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Abstract 

Employing the Polyakov-Susskind approximation in a field theoretical treatment, the t - J  model 
for strongly correlated electrons in two dimensions has recently been shown to map effectively 
onto an asymmetric two-dimensional classical X Y  model. The critical temperature at which 
charge-spin separation occurs in the t - J  model is determined by the location of the phase 
transitions of this effective model. Here we report results of Monte Carlo simulations which map 
out the complete phase diagram in the two-dimensional parameter space and also shed some 
light on the critical behaviour of the transitions. 

1. Introduction 

The discovery of  high-T~ superconductivity has inspired various new ideas and ap- 

proaches in theoretical condensed matter physics. In particular, the concept o f  holons 

and spinons for systems of  strongly correlated electrons provided a useful way to 

understand some interesting phenomena, like charge-spin separation (CSS) [1], that 

may happen in cuprate superconductors. 

Explicitly, the so-called slave-boson or slave-fermion representation o f  the t - J  

model of  electrons is often used to develop mean-field theories [2-4],  which glob- 
ally explain the experimentally observed phase diagram to a good extent as a first 

approximation. However, to calculate "higher-order" corrections to the mean-field re- 
sults, one faces the fact that the system possesses a U(1 ) gauge symmetry, and is 

forced to study the dynamics of  this gauge symmetry. Since the phase diagram has 

a region in which the gauge dynamics is realized in a strong-coupling confinement 
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phase, usual weak-coupling perturbation theory is not sufficient to estimate the above 
corrections. 

To study this gauge dynamics in a general and non-perturbative manner, Ichinose and 
Matsui [5] recently developed a theory of confinement-deconfinement transition for the 
t - J  model. There the confinement region corresponds to an electron phase where holons 
and spinons are confined in electrons, while the deconfinement region corresponds to 
CSS and holons and spinons behave as quasiparticles. The theory is based on the 
method of Polyakov and Susskind [6,7] for the confinement-deconfinement transition 
of lattice gauge theory at finite temperatures. The latter maps U(1) lattice gauge theory 
in d + 1 dimensions onto the classical XY-spin model on a d-dimensional lattice as an 
effective model. In Ref. [5] the same method was employed to the (2 + 1 )-dimensional 
t - J  model to derive an effective model which here takes the form of an asymmetric 

XY-spin model on a two-dimensional lattice. The asymmetry stems from the fact that 
not one but two kinds of gauge fields appear in the t - J  model, reflecting that both 
particle-hole and particle-particle channels are relevant. As discussed in more detail in 
Ref. [5], the critical temperature at which CSS occurs in the t - J  model is determined 
by the location of the phase transitions of this X Y  model, and the properties of the 
X Y  spins enter crucially in the analysis of the t - J  model. 

This motivated us to perform Monte Carlo simulations of the asymmetric XY-spin 
model. In this note we investigate the overall phase diagram and report finite-size 
scaling (FSS) analyses at four selected points along the phase transition line in the 
two-parameter space. The result on the phase diagram has been used in a preliminary 
analysis in Ref. [8] to derive a critical temperature of CSS, Tcss, which indicates that 
the effects of gauge-field fluctuations are so large that the resulting value of Tcss is 
only about 10% of its mean-field value. The Monte Carlo results reported below shall 
therefore be useful for acquiring more detailed informations on the gauge dynamics of 

the t - J  model. 
The rest of the paper is organised as follows. In Section 2 we give the definition 

of the effective asymmetric X Y  model and discuss the details of the Monte Carlo 
simulations. In Section 3 we present the results of our simulations, and in Section 4 

we conclude with a brief summary and a few final remarks. 

