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Abstract

Canonical Monte Carlo simulations of disordered systems like spin glasses and systems un-
dergoing �rst-order phase transitions are severely hampered by rare event states which lead to
exponentially diverging autocorrelation times with increasing system size and hence to expo-
nentially large statistical errors. One possibility to overcome this problem is the multicanonical
reweighting method. Using standard local update algorithms it could be demonstrated that the
dependence of autocorrelation times on the system size V is well described by a less divergent
power law, �∝V�, with 1¡�¡3, depending on the system. After a brief review of the basic
ideas, combinations of multicanonical reweighting with non-local update algorithms will be dis-
cussed. With the multibondic algorithm, which combines multicanonical reweighting with cluster
updates, the dynamical exponent � can be reduced to unity, the optimal value one would expect
from a random walk argument. Asymptotically for large system sizes the multibondic algorithm
therefore always performs better than the standard multicanonical method. Finally it is shown
that a combination with multigrid update techniques improves the performance of multicanonical
simulations by roughly one order of magnitude, uniformly for all system sizes. c© 1998 Elsevier
Science B.V. All rights reserved

1. Introduction

Advances in statistical physics have increased dramatically our understanding of the
behavior of a large variety of macroscopic systems. Over the years emphasis has shifted
to more and more complex systems, such as disordered media, macromolecules, and
glassy magnets and materials. Analytic progress towards deeper understanding of these
systems has been limited. The scarcity of exact results and the unreliability of mean-
�eld type approaches call for development of powerful numerical tools for disordered
complex systems.
One approach is computer simulations based on importance sampling Monte Carlo

methods [1–5]. The idea is to generate a Markov chain through phase space such
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that the frequency of sampled system states � coincides with a given probability
distribution. Most simulation studies work with the canonical ensemble where the mi-
croscopic states � are distributed according to the Boltzmann distribution,

Pcan(�)∝ exp(−�H (�)) ; (1)

with �=1=kBT being the inverse temperature in natural units and H the Hamiltonian of
the system. While this choice has a strong physical motivation, it does not necessarily
yield the most e�cient performance of the simulations.
That non-Boltzmann sampling would be, in principle, a legitimate alternative has

been known since the early days of Monte Carlo simulations [2]. Its practical signi�-
cance was �rst realized by Torrie and Valleau [6], who proposed the use of so-called
“umbrella sampling” techniques. Most of the early applications aimed at a reliable
computation of free energies which are unacceptably poorly estimated in canonical
Boltzmann sampling. In the following years attention slowly shifted to the problem
of rare event sampling and related problems with quasi-ergodicity [7]. Still, it took
many years and needed the work on the multicanonical scheme [8,9] before the idea
of non-Boltzmann sampling turned into a widely accepted practical tool in computer
simulation studies of phase transitions and complex physical systems.
In the next section a few typical phenomena are described where canonical

Boltzmann sampling is extremely ine�cient. The idea of multicanonical Monte Carlo
sampling and some applications are discussed in Section 3. In Section 4 the multibondic
method is described which combines multicanonical reweighting with non-local cluster
updates. In Section 5 another combination with non-local multigrid update schemes is
briey mentioned, and Section 6 contains a summary of the main results.

2. Problems of canonical sampling

In order to see the potential problems of canonical Boltzmann sampling it is useful
to consider reduced distribution functions which depend only on a few macroscopic ob-
servables {Qi} like the energy, the magnetization, or the overlap parameter in spin glass
simulations. Formally this can be derived by introducing delta-function constraints in
the canonical partition function and summing over the microscopic degrees of freedom.
This gives a reduced distribution Pcan({Qi})∝ exp(−�F({Qi})), where F({Qi}) is a
coarse grained free energy or e�ective potential of the relevant macroscopic degrees of
freedom. If we choose Qi=E to be the energy of the system, then �F(E)= �E−S(E),
where S(E)= ln
(E) is the (microcanonical) entropy and 
(E) the density-of-states
function, and Pcan(E)∝ exp(−�F(E)) = 
(E) exp(−�E) is just the ordinary energy
distribution. For complex physical systems these e�ective potentials often have a com-
plicated rugged landscape with many minima and maxima which usually become more
pronounced with increasing system size. While the minima correspond to the most
probable regions in phase space, the maxima represent “rare event states” which are
hardly sampled in the canonical Monte Carlo process.
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Fig. 1. Canonical and multicanonical probability distributions Pcan(m) and Pmuca(m) of the magnetization in
the 2D �4 lattice model (g=0:25; �2 = 1:4; L=64) on a logarithmic scale.

