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Abstract

We derive high-temperature series expansions for the free energy and susceptibility of the
two-dimensional random-bond Ising model with a symmetric bimodal distribution of two positive
coupling strengths J1 and J2 and study the in
uence of the quenched, random bond-disorder
on the critical behavior of the model. By analysing the series expansions over a wide range
of coupling ratios J2=J1, covering the crossover from weak to strong disorder, we obtain for
the susceptibility with two di�erent methods compelling evidence for a singularity of the form
� ∼ t−7=4|ln t|7=8, as predicted theoretically by Shalaev, Shankar, and Ludwig. For the speci�c
heat our results are less convincing, but still compatible with the theoretically predicted log–log
singularity. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the most-studied variants of the two-dimensional Ising model is the case of
random bonds. While realizations of Ising models that include randomness come much
closer to approximating reality, they are very much harder to study at any level. Even
in two dimensions exact results for random cases (especially for quenched randomness,
which is the realistic situation in many experiments) are few and far-between. In fact,
the two-dimensional Ising case is especially di�cult because of the marginality of the
Harris criterion [1] for this model. This criterion states that quenched randomness is a
relevant (irrelevant) perturbation when the critical exponent � of the speci�c heat of the
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pure system is positive (negative) and therefore when �=0 as in the two-dimensional
Ising model the situation is marginal.
Numerous theoretical investigations [2–10] as well as numerical Monte Carlo sim-

ulations [11–19] and transfer-matrix studies [20,21] have addressed the question of
whether the critical exponents for the two-dimensional Ising model with quenched, ran-
dom bond disorder di�er from those of the pure model. While a “majority” consensus
had probably been achieved in favor of no change, apart from logarithmic corrections
[4–9], no unambiguous numerical study that con�rmed the quantitative predictions of
either of the theoretical approaches had been made prior to our recent study of the sus-
ceptibility with high-temperature series expansions. In a brief note [22] we announced
the con�rmation of the theoretical majority consensus value of the exponent of the
logarithmic correction. This quantitative determination of the value of the correction
exponent in excellent agreement with the predicted value, using a completely di�erent
numerical approach that in no way depends on random numbers, provided additional
and incontrovertible support to the previous consensus. In the present paper, we present
the coe�cients of the susceptibility series that we analyzed [22] together with some
remarks on their derivation, the details of our analysis, and some additional results for
the speci�c-heat series. We note that a recent simulation of the site-diluted model [23]
also con�rms the log–log prediction of [4–9].
In the next section, we de�ne the model and the quantities that are studied, and

in Section 3 the theoretical predictions are brie
y recalled. The series generation is
described in Section 4, and in Section 5 we describe the analysis techniques used.
Section 6 then presents the results, where details of our analyses for the susceptibility
give compelling evidence for a singularity of the form predicted by Shalaev, Shankar,
and Ludwig [4–9]. In Section 7 we close with a summary of our conclusions and a
few �nal comments.

2. Model

The Hamiltonian of the random-bond Ising model is given by

H=−
∑
〈ij〉
Jij�i�j ; (1)

where the spins �i = ±1 are located at the sites of a square lattice, the symbol 〈ij〉
denotes nearest-neighbor interactions, and the coupling constants Jij are quenched, ran-
dom variables. As in most previous studies we consider a bimodal distribution,

P(Jij) = x�(Jij − J1) + (1− x)�(Jij − J2) ; (2)

of two ferromagnetic couplings J1; J2¿ 0. We furthermore specialize to a symmetric
distribution with x = 1

2 , since in this case the exact critical temperature Tc can be
computed for any positive value of J1 and J2 from the (transcendental) self-duality
relation (kB= Boltzmann constant) [24,25].

(exp(2J1=kBTc)− 1)(exp(2J2=kBTc)− 1) = 2 : (3)
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In both, computer simulations and high-temperature series expansion studies, this exact
information simpli�es the analysis of the critical behavior considerably.
The free energy per site is given by

�f =− lim
V→∞

1
V

[
ln

(
V∏
i=1

∑
�i=±1

)
exp(−�H)

]
av

; (4)

where �=1=kBT is the inverse temperature in natural units and the bracket [ : : : ]av de-
notes the average over the quenched, random disorder, [ : : : ]av=(

∏
〈ij〉
∫
dJij)(: : :)P(Jij).