2. The model and simulation details 

The effective model we simulated is defined by the partition function 

Z =  dOi e x p ( - K E ) ,  

with an energy 

E = - J1 Z cos(0i - Oj ) - J2 Z cos(0i d- Oj ) ,  
(i j) (q) 

(1) 

(2) 



C. Holm et al./Physica A 246 (1997) 633-645 635 

where i are the sites of a two-dimensional (2D) square L × L lattice with periodic 

boundary conditions, (i j )  denote nearest-neighbour pairs, and K = 1/ksT is the inverse 
temperature of  the asymmetric X Y  model system. The temperature T should not be 

confused with the physical temperature Tphys of the original t - J  model which enters 
through the coupling constants J1 and J2 in Eq. (2). These parameters are known 

functions of  Tphys, so that one can simply relate T and Tphys to discuss the physical 
implications for the t - J  model like CSS as has been done more thoroughly in Ref. [8]. 

(s(1) A2)~ By introducing 2D unit vectors si = ,  i ,~i ) =  (cos(Oi),sin(Oi)) the energy can be 

rewritten as 

r "~ (1) (1) . (2)_(2) 1 
E = - Z [ ( J l + a 2 ) s  i s) + ( J I - J z ) s i  sj j (3) 

(i j) 

_(2).(2)  1 = - ( J 1  + J 2 ) Z [ s i  " s j - t l s i  aj j ,  (4) 
<i j> 

where 

J2 
q = 2  (5) 

J1 + , ] 2  

is the asymmetry parameter. For r /= 0, we obviously recover the 2D X Y  model which 

is known to undergo a Kosterlitz-Thouless (KT) phase transition at Ke(Jl + J2) = 
1.1199(1 ) [9]. For any non-zero asymmetry parameter t/ the 0(2)  symmetry of the X Y  

model is broken to Z2, and we theoretically expect to observe a crossover to the 2D 

Ising-model universality class. 
The model, Eqs. (1) and (2), has symmetries under the separate reflections (i) J! ---+ 

-J1 and (ii) J2 ~ -J2 .  One can see this by a simple change of variables, where 

Oi ~ Oi + ~/2 for even sites and 0j ~ 0j T ~/2 for odd sites. Thus, without loss of gen- 
erality, we will consider in this note only the case of ferromagnetic couplings ( J l  ~ 0,  

J2 >/0). Furthermore, due to the reflection symmetry of the model at the line J l  = J2, we 

can confine ourselves to the lower triangle J2 ~<Jl in the 2D coupling-constant plane. 
We set J1 = 1 except where stated otherwise explicitly. In order to get an overview 

of the phase diagram we have first performed for various coupling constants J2 ther- 
mal heating and cooling cycles on relatively small lattices (24 x 24 and 48 × 48). 

In the thermal heating cycle we started with a completely ordered spin configuration 

at a low temperature (high K)  and then heated the system in increments of about 
AK = 0.01. The cooling cycle is defined analogously. In the Monte Carlo simulations 

we discretized the continuous angles as 0i = 2zrni/100, n i = 1 . . . . .  100. For the update 
we used a fully vectorized Metropolis code employing the checker-board scheme. The 
results for the specific heat and the magnetic susceptibility are shown in Figs. 1 and 2. 
The phase transition line in the KJ! -KJ2  plane is depicted in Fig. 3 (using the more 
precise U4*-method described in Section 3). 

Having located the approximate phase transition points we next performed more 
elaborate FSS studies at four selected couplings: J2 = 0.1, 0.2, 0.4 and 1. In each case 
we studied the lattice sizes L = 24, 32, 48, 64 and 96. Here the strategy was to perform 
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Fig. l. Temperature dependence of the specific heat on a 24 × 24 lattice obtained in heating and cooling 
cycles with J1 = 1. The dotted lines are only a guide to the eye and the continuous lines show the reweighting 
curves computed from the long runs at criticality. For comparison also data for the X Y  model (J2 = 0) are 
shown. 
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Fig. 2. Temperature dependence of the susceptibility on a 24 × 24 lattice obtained in heating and cooling 
cycles with J1 = 1. The continuous lines are obtained by reweighting the data of  the long runs at criticality. 