The simplest phenomenon illustrating the problems of canonical Boltzmann sam-
pling are �rst-order phase transitions [10,11]. In large but �nite systems mixed-phase
con�gurations containing interfaces can occur which are identi�ed as the rare event
states. Compared with the pure phases their probability is suppressed by a factor
∝ exp(−2�LD−1), where � is the (reduced) interface tension and LD−1 the cross-
section of a D-dimensional system; see Fig. 1. The factor 2 reects the fact that for
the usually employed periodic boundary conditions at least two interfaces are present.
In order to achieve equilibrium between the two (or more) probable regions in phase
space the Monte Carlo process has to pass many times through these rare event states.
This leads to autocorrelation times that are exponentially large in the system size,
�∝ exp(2�LD−1) – a phenomenon often termed supercritical slowing down. The au-
tocorrelation times are easily visualized by looking at the temporal evolution of the
observables. A plot of such a time series for the magnetization at the �eld-driven �rst-
order phase transition in the 2D �4 lattice model is shown in Fig. 2a. We see that the
systems stays for a long time in one of the two ordered phases (corresponding to the
two peaks of Pcan(m) shown in Fig. 1) and then suddenly jumps through the rare event
region to the other side. The autocorrelation time � is proportional to the average time
spent in the pure phases during each visit.
Since this type of slowing down is directly linked with the shape of the canonical

probability distribution, even sophisticated non-local update schemes such as cluster
or multigrid techniques [3–5] cannot overcome this problem. One possible solution
is to simulate auxiliary distributions whose shape is more regular and to reconstruct
canonical expectation values at the end by reweighting. This is the basic idea underlying
umbrella sampling [6] and the multicanonical scheme [8,9,12]. Related strategies, where
one or more parameters are elevated to become dynamical degrees of freedom, are the
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Fig. 2. Time evolution of magnetization measurements in (a) canonical and (b) multicanonical simulations
of the 2D �4 lattice model.

expanded ensemble method [13], simulated [14] and parallel [15] tempering, and the
dynamical-parameter method [16].

3. Multicanonical sampling

The multicanonical sampling method can be divided into two conceptually di�erent
approaches. The �rst is based on “enhancing the probability of rare event states”,
which is the typical strategy for dealing with �rst-order phase transitions. This allows
the study of properties of the rare event states, for example interface tensions, which
would be impossible with the expanded ensemble or tempering methods. The second
approach can be best described by “avoiding rare events” which is closer in spirit to
the alternative methods. In this variant one tries to connect the important parts of phase
space by “easy paths” which go around the suppressed rare event regions.
In multicanonical simulations the canonical Boltzmann distribution (1) is replaced

by

Pmuca(�)∝ exp(−�H (�)− f({Qi(�)})) ; (2)

where the reweighting factor w({Qi})≡ exp(−f({Qi})) is chosen in such a way that
the probability distribution of the macroscopic variables {Qi} takes the desired form.
Before discussing the choice of the variables {Qi} and the form of f, it should be
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emphasized that, whatever these choices are, canonical expectation values of any ob-
servable O can always be recovered exactly by inverse reweighting,

〈O〉can = 〈O exp(f({Qi}))〉muca=〈exp(f({Qi}))〉muca : (3)

