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Abstract

We present results of recent high-statistics Monte Carlo simulations of the Edwards–Anderson
Ising spin-glass model in three dimensions. The study is based on a non-Boltzmann sampling
technique, the multi-self-overlap algorithm which is speci4cally tailored for sampling rare-event
states. We thus concentrate on those properties which are di5cult to obtain with standard canon-
ical Boltzmann sampling such as the free-energy barriers Fq

B in the probability densities PJ (q)
of the Parisi overlap parameter q and the behavior of the tails of the disorder averaged den-
sity P(q) = [PJ (q)]av. Our results for the tails disagree with mean-4eld predictions and support
extreme order statistics over many orders of magnitude.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A widely studied class of spin-glass materials [1–4] consists of dilute solutions of
magnetic transition metal impurities in noble metal hosts, for instance [5] Au–2.98%
Mn. In these systems, the interaction between impurity moments is caused by the
polarization of the surrounding Fermi sea of the host conduction electrons, leading to
an e@ective interaction of the so-called RKKY form [6]

Je2 (R)˙
cos(2kFR)

R3 ; kFR�1 ; (1)
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Fig. 1. Typical sketch of the rugged free-energy landscape of spin glasses, with many minima separated by
rare-event barriers.

where kF is the Fermi wave number. This constitutes the two basic ingredients neces-
sary for spin-glass behavior, namely

• randomness—in course of the dilution process the positions of the impurity moments
are randomly distributed, and

• competing interactions—due to the oscillations in (1) as a function of the distance
R between the spins some of the interactions are positive and some are negative.

The competition among the di@erent interactions between the moments means that no
single con4guration of spins is favored by all of the interactions, a phenomenon which
is called “frustration”. This leads to a rugged free-energy landscape with probable
regions (low free energy) separated by rare-event states (high free energy), illustrated
in many previous articles by sketches similar to Fig. 1. Experimentally this may be
inferred from the phenomenon of aging observed in measurements of the remanent
magnetization in the spin-glass phase.
Despite the large amount of experimental, theoretical and simulational work done in

the past 30 years to elucidate the nature of the spin-glass phase [1–4], the physical
mechanisms underlying its peculiar properties are not yet fully understood. To cope with
the complexity of the problem various levels of simpli4ed models have been studied
theoretically. A simpli4ed lattice model which reNects the two basic ingredients for
spin-glass behavior is the Edwards–Anderson [7] Ising (EAI) model de4ned through
the energy

E =−
∑
〈ik〉

Jik sisk ; (2)

where the Nuctuating spins si can take the values ±1. The coupling constants Jik

are quenched random variables taking positive and negative signs, thereby leading to
competing interactions. In our study we worked with a bimodal distribution, Jik =±1
with equal probabilities. In (2), the lattice sum runs over all nearest-neighbor pairs of
a 3-dimensional cubic lattice of size N = Ld with periodic boundary conditions.
A mean-4eld tractable model, the Sherrington–Kirkpatrick [8] model, emerges when

each spin is allowed to interact with all others. Alternatively one may consider the
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mean-4eld treatment as an approximation which is expected to become accurate in
high dimensions [9]. In physical dimensions, however, its status is still unclear and
an alternative droplet model [10] has been proposed. The two treatments yield con-
Nicting predictions. Numerical approaches such as Monte Carlo (MC) simulations can,
in principle, provide precise results in physical dimensions. In practice, however, the
simulational approach is severely hampered by an extremely slow dynamics of the
stochastic process, and the need to consider many disorder realizations.
To overcome the slowing-down problem various ingenious simulation techniques

have been devised in the past few years. While some of them only aim at improving
the dynamics of the MC process, others are in addition well suited for a quantitative
characterization of the free-energy barriers responsible for the slowing-down problem.
Among the latter category is the multi-self-overlap (MSO) algorithm [11] which has
been employed in our MC simulations [12,13] of the EAI spin-glass model. The purpose
of this note is to give an overview of our results in three dimensions.