The internal energy and speci�c heat per site follow by di�erentiation with respect
to �,

e = @�f=@�; C=kB =−�2@2�f=@�2 : (5)

In this paper, we shall mainly focus on the magnetic susceptibility per site � which in
the high-temperature phase and zero external �eld is de�ned as the V → ∞ limit of

�V =



〈(

V∑
i=1

�i

)2〉
T

/
V



av

; (6)

where 〈: : :〉T denotes the usual thermal average with respect to exp(−�H).

3. Theoretical predictions

Let us brie
y recall two contradicting theoretical predictions for the critical behavior
of the model (1) and (2). The �rst is based on renormalization-group techniques
developed by Dotsenko and Dotsenko (DD) [2,3]. For the speci�c heat DD �nd close
to the transition point a double logarithmic behavior,

C(t)˙ ln(ln(1=|t|)) ; (7)

where t = (T − Tc)=Tc denotes the reduced temperature. For the susceptibility they
obtain in the high-temperature phase (t¿0)

�˙ t−2 exp

[
−a
(
ln ln

(
1
t

))2]
: (8)

The second approach by Shalaev, Shankar, and Ludwig (SSL) [4–9] makes use of
bosonization techniques and the method of conformal invariance. While the prediction
(7) for the speci�c heat can be reproduced (which, however, is not undisputed [10]),
SSL derive quite a di�erent behavior for the susceptibility,

�˙ t−7=4|ln t|7=8 : (9)

This is the same leading singularity as in the pure case (J1 = J2), but modi�ed by a
multiplicative logarithmic correction.
High-precision Monte Carlo simulations and transfer-matrix studies [11–20] favor

the latter form, but due to well-known inherent limitations of this method it has been
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Table 1
Coe�cients an of the high-temperature series expansion of the free energy
per site, −�f = ln[2 cosh(�J1) cosh(�J2)] +

∑
n
ankn, with k = 2�J1

n J2=J1 = 1 J2=J1 = 2 J2=J1 = 4 J2=J1 = 10

4 1
16

81
256

625
256

14641
256

6 1
96

81
2048 − 18125

6144 − 5343965
6144

8 17
2560

33671
327680 − 26293

65536 − 990135929
327680

10 1907
483840

3437297
27525120

1057390637
49545216

16514750542133
49545216

impossible to con�rm the value of the exponent of the multiplicative logarithmic cor-
rection in (9) quantitatively. Similar problems have been reported in simulation stud-
ies of other models exhibiting multiplicative logarithmic corrections such as, e.g., the
two-dimensional four-state Potts [26] and XY [27–30] model. We found it therefore
worthwhile to investigate this problem yet again with an independent method. In the
following we report high-temperature series expansions for the free energy and sus-
ceptibility and enquire whether series analyses can yield a more stringent test of the
theoretical predictions.

4. Series generation

For the generation of the high-temperature series expansions of the free energy (4),
and hence the internal energy and speci�c heat, as well as the in�nite-volume limit of
the susceptibility (6) we made use of a program package developed at Mainz originally
for the q-state Potts spin–glass problem [31–36]. In this application the spin–spin inter-
action is generalized from �i�j to ��i; �j with �i being an integer between 1 and q, and
the coupling constants Jij can take the values ±J at random. Since here the coupling
constants also can take negative values, frustration e�ect play an important role and
the physical properties of spin glasses [37] are completely di�erent than those of the
random-bond system. Technically, however, precisely the same enumeration scheme
for the high-temperature graphs can be employed in both cases. The only di�erence is
in the last step where the quenched averages over the Jij are performed . The details
of the employed star-graph expansion technique and our speci�c implementation are
described elsewhere [31–34,36,38]. Here we only note that slight modi�cations of this
program package enabled us to generate the high-temperature series expansion for �f
and � up to the 11th order in k = 2�J1 for
• hypercubic lattices of arbitrary dimension d,
• arbitrary number of Potts states q,
• arbitrary probability x in the bimodal distribution, and
• arbitrary ratios R= J2=J1, characterizing the strength of the disorder.
In this paper, we shall concentrate on the two-dimensional (d = 2) random-bond

