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Although there is now a good measure of agreement between Monte Carlo and high- 
temperature series expansion estimates for Ising (n = 1) models, published results for the 
critical temperature from series expansions up to 12th order for the three-dimensional 
classical Heisenberg (n = 3) and XY (n = 2) models do not agree very well with recent 
high-precision Monte Carlo estimates. In order to clarify this discrepancy we have analyzed 
extended high-temperature series expansions of the susceptibility, the second correlation 
moment, and the second field derivative of the susceptibility, which have been derived a few 
years ago by Liischer and Weisz for general O(n) vector spin models on D-dimensional 
hypercubic lattices up to 14th order in K-~ J/kBT. By analyzing these series expansions in 
three dimensions with two different methods that allow for confluent correction terms, we 
obtain good agreement with the standard field theory exponent estimates and with the critical 
temperature estimates from the new high-precision Monte Carlo simulations. Furthermore, 
for the Heisenberg model we also reanalyze existing series for the susceptibility on the BCC 
lattice up to l l t h  order and on the FCC lattice up to 12th order using the same methods. 

I. Introduction 

In the past few years considerable progress has been made in developing 
very efficient Monte Carlo (MC) simulation techniques (for reviews, see, e.g., 
[1]). This allows high-precision computations of the critical coupling and the 
critical exponents of continuous phase transitions with an accuracy that is 
comparable with the widely accepted estimates derived from field theory [2, 3]. 
The third and oldest approach to extract information about the critical 
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properties of those systems are analyses of high-temperature series expansions. 
For some standard models (with notable exceptions including the three- 
dimensional Ising model [4, 5] and certain two-dimensional systems), however, 
the critical coupling and the critical exponents calculated by this method have 
much larger error bars and are more vulnerable to systematic errors. In order 
to improve this situation two points are important. First, more refined methods 
of analysis than in the pioneering works must be employed, and second it is 
obvious that longer series are needed. The first point should cause no problem 
anymore for continuous phase transitions since over the years many greatly 
refined methods have been developed that take into account various confluent 
correction-to-scaling terms and are now available on a routine basis [6, 7]. 
Confluent corrections to scaling arise from irrelevant operators and their 
neglect can bias critical coupling and critical exponent estimates. The genera- 
tion of longer series, however, is still a very demanding numerical and 
computational problem, even though it appears to be trivial in principle. 

Significant progress in series generation has been made with star graph [8] 
and no-free-end (NFE) graph [9-11] enumerations which lead to medium 
length series in general dimensions for many systems. However, these ap- 
proaches are limited by the order of the existing graph table and not all 
problems have star or NFE formulations; even when these exist, the im- 
plementation can be quite complex. For the classical O(n) vector spin models 
an important step forward has been made by Liischer and Weisz [12], who 
applied linked cluster expansion techniques to compute the expansion co- 
efficients of the susceptibility, the second correlation moment and the second 
field derivative of the susceptibility on D-dimensional hypercubic lattices up to 
the 14th order in the expansion parameter K = - J / k B T  and provided explicit 
tables for 1 ~< n ~< 4, 2 ~< D ~< 4. Moreover, Butera et al. [13] observed that the 
symmetry of these models implies (Schwinger-Dyson) identities between 
correlation functions that allow a recursive computation of the series expansion 
coefficients and reveal their structure as function of n. Combining their result 
with those of Liischer and Weisz they were able to give the expansion 
coefficients in general form as ratios of polynomials in n. Although still one 
term shorter than the NFE tables [9, 10], and three terms below the star graph 
series of Singh and Chakravarty [8], these methods can be used to generate 
longer series directly, requiring only larger computer memory and not preexist- 
ing graph tables. 

The motivation to analyze the extended high-temperature series expansions 
of the Heisenberg model comes from two recent high-precision MC simulation 
studies [14, 15] of this model on simple cubic (SC) lattices which gave 
significantly larger values for the critical coupling than previous estimates based 
on analyses of series expansions up to 12th order [16-19], and transfer matrix 
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Table I 
Estimates of the critical coupling K c of the Heisenberg (n = 3) model on a simple cubic lattice from 
various sources (HTS: high-temperature series analysis, TMMC" transfer-matrix Monte Carlo 
simulation, MC: Monte Carlo simulation). 