on each lattice a single long simulation close to the pseudo-transition points defined 
by the maxima of the specific heat and susceptibility, and to compute the temperature 
dependence of the observables by reweighting techniques [10-13]. The FSS of the 
maxima then determines the various critical exponents. Using such FSS extrapolations 
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Fig. 3. Phase diagram of the asymmetric 2D XY model in the KJ~-KJ2 plane. The dashed line is the 
symmetry axis. The critical behaviour of the transitions is Ising-like, except if J1  = 0 o r  J 2  = 0 where the 
rotational symmetry is restored and the model exhibits Kosterlitz-Thouless transitions. 

o f  the results on smaller lattices we usually obtained quite reliable a priori estimates of  

the simulation point K0 on the next larger lattice. For each run we recorded the time 

series of  the energy density e = E / V  and the magnetization density m - - M / V ,  where 

V - -L  × L and the magnetization is defined as 

1 M = cos(0i) + sin(0i) (6) 

For each lattice we performed 10 000 (20 000 for J2 = 1) measurements after a suffi- 

ciently long equilibration time (between 100 000 and 500 000 sweeps). To avoid tempo- 

ral correlations in the data each of  these measurements was only taken after a sufficient 

number of  sweeps through the lattice (200, 200, 200, 400 and 800 sweeps for L = 24, 

32, 48, 64 and 96). From an analysis o f  the time series we confirmed that the inte- 

grated autocorrelation times Tin t for the energy and the magnetization are then indeed 

bounded by about 0.5-3.0 in units of  measurements for all lattice sizes and coupling 

ratios (with our definition [14], Tint = 0.5 corresponds to completely decorrelated data). 
In units of  sweeps the integrated autocorrelation time grows, o f  course quite rapidly 

with the system size, Tin t o( L z, with a dynamical critical exponent z ,~ 2.2. For ,]2 = 0.2 

this is illustrated in Fig. 4. As we shall see below a good scaling behaviour sets in 

quite early for all investigated quantities, such that for medium precision the considered 
lattice sizes turned out to be large enough. At any rate, in view of  the rapidly increas- 

ing autocorrelations, a cluster-update algorithm (adapted to the asymmetric situation) 
should be used for studies of  larger lattices [15]. 
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Fig. 4. Double-logarithmic plot of integrated autocorrelation times as a function of lattice size for J I  ~- 1, 

J2 =0.2. Fits to "tint o c L  z yield z ~ 2.3 for Zint, m (L=32 ..... 96) and z ~ 2.1 for Zint, e (L=48 ..... 96). 

To obtain results for the various observables C at K values in an interval around the 

simulation point K0, we applied the reweighting method [10-13].  Since we recorded 

the time series, this amounts to computing 

C ( K )  - ~-~" C"e-aXE" (7) 
E n e--AKE" ' 

with AK = K -  K0, and Cn and En being the measurements at the simulation point 

K =K0  at "time" n. To obtain statistical error estimates we divided each run into 

2 0 - 4 0  blocks and employed the standard Jackknife procedure [16,17]. 

From the time series it is thus straightforward to compute all energy and mag- 

netization moments as well as all cross-correlations between these two quantities as 

continuous functions o f  temperature [ 18-20].  In our FSS analysis we mainly focussed 

on the specific heat, 

c =K2V( (e  2) - (e)2), (8) 

the susceptibility, 

z = K V ( ( m  2) --  ( m ) 2 ) ,  (9) 

and derivatives of  the magnetization with respect to inverse temperature, 

d(m) 
d K  -- (m) (E)  - ( m E ) ,  (10) 

d ln(m p) (mPE) ( l l )  
d K  -- (E) (mP) ' 
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with p = 1 and 2. In the infinite-volume limit all these quantities diverge at the tran- 
sition point (except perhaps the specific heat). In finite systems the singularities are 
smeared out and replaced by maxima which scale in the critical region according to 

C = Creg(X) + L~/"fc(x)[1 + ' "  "], (12) 

z=L':/"fz(x)[1 + "  .], (13) 

d (m) _ Lll_l~)/~,fo(x)[1 + . .  -], (14) 
dK 

dln(m p) 
dK --LI/Vfn(x)[1 + ' "  "]' (15) 

where Creg is a regular background term, c~, v, 7, and fl are the usual universal critical 
exponents, f i (x )  are finite-size scaling functions with x = ( K -  Kc)L 1/v, and [1 + . . . ]  
indicates correction terms which become unimportant for large enough L. 