Ising model (q = 2) for a symmetric (x = 1
2) bimodal distribution of two positive
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Table 2
Coe�cients bn of the high-temperature series expansion of the susceptibility per
site, � = 1 +

∑
n
bnkn, with k = 2�J1

n J2=J1 = 1 J2=J1 = 2 J2=J1 = 4 J2=J1 = 10

1 2 3 5 11

2 3 27
4

75
4

363
4

3 13
3

231
16

3115
48

31933
48

4 23
4

1809
64

13025
64

277937
64

5 451
60

69337
1280

471185
768

101248147
3840

6 191
20

515871
5120

1823875
1024

768499919
5120

7 30283
2520

79576207
430080

1302083479
258048

1034056024661
1290240

8 100003
6720

191638233
573440

4823704415
344064

7079050432267
1720320

9 3318601
181440

587805509
983040

203928262469
5308416

3850544162365417
185794560

10 3369629
151200

48645511629
45875200

5160699783175
49545216

126985060534491247
1238630400

11 269543489
9979200

101837138460677
54499737600

9157142004160957
32699842560

1069481408075459203
2123366400

coupling strengths J1 and J2. The series coe�cients of the free energy and susceptibility
expansions for various coupling-strength ratios R= J2=J1 are given in Tables 1 and 2.
Of course, in principle it would be also straightforward to adapt the present program
package to more general probability distributions P(Jij).

5. Series analysis techniques

In the literature, many di�erent series analysis techniques have been discussed which,
depending on the type of critical singularity at hand, all have their own merits and
drawbacks [39]. In the course of this work we have tested quite a few of them [39,38].
Here, however, we will con�ne ourselves to only those which turned out to be the most
useful for our speci�c problem at hand.
To simplify the notation we denote a thermodynamic function generically by F(z)

and assume that its Taylor expansion around the origin is known up to the N th order,

F(z) =
N∑
n=0

anzn + · · · : (10)

If the singularity of F(z) at the critical point zc is of the simple form (z6zc)

F(z) ' A(1− z=zc)−� ; (11)

with A being a constant, then the ratios of consecutive coe�cients approach for large
n the limiting behavior

rn ≡ an
an−1

'
[
1 +

�− 1
n

]
1
zc
: (12)

From the o�set (1=zc) and slope ((�−1)=zc) of this sequence as a function of 1=n both
the critical point zc and the critical exponent � can be determined. This is the basis
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of the so-called ratio method [40]. If the critical point zc is known from other sources
(in our case exactly from self-duality), then one may consider biased extrapolants for
the critical exponent,

�n = nrnzc − n+ 1 ; (13)

which simply follow by rearranging Eq. (12). In the following, this method will be
denoted as “Biased Ratio I”.
If the singularity of F(z) contains a multiplicative logarithmic correction (as, e.g.,

in the SSL prediction for �),

F(z) ' A(1− z=zc)−�|ln(1− z=zc)|p ; (14)

then one forms the ratios rn as before, but considers in addition the auxiliary function
[41]

z−p
∗
(1− z)−�(ln[1=(1− z)])p∗

=
N∑
n=0

bnzn + · · · ; (15)

and computes the ratios r∗n =bn=bn−1. Let us �rst assume that the critical exponent � of
the leading term is known. Then it can be shown that the sequence Rn=rn=r∗n approaches
1=zc with zero slope in the limit n→ ∞, if and only if p∗ =p. This determines p, if
also zc is known. If � is not known, then one may vary both exponents until the above
relation is satis�ed. In the following, we refer to this special ratio method as “Ln-Ratio”.
Another method [42,43] suitable for a singularity of the form (14) is based on Pad�e

approximants [44]. Here one generates the series expansion for the auxiliary function