The performance of the simulation, however, does depend crucially on the choice of
{Qi} and the form of f – in the limiting case f≡ 0 we are, of course, back to the
troublesome canonical case.
The proper identi�cation of the relevant set of Qi’s requires considerable physical

intuition and insight into the speci�c system under study. While for disordered complex
systems this is a serious problem, in studies of �rst-order phase transitions the proper
choice is clear. At a temperature-driven transition the energy E is the relevant variable,
and at a �eld-driven transition one should consider the magnetization M or order
parameter Q. In the �rst case, Pcan(E) exhibits a double-peak structure in the vicinity
of the transition point, which becomes more and more pronounced with increasing
system size. Here the weight function f(E) in Eq. (2) is usually chosen such that the
multicanonical distribution Pmuca(E) of the energy is at between the two peaks of the
canonical distribution [17]. Similarly, in the so-called multi-magnetical variant [18,19]
one aims at a at magnetization distribution; see Fig. 1 for an example. At �rst sight it
may appear natural to require that the macroscopic variables Qi are uniformly sampled.
The method is, however, by no means restricted to this choice, and it has in fact been
argued that in certain applications non-uniform distributions are more appropriate [20].
An important technical point is the procedure for constructing the multicanonical

weight factor [21–27]. For a uniform multicanonical distribution the formal solution
is exp(−f({Qi}))=Pcan({Qi})−1. Of course, the probability distribution on the r.h.s.
is not known at the beginning and one has to proceed by iteration. Starting with
the canonical weight, or some initial guess based on results for already simulated
smaller systems together with �nite-size scaling extrapolations, one performs a short
simulation to get an improved estimate of the canonical distribution. When this is
inverted one obtains a new estimate of the multicanonical weight factor, which then is
used in the next iteration and so on. In this naive version only the simulation data of
the last iteration are used in the construction of the improved weight factor. A more
sophisticated procedure, in which the new weight factor is computed from all available
data accumulated so far, was proposed in Ref. [24] and recently improved in Ref. [27].
In principle one could construct non-canonical probability distributions for a whole

set of macroscopic variables Qi. In practice, however, this is rarely done. First, the
construction of the weights becomes much more tedious. And second, also the perfor-
mance of the production runs would slow down quite dramatically. For an idealized
at multicanonical distribution in one macroscopic variable a random walk argument
suggests that �∝V�, with �=1. The important point is, of course, that the exponential
supercritical slowing down of the canonical formulation is replaced by a much weaker
power law. But even a power-law scaling can be disastrous if the exponent � is not
small. And this would inevitably be the case for a at higher-dimensional distribution
since a much bigger space would have to be scanned by the random walk.
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Most multicanonical simulations are therefore performed with Qi=E=H or Qi=M .
The time evolution of magnetization measurements in a multicanonical (or, more pre-
cisely, multimagnetical) simulation is shown in Fig. 2b. Being a reweighting approach,
the multicanonical method can, in principle, be combined with any legitimate update
algorithm. In an actual implementation di�culties may arise, however, from the fact
that due to the non-linear function f(H) the e�ective multicanonical Hamiltonian

Hmuca =H + f(H)=� (4)

is implicitly non-local. For other choices of Qi the situation is similar. Most stud-
ies therefore employed local update algorithms (Metropolis or heat-bath) which are
straightforward to adapt to Hmuca [9,28]. The numerical estimates for � scale indeed
with the expected power law, �∝V�, but with non-trivial exponents �¿1 (�≈ 1:3 for
2D Potts models) [12,17,29].
An important application of “enhancing rare events” in multicanonical simulations

is the estimation of interface tensions, using the histogram method [30],

2�L=
1
Ld−1

ln(Pmaxcan =P
min
can ) ; (5)