We also computed the Binder parameters [21], 

l ( m  2p) 
U2p(K) = 1 3 (mP) 2 ' (16) 

for p---- 1 and 2. It is well  known that the U2p(K) curves for different L cross around 
(K., U~p) with slopes scaling as 

dU2p _L1/~,fu2.(x)[ 1 + . . . ]  (17) 
dK 

apart from confluent corrections explaining small systematic deviations. This al lows an 
almost unbiased estimate o f  the critical coupling Kc, the universal critical exponent v 
o f  the correlation length, and the (weakly)  universal I renormalised charges U~p. The 
slopes can be conveniently calculated as 

( ~ (m2pE)~ 
dU2p-(ldK -U2p) ( E ) - 2  + ~ // (18) 

: ( 1 -  U2p) (2 dln(mP)dK dln(m2p) ' (19) 

revealing in addition the close relation of Eq. (17) with Eq. (15). 

3. Results 

By  applying reweighting techniques we  first determined the maxima o f  C, Z, 
d(m)/dK, d ln(m)/dK, and d ln(m2)/dK. The location o f  the maxima provided us 

I Here "weakly" refers to the fact that although U~p is insensitive to the details of the interaction and the 
lattice connectivity, it does depend on the boundary conditions [20] and on the shape of the lattice. 
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Table 1 
Fitting results for the critical exponents v,7, and fl from FSS extrapolations of some selected maxima together 
with various averages over all available data points, as well as the renormalised charges U~p at Kc. Here Q 
is the goodness-of-fit parameter, and a prime denotes the derivative with respect to K 

Exp. Obs. J2 =0.1 J2 =0.2 J2 =0.4 J2 = 1.0 

Exponent Q Exponent Q Exponent Q Exponent O 

l/v ln(m)tmax 1.030(19) 0.43 1.008(22) 0 .59  1.025(55) 0.55 0.988(18) 0.29 
1/v ln(m2)~max 1.017(19) 0.38 1.000(21) 0 .43 1.012(62) 0 .54 0.995(18) 0.25 
1/v Average 1.0655 1.025 1.011 0.9813 
l/v Weighted av. 1.0520(88) 1.014(10) 1.016(18) 0.9781(83) 
1/v Final 1.052(19) 1.014(21) 1.016(44) 0.978(18) 

7/v Zmax 1.798(13) 0.70 1.756(16) 0 .28 1.771(15) 0 .80 1.746(11) 0.65 
7/v Average 1.7931 1.7574 1.758 1.7528 
y/v Weighted av. 1.7933(77) 1.7536(93) 1.764(10) 1.7469(65) 
y/v Final 1.793( 13 ) 1.754(16) 1.764(15) 1.747( 11 ) 

fl/v (m) atZmax 0.1548(54) 0.47 0.1594(78) 0.49 0.142(11) 0.53 0.1331(58) 0.54 
(re)max 0.134(10) 0.11 0.145(13) 0 .82 0.121(15) 0.68 0.1174(88) 0.65 fl/v (m) at  ' 

fl/v Average 0.1565 0.1626 0.1194 0.1325 
fl/v Weighted av. 0 .1511(45)  0 . 1 5 7 2 ( 6 2 )  0 . 1 3 1 8 ( 8 2 )  0.1292(46) 
fl/v Final 0.1511(54) 0 . 1 5 7 2 ( 7 8 )  0 . 1 3 2 ( 1 1 )  0.1292(58) 