2. Model parameters and simulation method

As order parameter of the EAI model one usually takes the Parisi overlap
variable [9]

q =
1
N

N∑
i=1

s(1)i s(2)i ; (3)

where the spin superscripts label two independent (real) replicas of the same realization
of randomly chosen exchange coupling constants J={Jik}. For a given J the probability
density of q is denoted by PJ (q), and thermodynamic expectation values are computed
as

〈· · ·〉J ≡
∑
{s}

(· · ·) exp(−�H [J ])

/∑
{s}

exp(−�H [J ]) ; (4)

where �= 1=T is the inverse temperature in natural units. The freezing temperature is
known to be at �c = 0:90(3) [14].
The results depend on the randomly chosen quenched disorder realization, and one

must average over many hundreds or even thousands of disorder realizations:

P(q) = [PJ (q)]av =
1
#J

∑
J

PJ (q); [〈· · ·〉J ]av =
1
#J

∑
J

〈· · ·〉J ; (5)

where #J (→ ∞) is the number of realizations considered. Below the freezing tem-
perature, in the in4nite-volume limit N → ∞, a non-vanishing part of P(q) between
its two delta-function peaks at ±qmax characterizes the mean-4eld picture [9] of spin
glasses, whereas in the droplet picture [10] of spin glasses (as well as in ferromagnets)
P(q) exhibits only the two delta-function peaks.
For a better understanding of the free-energy barriers sketched in Fig. 1, the prob-

ability densities for individual realizations J play the central role. As it is impossible
to get complete control over the full state space, and to give a well-de4ned meaning
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to the “system state” (the x-axis in Fig. 1), one has to concentrate on one or a few
characteristic properties. In our work we focused on the order parameter and thus on
those free-energy barriers Fq

B which are reNected by the minima of PJ (q). To allow
for a visual impression of the encountered shapes, all 640 probability densities PJ (q)
as obtained in the MSO simulations of the 3D EAI spin-glass model on a 123 lattice
at T = 1 ≈ 0:88Tc have been made available as a Java animation on the Web. Go
to www.hep.fsu.edu/∼berg, follow the research link to complex systems and from
there to the picture show of spin-glass realizations.
Conventional, canonical MC simulations are not suited for a study of such free

energy barriers, because the likelihood to generate the corresponding rare-event con-
4gurations in the Gibbs canonical ensemble is very small. This problem is overcome
by non-Boltzmann sampling with the MSO weight [11]

wJ (q) = exp


�

∑
〈ik〉

Jik(s
(1)
i s(1)k + s(2)i s(2)k ) + SJ (q)


 ; (6)

where the two replicas are coupled by SJ (q) in such a way that a broad MSO histogram
Pmuq

J (q) over the entire accessible range −16 q6 1 is obtained. When simulating
with the MSO weight (6), canonical expectation values of any quantity O can be
reconstructed by reweighting, 〈O〉canJ = 〈Oe−SJ 〉J =〈e−SJ 〉J .
For each of the quenched disorder realizations the steps of the MSO algorithm may

be summarized as follows:

• An iterative construction of the weight function WJ (q) ≡ exp(SJ (q)).
• An equilibration period with 4xed weight function.
• A production run with 4xed weight function.

We measure the dynamics of the MSO algorithm in terms of the autocorrelation time
�muq
J , which is de4ned by counting the average number of sweeps it takes to complete
the cycle q = 0 → |q| = 1 → 0. Adopting the usual terminology [15] for a 4rst-order
phase transition, we shall call such a cycle a “tunneling” event. The weight iteration
was stopped after at least 10 “tunneling” events occurred, and in the production runs
we collected at least 20 “tunneling” events. To allow for standard reweighting in the
temperature we stored besides PJ (q) also the time series of q, and of the energies
and magnetizations of the two replicas. The number of sweeps between measurements
was adjusted by an adaptive data compression routine to ensure that each time series
consists of 216 = 65 536 measurements separated by approximately �muq

J sweeps.

3. Results

Our simulation temperatures were T = 1 ≈ 0:88Tc and T = 1:14 ≈ Tc. Due to the
large number of realizations simulated, the 4nal results are relatively costly. By 4tting
the averaged autocorrelation times to the power-law ansatz ln([�muq

J ]av) = a + z ln(N ),
we obtained [12] z=2:32(7). The quality of the 4t is poor and an exponential behavior
(ln([�muq

J ]av) ˙ N!) cannot be excluded. It shows that the slowing down is quite o@

http://www.hep.fsu.edu/~berg
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from the theoretical optimum z = 1, one would expect if the MSO autocorrelation
time �muq

J was dominated by a random-walk behavior between q = −1 and +1. In
multicanonical simulations with broad energy histograms an even larger exponent of
z = 2:8(1) has been observed [16]. The large values of z suggest that the canonical
overlap or energy barriers are not the exclusive cause for the slowing down of spin-glass
dynamics below the freezing point. The projection of the multi-dimensional state space
onto the q- or E-direction averages out most of the free-energy landscape of the model.