and �nite-size scaling extrapolations in L. Even though this method was proposed
already some time ago, it could never really be exploited in canonical simulations
because of the statistical noise of the interface con�gurations. The �rst multicanonical
studies concentrated on relatively simple systems like Ising and Potts models. While
in the 2D Ising model the exactly known interface tension between the two ordered
phases at low temperatures could easily be reproduced [18], the 3D studies revealed
severe problems with �nite-size scaling extrapolations [19] which remained unnoticed
in previous canonical simulations of smaller systems. At the time of the simulations of
the 2D 7-state [28] and 10-state [9] Potts models, the resulting estimates of the order–
disorder interface tension could only be compared with alternative numerical methods.
Since the di�erences turned out to be huge [31], it was gratifying that shortly after the
numerical studies an exact formula could be derived [32] which is in nice agreement
with the multicanonical results. With later re�nements in the data analysis impressive
agreement could be achieved [33–36]. Other applications of multicanonical simulations
are studies of the coexistence curve in a Lennard–Jones uid [37] and of the liquid–
vapor asymmetry in pure uids [38]. Furthermore, multicanonical simulations have also
been applied to the �rst-order phase transitions in SU(3) lattice gauge theory [39,40]
and in the electroweak standard model [41,42]. On the theoretical side, the improved
accuracy allowed signi�cant tests of �nite-size scaling theories for �rst-order phase
transitions [43–45].
The second strategy of “avoiding rare events” can be best explained for the example

of a simple magnet at low temperatures, as described by, e.g., the Ising model. Instead
of enhancing the probability of interface con�gurations in between the two ordered
phases, one constructs multicanonical weights such that the energy distribution is at
between the lowest and highest possible energies. This allows the system to travel freely
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back and force in energy, thereby choosing one or the other low-energy branch when
coming back from the disordered phase. Since the ordered phases are now connected by
the path through the disordered phase, their relative probabilities are properly sampled
without the need of going through the highly suppressed interface con�gurations.
While this appears obvious for the simple Ising model, the properties of this second

approach are much more involved in spin glass simulations where the phase structure
at low temperatures is a priori unknown. For the dynamical behavior of this algorithm
in applications to the Edwards–Anderson Ising spin glass in two and three dimensions
values of �≈ 2:2 and �≈ 2:8, respectively, were reported in Refs. [21,46,47]. Another
interesting application of this type of multicanonical simulations are studies of tertiary
protein structures [48,49].
The remaining slowing down problem in multicanonical simulations is still severe.

In fact, it is even worse than the critical slowing down of local Monte Carlo al-
gorithms at a second-order phase transition. In this context major progress has been
made by the development of non-local updates schemes such as cluster and multigrid
algorithms [3–5]. It appeared therefore worthwhile to enquire if also the performance
of multicanonical simulations can be further improved by combining the reweighting
idea with one of the more sophisticated non-local update algorithms. In the next two
sections some results for combinations with cluster algorithms and multigrid schemes
are reported.

4. Multibondic sampling

In this section we con�ne the discussion to q-state Potts models with partition func-
tion

ZPotts =
∑
{�i}

e−�E ; E=−
∑
〈ij〉
��i�j ; �i=1; : : : ; q ; (6)

but generalizations to any model allowing some kind of (embedded) cluster represen-
tation should be straightforward.
For Potts models the construction of cluster update algorithms can be easily derived

from the equivalent Fortuin–Kasteleyn representation [50,51],

ZPotts =
∑
{�i}

∑
{bij}

∏
〈ij〉
[�bij ;0 + p��i�j �bij ;1] (7)

=
∑
{bij}

pBqNc ; (8)

where p= e�−1. Bonds with bij =0 or 1 are interpreted as “passive” or “active” bonds,
respectively. Sites connected by active bonds belong to the same cluster. B=

∑
〈ij〉 bij

counts the number of active bonds and Nc is the number of clusters (including one-site
clusters) for a given bond con�guration.
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Fig. 3. (a) Canonical and (b) multibondic energy and bond histograms for the 3D 4-state Potts model at
�=0:62857 on a 203 lattice. The bond histograms are plotted vs B(p + 1)=p with p=exp(�)− 1.