(1- f l ) /v  (m)tmax 0.881(13) 0.87 0.870(20) 0.11 0.895(16) 0.06 0.855(12) 0.34 

Uf Uz(Kc) 0 . 6 4 3 5 0 ( 9 2 )  0 . 6 4 0 9 ( 1 4 )  0 . 6 4 2 3 ( 1 6 )  0.64227(83) 
U4* U4(Kc)  0 . 6 1 1 2 ( 2 1 )  0 . 6 0 5 7 ( 2 8 )  0 . 6 0 9 3 ( 3 3 )  0.6092(18) 

with five sequences of  pseudo-transit ion points Kmax(L) for which the scaling vari- 

able x =  ( g m a x ( L ) -  Kc)L l/v should be constant. Using this information we then have 

several possibili t ies to extract the critical exponents a/v, 7Iv, fl/v, and v from (linear) 

least-square fits to the FSS Ansatz, Eqs. ( 1 2 ) - ( 1 5 )  and (17). 

For the exponent v this results altogether in 20 different estimates which are, of  

course, statistically not uncorrelated but differently affected by  corrections to the lead- 

ing FSS behaviour. With very few exceptions the fits over all data points from L = 24 

to 96 had an acceptable chi-square value or goodness-of-fit  parameter Q. As a general 

trend we observed that the estimates derived from the slopes of  U2 are slightly more 

accurate than those obtained from U4. The most accurate numbers, however, come usu- 

ally from the scaling o f  the maxima o f  the logarithmic derivatives of  m. The resulting 

exponents 1Iv are collected in Table 1, together with the arithmetic and error-weighted 

averages over all available data for 1Iv. Because of  the neglected cross-correlations, 

in particular, the error estimate o f  the weighted average should be taken with a grain 

of  salt. As our best values we therefore quote in the line labeled "final" quite con- 

servatively the weighted mean and the smallest error estimate among all available fits. 

We see that for all four coupling-constant ratios the numerical results are consistent 

with the exact 2D Ising value o f  v = 1. For J2 t> 0.2 the deviations are very small and 

covered by the ltr  error interval. The only exception is perhaps the smallest considered 

asymmetry,  ,/2 = 0.1, where the final estimate is off by about 2.5tr. This may be taken as 

an indication that we start noticing the expected crossover to KT behaviour for ,]2 --- 0. 
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Table 2 
Fitting results for the transition point Kc from FSS extrapolations of the various maxima locations and from 
the U~' method 

Observable J2 - 0.1 J2 = 0.2 .I2 = 0.4 J2 - 1.0 

C 0.77491(68) 0 . 6 8 2 6 2 ( 9 4 )  0 . 5 6 8 6 6 ( 9 1 )  0.39114(49) 
Z 0.77474(25) 0 . 6 8 3 0 9 ( 3 3 )  0 . 5 6 8 1 9 ( 3 2 )  0.39102(12) 
d(m)/dK 0.77539(33) 0 . 6 8 3 2 0 ( 5 1 )  0 . 5 6 8 5 2 ( 4 3 )  0.39137(16) 
dln(m)/dK 0.77416(68) 0.68256(73) 0.5680(17) 0.39090(37) 
dln(m2)/dK 0.77390(90) 0.68269(85) 0.5688(22) 0.39082(43) 

Average 0.77462 0.68283 0.56842 0.391053 
Weighted av. 0 . 7 7 4 8 7 ( 1 8 )  0 . 6 8 2 9 9 ( 2 4 )  0 . 5 6 8 3 3 ( 2 4 )  0.391119(89) 
Final 0.77487(25) 0 . 6 8 2 9 9 ( 3 3 )  0 . 5 6 8 3 3 ( 3 2 )  0.39112(12) 

