the Ising term, sinh2 h+
exp(−4�), and A and B are smooth functions of y and z. So the expected scaling (12)
holds with d = 1 or � = 1.

Fig. 1 also shows that, in the Potts case, RPotts is no longer positive de:nite. Further-
more, the z → 1=z symmetry of the Ising model is no longer present. For a given y,
RPotts no longer peaks along z = 1. Finally, an analysis of the Lee–Yang (complex h)
zeroes of the model reveals that the curvature also diverges as the locus of zeroes,
z0(y), is approached. In fact,

RPotts ∼ (z − z0(y))−1=2 ; (16)

so that this divergence is characterised by an edge exponent ! = 1
2 .
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2.2. The three-dimensional spherical model (and the Ising model on planar random
graphs)

The spherical model is given by

Zspherical =
∫

ds1 : : : dsLd


(∑
i

s2
i − Ld

)
exp


� ∑

〈ij〉
sisj + h

∑
i

si


 (17)

and can be solved by exponentiating the constraint and using steepest descent. Allowing
the lattice extent, L, to diverge reveals no transition for d = 1; 2. The transition for
d = 3 has � = −1, � = 1

2 and $ = 2. This is the same set of critical exponents as for
the Ising model on planar random graphs (matter coupled to two-dimensional gravity).
This is remarkable, because there are no obvious similarities between the two models.

Explicit calculations (in both models) give [5,6]

R ∼ |� − �c|−2 ; (18)

which does not accord with the prediction of (12). That prediction is R ∼ |�−�c|�−2,
with � =−1. The source of the discrepancy can be traced back to the top left term in
the determinant in (10), which is t−�. In both current models, � is, in fact, negative
and this term vanishes as criticality is approached. It is replaced by a constant term
coming from the regular part of the free energy. Both models then yield the same
result (18).

3. Conclusions

In statistical physics, and in related :elds—from the bio-sciences to economics—
phase transitions play a central role. Thus new insights into the characterisation of
critical phenomena are of paramount importance. Here, geometric ideas from the :eld
of parametric statistics are “borrowed” and explored. It is found that the curvature as-
sociated with the Fisher–Rao metric is, indeed, a useful quantity in the characterisation
of phase transitions. Some features observed in the Ising model are found not to be
generic. In particular, R can be negative and there is no symmetry nor ridge along
h = 0. More surprisingly, the naively expected scaling behaviour (12) fails in both the
three-dimensional spherical model and in the Ising model on planar random graphs.
Reasons for this are given. Once again, it is curious that all critical exponents for
the latter two models coincide, although there is no obvious physical relation between
them.
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