K c Method Authors 

0.692 8 terms HTS 
0.692(4) 9 terms HTS 
0.6916(2) 9 terms HTS 
0.6924(2) 12 terms HTS (Pad6) 
0.6925(1) 12 terms HTS (ratio) 
0.6922(2) TMMC (n/> 5) 
0.6925(3) TMCC (n/> 6) 
0.6929(1) Metropolis MC 
0.6930(1) 1 cluster MC 
0.693035(37) multiple 1 cluster MC 
0.6929(1) 14 terms HTS 

Wood and Rushbrooke (1966) [16] 
Joyce and Bowers (1966) [17] 
Ritchie and Fisher (1972) [18] 
McKenzie et al. (1982) [19] 

Nightingale and Bl6te (1988) [20] 

Peczak et al. (1991) [14] 
Holm and Janke (1992) [15] 
Chen et al. (1993) [21] 
this work 

MC studies [20]; see table I (also included is newer MC data [21], which was 
obtained after completion of  our  work). There  are two sources for  the 
expected improvement.  First, on hypercubic lattices two more terms of the 
series are known and second, more refined methods taking into account 
confluent correction terms are available. For the latter reason we also 
reanalyze the long-known but shorter series for the susceptibility on the body 
centered cubic (BCC) and face centered cubic (FCC) lattices. Finally, we 
present analyses of the new longer series for the X Y  (n = 2) model on the SC 
lattice. 

2. Model and observables 

We consider the classical O(n) symmetric Heisenberg model with partit ion 
function 

z-- H (f  xp(K (1) 
• ( i , j )  

where K = J/kBT is the reduced inverse temperature ,  (i, j )  denotes nearest- 
neighbor pairs, and O~ is the surface of the n-dimensional unit sphere 
associated with the degrees of  f reedom of the n-dimensional unit spins s i at 
each site of a regular three-dimensional lattice. In this paper we investigate the 
new longer series for the Heisenberg (n = 3) model on an SC lattice, and 
reanalyze existing series for the BCC and FCC lattices. Further  we also study 
the new longer series for the X Y  (n = 2) model on an SC lattice. In order  to 
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estimate the critical couplings and exponents we concentrate on three observ- 
ables, the susceptibility 

X =  ~ (So'Si)  =lim V s i 
i V--~o~ 

= Axt-V(1 + axt al + bxt + . . . ) ,  (2) 

the second correlation moment  

~ i i 2 ( S o ' S i >  
m (2) : Z i2(So "Si) = X  

i ~'i < S O ' $ i >  

= Am(2)t-(v+2~)(1 + am(2)t al + bm(2)t + • . . )  , (3) 

and the second field derivative of the susceptibility 

3 
X ( 4 ) - -  n(n +2) ~] ( s ° ' s i s j ' s ~ ) ~  

i , j , k  

al q- bx(a)t + "  ") (4) = A x ( 4 ) t - ( 3 ~ + 2 ~ ) ( 1  + ax~4)t • , 

where ( - - - )  denotes expectation values with respect to the partit ion function 
(1) and the subscript c in (4) stands for the connected part. The second lines in 
(2 ) - (4 )  give the assumed critical behavior where t =- K c - K > 0 is the distance 
from the critical point in the high-temperature phase, y, v and /3 are the 
standard critical exponents of the susceptibility, correlation length and mag- 
netization, respectively, and the terms in parentheses describe the leading 
confluent and analytic correction terms. In (4) we have made use of the 
relation A =3'  +/3, where A is the gap exponent.  In the high-temperature 
phase these observables can be expanded as 

x(n,  K)  = 1 + ~ ar(n ) g r , (5) 
r= l  

m(2)(n, K)  = ~ br(n ) g r , (6) 
r= l  

X(4)(n, K )  - n(n q- 2) -- 2 + ~ dr(n ) g r , (7) 
r= l  

defining the coefficients ar(n ), br(n ) and dr(n ), computed in refs. [12, 13]. For  
the convenience of the reader  we have compiled their numerical values for 
n = 2 and n = 3 in tables II and III. 
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Table II 
Expansion coefficients for the XY (n = 2) model  h igh- tempera ture  series for a simple cubic lattice. 
Given are the  expansion coefficients a, of  the susceptibility X, the  expansion coefficients b r of  the  
second correlation m o m e n t  m <2), and the  expansion coefficients d r of  the  second field derivative of 
the susceptibility X ~4~ up to 14th order (for details compare  text).  