U~, L = 24 0.77500(59) 0 . 6 8 4 3 7 ( 4 0 )  0 . 5 6 8 8 0 ( 3 3 )  0.39125(14) 
U~, L=32 0.77463(44) 0 . 6 8 3 9 7 ( 3 9 )  0 . 5 6 8 7 5 ( 4 0 )  0.39158(13) 
U~, L -48  0.77443(36) 0 . 6 8 3 2 4 ( 3 9 )  0 . 5 6 8 3 5 ( 3 1 )  0,39139(17) 
U~, L =64 0.77423(31) 0 . 6 8 3 7 5 ( 2 8 )  0 . 5 6 8 3 5 ( 2 1 )  0,390946(89) 
U~, L - 9 6  0.77521(16) 0 . 6 8 3 9 0 ( 2 2 )  0 . 5 6 8 4 3 ( 1 6 )  0.391262(66) 

Average 0.77470 0.68385 0.56854 0,391283 
Weighted av. 0 . 7 7 4 9 2 ( 1 2 )  0 . 6 8 3 8 4 ( 1 4 )  0 . 5 6 8 4 6 ( 1 1 )  0,391232(45) 

Assuming thus v = 1, we have next determined estimates for Kc from the scaling of  

the various Kmax(L). The fitting results are compiled in Table 2 together with arith- 

metic and error weighted averages. Adopting the same procedure as used for the ex- 

ponent v, we take as our best estimate again the weighted mean but the smallest 

error estimate among the five fits (which here is always that of  the K z .... fit). This 

gives 

Kc = 0.77487 :t: 0.00025 

Kc = 0.68299 4- 0.00033 

Kc = 0.56833 4- 0.00032 

K~ = 0.39112 ± 0.00012 

(J2 = 0 . 1 ) ,  (20) 

(,/2 = 0.2), (21) 

(J2 = 0.4), (22) 

(,/2 = 1.0). (23) 

A comparison o f  these results with the estimates from the Binder-parameter crossings 

shows good agreement. This can be visually inspected in Fig. 5 where U4(K) is shown 

for J2 --- 0.2. 

Another  quantity of  interest is the asymptotic limit U~p of  the Binder parameters 

at K~.. For all four values of  ,/2 the size dependence o f  U2p(Kc) was so small that 

fits to the theoretically expected scaling law, U2p(Kc)=U~p+cL -°', were not sen- 

sible. We rather simply took the weighted average over the five lattice sizes. For 

our smallest asymmetry,  J2 = 0.1, we obtained in this way U2* =0.64350(37)[55]  and 

U4* =0.61119(76)[133] .  Here the second errors in square brackets indicate the uncer- 

tainty due to the statistical error in K,. (i.e. max(lU2p(Kc ) -  U2p(Kc±AKc)])). Our 

final estimates are shown in Table 1, where we have already combined these two 

types o f  errors. Error weighted averages over the four results for different J2 yield 
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Fig. 5. The fourth-order Binder parameter U4(K) close to criticality for J1 = 1, J2 = 0.2. 

U* =0.64249(54) and U4* =0.6092(12). The values for U* can be compared with 
previous MC estimates for the 2D Ising model on regular square lattices, U4"=0.615(10) 
[22] and U4* =0.611(1) [23], Poissonian random lattices, U4* =0.615(7) [24], fluctu- 
ating Regge triangulations, U4* =0.612(5) [19], or with an extremely precise transfer 
matrix computation yielding U4* =0.6106901(5)  [25]. Since all our values for U4* in 
Table 1 are consistent with this most precise value, this gives further support that the 
critical behaviour of the asymmetric X Y  model is governed for all .12 ~ 0 by the 2D 
Ising universality class. 

For all practical purposes the estimate of U4* in Ref. [25] can be treated as an exact 
number. Assuming that the asymmetric X Y  model with -/2 ¢ 0 belongs to the Ising 
universality class, we may now turn the argument around and reweight U4(K) in K 
until it hits this number at Ku~ ~ Kc, defining new pseudocritical points KufiL).  Again, 
our accuracy does not allow to observe the theoretically expected weak size dependence 
of Kv,. We have therefore added in Table 2 simply the values for L = 24, 32, 48, 64 
and 96, as well as arithmetic and error-weighted averages over all five lattice sizes 
which here yield uncorrelated estimates. By comparing the different estimates we can 
conclude that the U4* method for locating Kc gives reliable results (with relative errors 
of the order of 0.1%) already for lattice sizes as small as L = 2 4 .  Equipped with this 
result it is thus quite easy to determine the complete 2D phase diagram in Fig. 3 with 
relatively high precision. 