3.1. Free-energy barriers Fq
B

To de4ne e@ective free-energy barriers Fq
B we 4rst constructed [12] an auxiliary

1D Metropolis-Markov chain which has the canonical PJ (q) probability density as its
equilibrium distribution. The tridiagonal transition matrix of this Markov process allows
for diagonalization by standard methods. The largest eigenvalue "0 equals unity and is
non-degenerate. The second largest eigenvalue "1 determines the autocorrelation time
of the chain. In units of sweeps,

�q
B =− 1

N ln "1
≈ 1

N (1− "1)
; (7)

which we use to de4ne the associated e2ective free-energy barrier in the overlap
parameter q as

Fq
B ≡ ln (�q

B) : (8)

Our 4nite-size scaling (FSS) analyses of the thus de4ned overlap barriers are based
on the (cumulative) distribution function F(x). More precisely, we used a peaked
distribution function FQ(x) de4ned [17] by reNecting F(x) at its median value 0.5,

FQ(x) ≡
{

F(x) for F(x)6 0:5 ;

1− F(x) for F(x)¿ 0:5 :
(9)

For self-averaging data the function FQ collapses in the in4nite-volume limit to FQ(x)=
0:5 for x = [x]av and 0 otherwise. For non-self-averaging quantities the width of FQ

stays 4nite. The concept carries over to quantities which diverge in the in4nite-volume
limit, when for each lattice size scaled variables x=xmed are used, where xmed denotes
the median de4ned through F(xmed) = FQ(xmed) = 0:5.
The behavior of FQ(F

q
B=F

q
Bmed

) shown in Fig. 2 for T = 1 clearly suggests that Fq
B

is a non-self-averaging quantity. Non-self-averaging was also observed [12] for the
autocorrelation times �muq

J of our algorithm, while the energy is an example for a
self-averaging quantity. For non-self-averaging quantities one has to investigate many
samples and should report the FSS behavior for 4xed values of the cumulative distri-
bution function F . Hence, we performed in Ref. [12] FSS 4ts for F= i=16, i=1; : : : ; 15,
assuming an ansatz suggested by mean-4eld theory [18,19],

Fq
B = a1 + a2 N 1=3 ; (10)

corresponding to �q
B ˙ ea2 N 1=3

. The 4ts are depicted in Fig. 3. The goodness-of-4t
parameter Q turned out to be unacceptably small. We therefore also tried 4ts to
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Fig. 2. Peaked distribution function FQ (9) for the overlap barriers (8) in the spin-glass phase at T = 1 in
units of their median values.
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Fig. 3. FSS 4ts of the overlap barriers Fq
B in the spin-glass phase at T =1 for 4xed values of the distribution

function, F= i=16, i=1; : : : ; 15 (from bottom to top). Shown are the (unacceptable) results for the mean-4eld
prediction (10).

the ansatz

Fq
B = ln(c) + ! ln(N ) ; (11)

corresponding to �q
B˙N!. They lead to far better results. As a function of F

(
= 1

16 − 15
16

)
the exponent !=!(F) in the power law (11) varies smoothly from 0.8 to 1.1. A similar
analysis [12] for the autocorrelation times �muq

J of the MSO algorithm gives exponents
!(F) which are larger, !muq(F) ≈ !q

B(F)+1. This is in agreement with our observation
that other relevant barriers exist, which cannot be detected in the overlap parameter q.
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Fig. 4. Rescaled overlap probability densities for the EAI spin-glass model on L3 lattices at the critical
temperature on a linear scale.

3.2. Averaged probability densities P(q)

At least close to Tc one expects that, up to 4nite-size corrections, the probability
densities scale with system size. A method to con4rm this visually is to plot P′(q) ≡
%P(q) vs. q′=q=%, where % is the standard deviation. By 4tting the standard deviation
to the expected FSS form % = c1L−�=& we obtained [13],

�
&
= 0:312(4); Q = 0:32 for T = 1:14 ; (12)

and

�
&
= 0:230(4); Q = 0:99 for T = 1 : (13)

In Fig. 4 we show the scaling plot [13] for T = 1:14 which demonstrates that the 4ve
probability densities collapse onto a single master curve. Remarkably, this still holds
at T = 1 below the critical point.