G(z) =−(zc − z) ln(zc − z)
(
F ′(z)
F(z)

− �
zc − z

)
; (16)

which can easily be shown to satisfy

lim
z→zc

G(z) = p : (17)

If zc is known, the value of G(z) at z = zc can be obtained by forming Pad�e approxi-
mants,

G(z) ≈ [L=M ] ≡ PL(z)
QM (z)

=
p0 + p1z + p2z2 + · · ·+ pLzL
1 + q1z + q2z2 + · · ·+ qMzM ; (18)

with L+M6N − 1. Note that one order of the initial series is lost due to the di�er-
entiation in (16).
With a small modi�cation this method can also be applied to a purely logarithmic

singularity of the form

F(z) ' A|ln(1− z=zc)|p : (19)

In this case one de�nes the auxiliary function

G(z) =−(zc − z) ln(zc − z)F
′(z)
F(z)

; (20)
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Fig. 1. Analysis of the susceptibility series assuming a singularity of the form � ˙ t−
, using the method
“Biased Ratio I”.

which again satis�es

lim
z→zc

G(z) = p : (21)

The two analysis methods based on Pad�e approximants will be called “Ln-Pad�e”.

6. Results

6.1. Susceptibility

In a �rst step, we investigated whether our series expansions for the susceptibility
are consistent with a pure power-law behavior according to the DD prediction (8)
(ignoring the exponentially small multiplicative correction term). Assuming thus the
behavior � ˙ t−
 and using the method “Biased Ratio I” we obtained the critical
exponents 
 shown in Fig. 1 as a function of J2=J1. Here and in the following the
error bars are estimated by varying the length of the series and=or the type of Pad�e
approximants used. Starting with 
 = 1:738 ± 0:014 for the pure case (J2=J1 = 1),
being consistent with the exact value of 
 = 7=4, we observe a steady increase to

 = 2:37 ± 0:11 for the strongest investigated disorder (J2=J1 = 10). We will argue
below that the apparent crossover from weak to strong disorder is due to the �nite
length of our series expansion which naturally has a much more dramatic in
uence for
weak disorder. At any rate, for strong disorder the DD prediction of 
 = 2 is clearly
outside the error margins of the series analysis estimates.
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Fig. 2. Analysis of the susceptibility series assuming a singularity of the form � ˙ t−7=4|ln t|p, using Pad�e
approximants and the ratio method (see text). The horizontal line at p = 7=8 = 0:875 is the theoretical
prediction of SSL.

So far no multiplicative logarithmic corrections were taken into account. If the SSL
prediction (9) was correct we would, therefore, expect to observe “e�ective” critical
exponents which according to

�˙ t−7=4|ln t|7=8 = t−(7=4)[1+(1=2)ln(|ln t|)=ln(1=t)] (22)

should indeed be larger than 7=4. The results in Fig. 1 could thus be well consistent
with a critical exponent of 
 = 7=4 in the presence of a multiplicative logarithmic
correction.
This possibility suggested a more careful analysis based on the qualitative form of

the SSL prediction (9). Our series are too short to employ a general ansatz with both
exponents as free parameters. We rather �xed the exponent 
=7=4 of the leading term
to the (predicted) pure Ising model value and enquired if our series expansions are
compatible with the ansatz

�˙ t−7=4|ln t|p ; (23)

and p=7=8. Employing the two special methods for this type of singularity described in
Section 5 we obtained well converging results. The resulting estimates for the exponent
p are shown in Fig. 2. We see that the two methods yield consistent results which
start in the pure case (J2=J1 = 1) around p = 0, as they should do. With increasing
disorder the estimates exhibit again an apparent crossover, until around J2=J1 = 5 − 8
they settle at a plateau value in very good agreement with the theoretical prediction
of p = 7=8. This is the main result of our series analysis. We claim that compared
with previous methods this is thus far the clearest quantitative con�rmation of the SSL
prediction (9).
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As before we attribute the apparent crossover for intermediate strength of the dis-
order to the shortness of our series expansions, i.e., we interpret the crossover as an
unavoidable artifact of high-temperature series expansion analyses and not as an indica-
tion that the exponent p really is a function of the disorder strength. We thus take the
view that already a small amount of disorder drives the system into a new universality
class di�erent from the pure case which, however, only becomes visible in the very
vicinity of the transition point Tc (or t = 0). This in turn translates into the need of
extremely long series expansions in order to be detectable.
To justify this claim we have investigated a model function simulating the “true”