The crucial observation [52] is that the canonical bond distribution Pcan(B) is very
similar to the energy distribution Pcan(E). For an illustration see Fig. 3. In general this
is suggested by the identity

〈E〉=−p+ 1
p

〈B〉 ; (9)

and similar relations for the higher-order moments [52–54]. From Fig. 3a it is clear
that the probabilities of the strongly suppressed interface con�gurations can also be
enhanced by reweighting the bond distribution instead of the energy distribution. This
suggested the introduction of a “multibondic” partition function [52]

Zmubo =
∑
{�i}

∑
{bij}

∏
〈ij〉
[p��i�j �bij ;1 + �bij ;0] exp(−f(B)) ; (10)

where the choice exp(−f(B))=Pcan(B)−1 would assure that Pmubo(B)= const. The con-
struction of f(B) proceeds similarly to the multicanonical case and again any reason-
able approximation of Pcan(B) can be used in practice. As is shown in Fig. 3b, once
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Fig. 4. Multibondic and canonical data for the scaled “microbondic” (�xed B) expectation values of the
energy 〈〈|E|〉〉(B)=B (left plot) and the scaled “microcanonical” (�xed E) expectation values of the total bond
number 〈〈B〉〉(E)=|E| (right plot) in the 2D 20-state Potts model on a 102 lattice at � = �t = ln(1 +

√
20).

The horizontal line on the r.h.s. is the exact canonical result p=(p + 1) with p=exp(�)− 1.

the multibondic bond distribution Pmubo(B) is approximately at between the two peaks
of the canonical distribution this is also the case for the energy distribution Pmubo(E).
The multibondic reweighting factor a�ects only the �rst step of the standard

Swendsen–Wang cluster update algorithm [55]:
(1) If �i 6= �j, set bij =0 as usual. If �i= �j, then assign new values bnewij =0 and 1

with relative probabilities exp(−f(B′)) :p exp(−f(B′ + 1)), where B′=B− boldij .
(2) Identify clusters of spins that are connected by “active” bonds (bij =1).
(3) Draw a random value 1; : : : ; q independently for each cluster and assign this

value to all spins in a cluster.
The standard cluster algorithm is obviously recovered by setting f≡ 0 in the �rst

step.
The properties of the multibondic cluster update can be visualized by measuring

the conditional “microbondic” (�xed B) and “microcanonical” (�xed E) probability
distributions PB(E) and PE(B), respectively. Since for a given bond con�guration with
bond number B the update of the spins proceeds in precisely the same way as in the
canonical cluster algorithm, PB(E) should look the same in multibondic and canonical
simulations. This is demonstrated on the l.h.s. of Fig. 4 where the �rst “microbondic”
moment 〈〈|E|〉〉(B)=B is shown for both types of simulations. A plot of the variance
〈〈(E−〈〈E〉〉)2〉〉=B looks qualitatively similar.
The inuence of the reweighting factor in the �rst step of the multibondic update

should show up, of course, when considering the “microcanonical” distribution PE(B).
This can be clearly seen on the r.h.s. of Fig. 4 which displays the �rst “microcanon-
ical” moment 〈〈B〉〉(E)=|E|, as obtained in multibondic and canonical simulations. The
canonical data follow the horizontal line. This is an exact result which can be derived
as follows. Starting from an arbitrary spin con�guration with energy E, active bonds
can only appear between neighbors with equal spin values. Out of these candidate
bonds we decide bond by bond with probability 1 :p whether this bond is actived or
not. Therefore the total number of active bonds, B6|E|, is distributed according to a
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binomial probability distribution,

�E(B)=
(|E|
B

)(
1

p+ 1

)|E|−B ( p
p+ 1

)B
; (11)

and, on the average,

〈〈B〉〉(E)=
∑
B

B�E(B)=
p

p+ 1
|E| (12)

out of the |E| candidate bonds will actually be activated.
Recalling step 1 of the multibondic update prescription it is now easy to see that in

this case the probability distribution (11) is modi�ed to

�̃E(B)=
1
N

(|E|
B

)(
1

p+ 1

)|E|−B ( p
p+ 1

)B
exp(−f(B)) ; (13)