3.3. Tails of P(q)

The MSO algorithm becomes particularly powerful when studying the tails of the
probability densities which are highly suppressed compared to the peak values, see
Fig. 5 which shows P(q) at T = 1:14 over more than 150 orders of magnitude. Based
on the replica mean-4eld approach, theoretical predictions for the scaling behavior
of the tails have been derived by Parisi and collaborators [20]. They showed that
P(q) = Pmax f(N (q − q∞max)

x) for q¿q∞max and concluded more quantitatively that

P(q) ∼ exp[− c1 N (q − q∞max)
x] for N (q − q∞max)

x large (14)
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Fig. 5. Tails of the rescaled overlap probability densities for the EAI spin-glass model on L3 lat-
tices at the critical temperature on an logarithmic scale. In the lower part of the plots the deviation
P′
16(q

′) − P′
<t(q

′) ± SP′
16(q

′) of some L = 16 data from the modi4ed Gumbel 4t is shown (with an
unimportant o@set added in order to be inside the 4gure).

with a mean-4eld exponent of x = 3. By allowing for an overall normalization factor
c(N )
0 and taking the logarithm twice we have performed 4ts of the form [21]

Y ≡ ln[− ln(P=c(N )
0 )]− lnN = ln c1 + x ln(q − q∞max) : (15)

Consistent 4ts are only obtained over a rather restricted range of q. Using them anyway,
and leaving the exponent x as a free parameter, we arrived at the estimate x = 12(2),
which is much larger than the mean-4eld value of x = 3.
By looking for reasonable alternatives we realized that for the 2D XY model the

statistics of extremes has led to a good ansatz with universal properties [22,23]. This
is based on a standard result [24,25], due to Fisher and Tippett, Kawata, and Smirnov,
for the universal distribution of the 4rst, second, third, : : : smallest of a set of N
independent identically distributed random numbers. For an appropriate, exponential
decay of the random number distribution their probability densities are given by the
Gumbel form

fa(x) = Ca exp[a(x − ex)] ; (16)

in the limit of large N . The exponent a takes the values a=1; 2; 3; : : : , corresponding,
respectively, to the 4rst, second, third, : : : smallest random number of the set, x is a
scaling variable which shifts the maximum value of the probability density to zero, and
Ca is a normalization constant. For certain spin-glass systems the possible relevance of
this universal distribution has been pointed out by Bouchaud and MUezard [26]. For the
2D XY model in the spin-wave approximation [22,23] the Gumbel ansatz (16) emerges
with a modi4ed value of a= ,=2.
In our case we set x = b(q′ − q′max) and modi4ed the 4rst x on the r.h.s. of (16)

to c tanh(x=c), where c¿ 0 is a constant, in order to reproduce the Nattening of the
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densities towards q′=0. The important large-x behavior of Eq. (16) is not at all a@ected
by this manipulation. By 4tting this ansatz to our data we obtained 4nal estimates [13]
of a = 0:448(40) for T = 1:14 and a = 0:446(37) for T = 1, respectively. The 4ts are
depicted in Fig. 5, and for T = 1:14 our 4t is also included in Fig. 4. We see a good
consistency between the data and the 4t over a remarkably wide range of q′. Most
impressive is the excellent agreement in the tails of the densities. Taking the T =1:14,
L=16 result at face value, we 4nd a very good description over the remarkable range
of 200=ln(10) ≈ 87 orders of magnitude.

4. Summary and conclusions

Employing non-Boltzmann sampling with the MSO MC algorithm we have investi-
gated the probability densities PJ (q) of the Parisi order parameter q. The free-energy
barriers Fq

B as de4ned in Eq. (8) turn out to be non-self-averaging. The logarithmic
scaling ansatz (11) for the barriers at 4xed values of their cumulative distribution func-
tion F is found to be favored over the mean-4eld ansatz (10). Further, relevant barriers
are still reNected in the autocorrelations of the MSO algorithm.
The averaged densities P(q) exhibit a good FSS collapse onto an L-independent

master curve at and slightly below the critical temperature. For the scaling of their
tails towards q=±1 we 4nd no agreement with the decay law predicted by mean-4eld
theory. A good 4t over more than 80 orders of magnitude is obtained by using a
modi4ed Gumbel ansatz, rooted in extreme order statistics [24,25].
The detailed relationship between the EAI spin-glass model and extreme order statis-

tics remains to be investigated, and it is certainly a challenge to extend the work of
Bouchaud and MUezard [26] to the more involved scenarios of the replica theory. In
this context, let us remark that we do not 4nd extreme order statistics for the 3D Ising
model [27], in contrast to the suggestions of Refs. [22,23].
We have performed equilibrium simulations of the model. Using non-equilibrium

methods, its critical properties have also been studied [28].
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