susceptibility, where g0¿0 is a constant that depends on the strength of the
disorder,

�model = ṫ
−7=4

[
1 +

4g0
� ln(1=ṫ)

]7=8
; (24)

with ṫ = (T − Tc)=T , which for any g0 6= 0 reproduces the SSL form (9) in the limit
T → Tc (ṫ= t− t2 + t3 + · · · → 0). Notice the discontinuity in the asymptotic behavior
at g0 = 0. For any g0 6= 0 the asymptotic region is reached when ln(1=t) is much
larger than �=4g0, i.e., for t.exp(−�=4g0). Since g0 = 0 corresponds to the pure case
it is intuitively clear that the parameter g0 is an increasing function of the degree of
disorder. For weak disorder this implies that g0 is very small and therefore, due to the
exponential dependence, that the asymptotic region in t is extremely narrow.
Strictly speaking the model function (24) should resemble the “true” susceptibility

only for weak disorder, but it is commonly believed that it is a reasonable qualitative
approximation also for strong disorder. To relate the parameter g0 at least heuristically
to the ratio J2=J1 we used the weak disorder result g0 = c2a2=(1 + ab)2, where c2 =
1− x (with x as de�ned in Eq. (2)) is assumed to be small, c2. 1, i.e., the analytic
calculation assumes that there are only few J2-bonds in a background of J1-bonds.
The parameters a and b are given by a = (v′c − v(0)c )=v

(0)
c and b = v(0)c =2

√
2, where

v(0)c =tanh(�(0)c J1)=
√
2−1 and v′c=tanh(�(0)c J2), with �(0)c denoting the inverse critical

temperature of the pure system with all Jij=J1. Of course, employing this formula to the
present case with c2 =1=2=x is a bold step which even creates an ambiguity since the
exact symmetry J1 ↔ J2 for x=1=2 is violated. For weak disorder (J2=J1 ≈ 1), however,
the inconsistency turns out to be very mild. For J2=J1=1:2 we obtain g0=0:013700 : : : ;
and for J2=J1 =1=1:2 we �nd a slightly smaller value of g′0 =0:011958 : : : . This shows
that for weak disorder (J2=J1 = 1:2, g0 ≈ 0:013) the asymptotic region is bounded by
t.exp(−�=4g0) ≈ exp(−1=0:017) ≈ 10−26, and thus explains why it is so di�cult to
observe the asymptotic critical behavior in the weak-disorder limit. For J2=J1 =1:5 and
1=1:5 the corresponding numbers are g0 = 0:070700 : : : and g′0 = 0:052889 : : : ; leading
to a bound of the order of t.10−5.
Using a symbolic computer program it is straightforward to generate the high-

temperature series expansion of the model function (24) to any desired order. Applying
the same analysis techniques as used for the “true” susceptibility series we obtained
the results shown in Fig. 3. If we truncate the model series at low order we observe
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Fig. 3. Analysis of the series expansion of the model function (24), using the ansatz �model ˙ t−7=4|ln t|p.
The legend indicates the three di�erent Pad�e approximants shown. The horizontal line shows the exact value
p = 7=8 = 0:875.

qualitatively the same crossover e�ect as for the “true” series. Here we are sure, how-
ever, that this must be a pure artifact of the truncation of the model series at a �nite
order. We also see that the approach of the asymptotic limit of p= 7=8 as a function
of the degree of disorder is faster if we consider a longer series (21 terms). It is, how-
ever, somewhat discouraging (even though understandable in view of the exponential
dependence of the critical regime on g0) that at a �xed g0 the convergence of the series
with increasing order is quite slow. For example, at 4g0=�=1 we obtained p=0:7056
with the Pad�e approximant [4=4], 0:7178 ([5=5]), 0:7474 ([10=10]), 0:7682 ([20=20]),
0:7777 ([30=30]), 0:7834 ([40=40]), 0:7875 ([50=50]), and 0:7905 ([60=60]). The con-
vergence behavior for this example and other small values of the parameter g0 can be
visually inspected in Fig. 4.