where N is a normalization factor. This suggests an alternative update procedure.
Given a spin con�guration with energy E, one could determine a new bond con�gu-
ration {bij} also by �rst drawing the total number of active bonds B (¡|E|) directly
from the distribution (13), and then randomly activating B out of the |E| candidate
bonds with ��i�j =1.
In Ref. [52] we compared the performance of multibondic (mubo) and multicanoni-

cal (muca) simulations for the two-dimensional Potts model (6) with q=7, 10, and 20.
A quantity that allows direct comparison with previous work is the ipping time
�ipE =Nup=4, with Nup denoting the average number of update sweeps for a round-trip
between E¡Emin and E¿Emax, where Emin;max are the peak locations of the canon-
ical energy distribution. The results for q=7 are shown in Fig. 5. The multibondic
algorithm clearly outperforms the multicanonical simulations and is slightly better than
the “demon” algorithm [33] which also uses cluster updates as an important ingre-
dient. From least-squares �ts to the ansatz �ipE = aV � we obtained �=1:27(2)≈ 1:3
for multicanonical heat-bath and �=0:92(2) for multibondic cluster simulations. For
q=10 the exponents are similar, �=1:32(2)≈ 1:3 (muca) and �=1:05(1) (mubo),
but due to a larger prefactor for the multibondic algorithm we can take advantage of
the asymptotic improvement only for large lattice sizes L¿50 [52,56]. For q=20 the
standard algorithm is clearly favored for all reasonable lattice sizes. For more details
see Ref. [53].
The same systematics was recently observed [57] at the �rst-order phase transition of

the three-dimensional Potts model (6) with q=4 and 5; see Fig. 5. Here the exponents
for the multicanonical simulations are �=1:14(2) (q=4) and 1.11(1) (q=5), and
for the multibondic algorithm we again obtained smaller values consistent with unity,
�=0:96(1) (q=4) and 0.98(1) (q=5).
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Fig. 5. Autocorrelation times in multibondic (mubo) cluster and multicanonical (muca) heat-bath simulations
at the �rst-order transition point of the 2D 7-state (left plot) and 3D 4-state (right plot) Potts model. In 2D
also some previous results are shown for comparison: “muca ” (Ref. [28]), “demon ×” (Ref. [33]).

5. Multicanonical multigrid sampling

Another non-local update scheme which can be quite easily combined with multi-
canonical reweighting is the multigrid method [3,58,59]. The basic idea of multigrid
methods is to perform updates on di�erent length scales. In the unigrid formulation
one works with the original lattice and proposes collective moves for blocks of 1,
2d; 4d; 8d; : : : ; 2nd=V neighboring �eld variables which, similar to the Metropolis al-
gorithm, are accepted or rejected according to the energy change. The simplest choice
are piecewise constant collective excitations (blocks), but in principle also other shapes
could be considered (e.g., pyramids). Another important ingredient is the sequence in
which the various block sizes are selected in a cycle, the analog of a sweep.
In the mathematically equivalent, recursive multigrid formulation the blocks of size

2(n−k)d are represented by auxiliary variables �(k)i on coarse-grained lattices – the
multigrids �(k) of size 2kd; k = n; : : : ; 0. The shape of the collective moves is con-
trolled by an operator P which interpolates �(k)i back to the next �ner grid �(k+1),
and the acceptance of the proposed moves is governed by a coarse-grid Hamiltonian,
H (k)(�(k)i )=H

(k+1)(�(k+1)i +P�(k)i ); H
(n) =H , which is de�ned recursively by freezing

the �eld variables �(k+1)i . The update on level �(k) thus consist of:
(1) n1 presweeps using any local update scheme with Hamiltonian H (k).
(2) Calculating the Hamiltonian for the next coarser grid �(k−1) (whose parameters

depend on the current con�guration on grid �(k)) and initializing the variables on grid
�(k−1) to zero.
(3) Updating the variables �(k−1)i with the multigrid scheme k−1 times.
(4) Interpolating the variables of grid �(k−1) back to grid �(k).
(5) n2 postsweeps using the local update algorithm with Hamiltonian H (k).