To extract the critical exponent ratio 7/v we used the scaling Z ~L;/~'fz(x) at the 
previously discussed points of constant x. The results of fits of Zmax as well as the 
averages over all fits (using the same procedure as for v to arrive at the final estimates) 
can be inspected in Table 1. Except for J2 = 0.1, where the final estimate is again off 
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Fig. 6. Semi-logarithmic finite-size scaling plot of the specific heat at criticality for JI = 1, -/2 = 0.1. The 
straight lines are fits to C =  Creg + A lnL with goodness-of-fit parameters Q=0.46  (Q)), 0.997 (O) ,  and 
0.89 (~). 

by about 3a, the numerical results are fully consistent with the exact 2D Ising value 

?Iv = 7/4 = 1.75. 
To extract the magnetical critical exponent ratio fl/v we used that (m)-~L-13/Vfm(X) 

at all constant x-values. Another method is to look at the scaling, Eq. (14) o f  d(m)/dK 
yielding (1 - f l ) / v .  The fit results for fl/v and (1 - f l ) / v  are again given in Table 1. 

We see that all estimates for (1 - fl)/v are nicely consistent with the exact value of  

(1 - fl)/v = 7/8 -- 0.875. The exponent fl/v, however, seems to be less well determined 

for small values o f  J2, i.e., small asymmetry, which would probably require additional 

simulations on larger lattices. While here also the final result for J2 = 0.2 is only 

marginally compatible (at a 3a-level) with the exact 2D Ising value fl/v = 1/8 = 0.125, 

we obtain for J2 = 0.4 and J2 -- 1.0 again perfect agreement. 

Having found so far overwhelming evidence for the 2D Ising universality class, we 

expect also the specific-heat exponent c~ to take on the Onsager value, namely ~ = 0. 

In this case we expect a logarithmic divergence of  the form 

C=Creg(X) + A ( x ) l n L  + - . -  . (24) 

Indeed the data at the different fixed values o f  x can all be fitted nicely with this Ansatz 

down to the small asymmetry case J2 = 0.1. This is demonstrated in Fig. 6. Clearly, our 

lattice sizes are much too small to discriminate between the FSS Ansatz, Eq. (24) and 

a power-law Ansatz with a small non-zero exponent ~. This is a well-known problem 

with fits of  the specific heat at criticality which has already been noticed before several 
times [19,20,24]. Overall we can conclude, however, that our data is compatible with 

the exact 2D Ising value o f  ~ = 0. 
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4. Conclusions 

We have performed a fairly detailed numerical study of the asymmetric X Y  model 
in two dimensions and obtained the phase diagram in the KJ1-KJ2 coupling-constant 
plane. From finite-size scaling analyses at four different coupling ratios (J1 = 1; J2 = 0.1, 
0.2, 0.4 and 1 ) we find clear evidence that for J2 ¢ 0 the critical behaviour of the model 
is governed by 2D Ising Onsager exponents, as expected on theoretical grounds. 

As far as the original motivation stemming from the t -J  model for strongly correlated 
electrons in two dimensions is concerned, this answers most of the questions satisfac- 
torily. The physical implications of our results for the t -J  model will be discussed in 
a separate publication [26]. 

It would be interesting in its own right, however, to investigate in more detail the 
crossover from KT behaviour for J2 = 0 to Ising behaviour for J2 ¢ 0 at very small 
coupling constants J2. A study in this direction is under way, employing a more efficient 
cluster-update algorithm adapted to the asymmetric situation [15]. 
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