6.2. Speci�c heat

Series analyses for the speci�c heat are usually more di�cult than for the suscepti-
bility. This is especially pronounced for the Ising model on loose-packed lattices where
all odd powers of � vanish because of symmetry. Consequently, our speci�c-heat series
consists only of four nontrivial terms (see Table 1). We nevertheless tried an analysis
with the ansatz

C ˙ |ln t|q ; (25)

using the method “Ln-Pad�e”. The exponent q is an e�ective exponent whose value
may, or may not be constant.
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Fig. 4. Convergence behavior of the model series (24) for the susceptibility with increasing order at �xed
parameter g0. The symbols [L=M ] denote the various Pad�e approximants used.

Fig. 5. Analysis of the speci�c-heat series using the Ln-Pad�e method.

The resulting dependence of the exponent q on the ratio J2=J1 is shown in Fig. 5.
While the quantitative agreement with the exactly known pure case is certainly not
convincing, we do see at least a qualitative trend to smaller values of q with increas-
ing strength of the disorder (increasing ratios J2=J1), i.e., the singularity of the speci�c
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Fig. 6. Analysis of the series expansion of the model speci�c-heat using the Ln-Pad�e method.

heat becomes apparently weaker for stronger disorder. This may be taken as an indi-
cation that the true singularity is of the log–log type (7) as predicted by both, DD and
SSL. A recent numerical study [21] for J2=J1 = 4 using transfer-matrix methods also
observed a behavior in between log and log–log type. These �ndings are in contradic-
tion to the claim [45,46] for a slightly di�erent disordered system (quenched, random
site-dilution) that the speci�c heat stays �nite at Tc, as theoretically suggested in Ref.
[10] (see also Refs. [47–49]).
Again we have tried to justify our interpretation by considering a model function,

Cmodel =
1
g0
ln
[
1 +

4g0
� ln(1=ṫ)

]
: (26)

By applying precisely the same type of analysis to the series expansion of the model
speci�c-heat we obtained the results displayed in Fig. 6, which show qualitatively the
same trend of decreasing q as a function of J2=J1 as the data in Fig. 5.

7. Discussion

The main results of our high-temperature series analysis are shown in Fig. 2 which
provide at least for strong disorder (large J2=J1) compelling evidence that the singularity
of the susceptibility is properly described by � ˙ t−7=4|ln t|p, with p = 7=8 = 0:875,
as theoretically predicted by SSL [4–9]. The analysis of the model susceptibility (24)
in Figs. 3 and 4 clearly shows that the apparent variation of p with the strength of
disorder is an artifact caused by the truncation of the series expansions at a �nite order.
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We, therefore, emphasize that the apparent crossover from weak to strong disorder
does not imply that the universality class of the random-bond Ising model changes
continuously with the strength of disorder.
Let us �nally make a few comments on previous Monte Carlo simulations of this