On the coarsest grid �(0), of course, one only performs steps 1 and 5. The recursive
multigrid formulation leads automatically to a more e�cient implementation if the
functional form of the Hamiltonian remains invariant under the coarsening prescription
(similar to FFT) and, due to its recursive structure, makes the de�nition of level
sequences determined by the parameters k more transparent. For k ≡ 1 (V-cycle)
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every grid is given the same weight, while for k ≡ 2 (W-cycle) the coarser grids are
updated more frequently. The cycle names derive from their graphical representation
[29] which resemble the letters V and W.
From the unigrid viewpoint it is immediately clear that multigrid methods can also

be used to update the multicanonical distribution [60–64]. Let us �rst consider the
multimagnetical variant. Since on level k we propose a move of 2(n−k)d variables in
conjunction, this update proposal would change the magnetization M by an amount
of 2(n−k)d��(k)i0 . The only modi�cation for the update on level k will therefore be to
compute the energy di�erence according to

��E(k)muca = ��E
(k) + f(M + 2(n−k)d��(k)i0 )− f(M) ; (14)

where �E(k) is the energy di�erence computed with the coarse-grid Hamiltonian H (k) as
in the usual canonical multigrid formulation. It should be emphasized that the modi�ca-
tions in a recursive multigrid implementation are precisely the same. For multicanonical
reweighting in the energy, M would have to be replaced by E and 2(n−k)d��(k)i0 by
�E(k), which is also straightforward to implement in both the unigrid and multigrid
formulation. For a discussion of more general situations, see Ref. [63].
In order to evaluate the performance of the multicanonical multigrid algorithm we

studied the �eld-driven �rst-order phase transitions in the two-dimensional scalar �4

lattice model with Hamiltonian

H =
V∑
i=1

[
1
2

2∑
�=1

(�i� − �i)2 −
� 2

2
�2i +

1
4
�4i

]
; (15)

and compared the autocorrelation times of the magnetization in multicanonical simu-
lations with Metropolis and multigrid W-cycle updates [63]. Least-squares �ts to the
power-law ansatz �e�m ∝V� gave for both update algorithms exponents of �≈ 1:2, 1.4,
and 1.5 for � 2 = 1:30, 1.35, and 1.40, respectively, i.e., the multigrid update does not
improve the asymptotic behavior. The autocorrelation times of the W-cycle, however,
were found to be about 20 times smaller than those of the Metropolis algorithm. If one
�nally takes into account that a multigrid W-cycle requires more elementary operations
than a Metropolis sweep, one obtains a real time improvement factor of about 10.
Further applications of this algorithm to quantum mechanical tunneling problems are
discussed in Refs. [60,62], and more technical details can be found in Ref. [64].

6. Conclusions

In the past few years multicanonical simulations have proven to be a promising tool
for dealing with the numerical problems inherent in simulations of complex physical
systems. Due to its very general formulation it has been applied by now to many prob-
lems in statistical physics covering such diverse �elds as �rst-order phase transitions in
condensed matter and high-energy physics, the low-temperature behavior of disordered
systems like spin glasses, and the protein folding problem.
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Combinations of multicanonical reweighting with non-local update schemes such as
cluster or multigrid algorithms are feasible and lead to a further improvement of the
performance. The combination with cluster updates is optimal in the sense that for
q-state Potts models the exponent � in the power law, �= aV �, is consistent with the
optimal random walk estimate �=1. Asymptotically for large system sizes the multi-
bondic algorithm is therefore always superior over standard multicanonical simulations
using local update algorithms where �¿1. The prefactor a, however, grows rapidly
with the number of Potts states q, such that for reasonable lattice sizes multibondic
simulations turned out to be more e�cient only for small q (610 : : : 12 in 2D, and
65 : : : 6 in 3D). For the combination with multigrid update techniques a real-time im-
provement of about one order of magnitude was observed for all considered lattice
sizes in simulations of the two-dimensional �4 lattice model.
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