model on large but �nite square lattices. With the �nite-size scaling analysis of
Refs. [11–15,20], it is conceptually impossible to detect the multiplicative logarithmic
correction of the SSL prediction (9). The reason is that the SSL theory also predicts a
logarithmic correction for the scaling behavior of the correlation length, �˙ t−1|ln t|1=2.
In the �nite-size scaling behavior the two logarithms thus cancel and one ends up with
a pure power-law, � ˙ L
=� = L7=4, where L is the linear lattice size. Thus, only the
SSL prediction for 
=� can be tested in �nite-size scaling analyses. Wang et al. [12,13]
obtained for J2=J1 =4 and 10 an estimate of 
=�=1:7507±0:0014, and also the results
of Reis et al. [20] at J2=J1 = 2; 4 and 10 are consistent with 
=� = 1:75. Among the
two alternatives, the theories of DD and SSL, these estimates thus provide evidence
in favor of SSL. Notice, however, that a numerical estimate of 
=� ≈ 1:75 would also
be expected for the pure two-dimensional Ising model. For the speci�c heat the situ-
ation is conceptually clearer. Here the theoretically expected scaling behavior (7), as
predicted by both, DD and SSL, translates into a double-logarithmic �nite-size scaling
behavior, C=C0+C1 ln(1+b ln L), which is di�erent from that of the pure case where
C=C0 +ln L. In the numerical work of Wang et al. [12,13], employing lattice sizes up
to L=600, this di�erence in the asymptotic behavior is clearly observed for J2=J1=10,
while for J2=J1 = 4 the behavior is in between log and log–log type, similar to the
�ndings reported in a recent transfer-matrix study [21] for the same coupling-constant
ratio. For the speci�c heat these latest �nite-size scaling analyses are thus about as
conclusive as our series analyses in Fig. 5.
Another set of numerical data that can discriminate between the predictions of DD

and SSL comes from direct simulations of the temperature dependence of the magne-
tization m and of the susceptibility � for J2=J1 = 4 [13,16]. Assuming in the analysis
a pure power law with an e�ective exponent (i.e., ignoring the logarithmic correc-
tion), one observes an overshooting of the e�ective exponent to values larger than
the prediction by SSL. As discussed above (recall Eq. (22)) this may be taken as an
indication of a multiplicative logarithmic correction term. For example, Talapov and
Shchur [16] obtained for J2=J1 = 4 from least-squares �ts to � ˙ t−
e� an e�ective
exponent of 
e� ≈ 7=4 + 0:135 = 1:885. This value is quite close to our series esti-
mate of 
e� = 2:019 ± 0:024 for J2=J1 = 4, if the pure power-law ansatz is used (cf.
Fig. 1). Wang et al. [13] furthermore con�rmed that their data is compatible with the
SSL ansatz, �(t) = �0t−7=4(1 + at)[1 + b ln(1=t)]7=8, supplemented by a correction to
scaling term (1+at) (and similarly for m; for a recent con�rmation, see Ref. [19]). In
these �ts both exponents are kept �xed at their predicted values, and �0, a, and b are
free parameters. In contrast to our series analysis, however, no quantitative estimates
of the exponent of the logarithmic correction have been reported in Ref. [13]. While
the simulation results certainly indicate that among the two con
icting theories of DD
and SSL, the SSL prediction is more likely to be correct, it is still fair to conclude
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that also this set of simulations has not yet unambiguously identi�ed the multiplicative
logarithmic correction term.
Monte Carlo simulations of systems with quenched, random disorder require an enor-

mous amount of computing time because many realisations have to be simulated for
the quenched average. For this reason it is hardly possible to scan a whole parameter
range. Using high-temperature series expansions, on the other hand, one can obtain
closed expressions in several parameters (such as the dimension d; x; J2=J1; : : :) up
to a certain order in the inverse temperature �= 1=kBT . Here the in�nite-volume limit
is always implied and the quenched, random disorder can be treated exactly. By ana-
lyzing the resulting series, the critical behavior of the random-bond system can hence
in principle be monitored as a continuous function of several parameters. This is a
big advantage over Monte Carlo simulations which usually can only yield a rather
small parameter range in one set of simulations. The caveat of the series-expansion
approach is that the available series expansions for the random-bond Ising model are
still relatively short (at any rate much shorter than for pure systems). This introduces
systematic errors of the resulting estimates for critical exponents which are di�cult to
control. The obvious way out is trying to extend the series expansions as far as pos-
sible. This, however, would be extremely cumbersome since the number of algebraic
manipulations necessary to calculate the series coe�cients blows up dramatically with
the order of the series (usually at least exponentially) and, therefore, has to be left for
future work.
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