Order  r a r b, d r 

1 3.0000000000 3.0000000000 -24.0000000000 
2 7.5000000000 18.0000000000 -160.5000000000 
3 18.3750000000 72.3750000000 -822.0000000000 
4 43.500t)(0)0(1130 247.5000000000 -3576.8125000000 
5 102.3437500000 770.5937500000 -13971.7500000000 
6 237.0546875000 2261.3437500000 -50454.9648437500 
7 546.9462890625 6360.6650390625 -171739.3593750000 
8 1252.0048828125 17343.7773437500 -557978.9429687500 
9 2858.8175292969 46158.4210449219 -1746304.9972656250 

10 6496.1514078776 120515.3193033854 -5299323.3505303277 
11 14735.3746412489 309746.4250318739 -15671446.8761067708 
12 33314.7537746853 785831.2964274089 -45336965.5964835394 
13 75222.2566392081 1971809.9920579093 -128702556.1244287884 
14 169444.4882359232 4901417.5916496216 -359396456.8541712222 

3. Methods of analysis 

We analyze the series given in tables II and III with two different methods 
[22] that allow for confluent and analytic correction terms. Taking the 
susceptibility as a generic example (and suppressing subscripts) we thus assume 
a critical behavior of the form 

Table III 
Expansion coefficients for the classical Heisenberg  (n = 3) model  h igh- tempera ture  series for the  
simple cubic lattice. Given are the expansion coefficients a r of  the susceptibility X, the expansion 
coefficients b r of  the second correlation m o m e n t  m t2~, and the  expansion coefficients d r of  the  
second field derivative of the susceptiblity X ~4) up to 14th order  (for details compare  text) .  

Order  r a r b, d r 

1 2.0000000000 2.0000000000 -16.0000000000 
2 3.3333333333 8.0000000000 -71.7333333333 
3 5.4222222222 21.4222222222 -246.0444444444 
4 8.5185185185 48.71111111111 -716.4486772487 
5 13.2670194004 100.7336860670 -1870.2019047619 
6 20.3359905938 196.1285831864 -4508.3329617872 
7 30.9989637468 365.7050425240 -10232.2542817950 
8 46.8673402574 660.4991803514 -22145.7412271162 
9 70.6067866595 1163.5584276550 -46128.4203352476 

10 105.8320214871 2009.6315902889 -93088.6148720584 
11 158.2324753396 3414.9732182123 -182932.5061463846 
12 235.7598652836 5725.3717946474 -351440.3272602895 
13 350.6189575427 9489.5939248535 -662121.9818887996 
14 520.1310140421 15575.4527177723 -1226410.1925173962 
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X = A t - r (  1 + atal  + b t  + . . . ) ,  (8) 

where/11 = vto (~-0.55) is the confluent correction exponent  and b t  a (sublead- 
ing) analytic correction term. The non-universal amplitudes A, a, b are 
assumed to be constant. T h e . . .  inside the parentheses indicate further higher 
order  corrections of the form t am, t m+'a l ,  which we neglect in our analysis. 

In the method referred to as M1, first the leading singularity is removed by 
forming 

3X 
B = TX + t - - z - 7 = A t - * ( / 1 1  atal  + b t  + . . ' ) .  

ot 
(9) 

Then Pad6 approximants are applied to the logarithmic derivative of B, 

O l n B  /1a(~/ -- A 1 ) a t  a l - I  q- (~ / - -  1 ) b  

Ot t ( A l a t  a ' - I  + b )  ' 
(10) 

yielding for given K¢ the confluent correction exponent  A 1 as  function of 7, 
A 1 = /11(7 ) .  The optimal set of values for the parameters K¢, y and A a is 
determined visually from the best intersection of different Pad6 approximants. 

In the second method,  referred to as M2, Pad6 approximants in a new 

variable 

y = 1 - ( - K / K c )  al = 1 - ( t / K c )  a'  (11) 

are applied to 

0 In x A l a t  al + b t  

0 ~  - Y + 1 + a t  al + b t  

A i K c a ( y  - 1) + K c b ( y  - 1) 1/a' 

= - Y  - 1 - K ~ a ( y  - 1) - K c ( Y  - 1) 1/a' ' (12) 

yielding for given K c the exponent  y as function of A1, '~ = "y(AI) .  Again the 
intersection of different Pad6 approximants is used to select the optimal set of 
parameters.  

The two methods are complementary and as stressed in appendix D of ref. 
[22] should always be used in conjunction to avoid spurious results due to 
so-called resonances at values of A 1 / n  , n = 2,  3 . . . .  , in the otherwise more  
accurate method M2. The analysis was made with the help of the recently 
developed VGS program package [7], which makes extensive use of the 
graphic features of an X-window environment and allows easy and efficient 
scanning of the three-dimensional parameter  space. 
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4. Results 

4.1. Heisenberg (n = 3) model  

S C  lattice: As mentioned in the introduction our main emphasis was on the 
Heisenberg model on an SC lattice since recent high-precision MC simulation 
studies [14, 15] were at odds with previous high-temperature series expansion 
analyses [16-19]. In particular the critical coupling Kc turned out to be 
significant larger than widely accepted series estimates based on expansions up 
to 12th order; see table I. Our  main result from analyses of the longer 14 terms 
series using methods M1, M2 is that we can clearly confirm the MC estimates 
of K¢. More precisely for all three series we get consistent results from methods 
M1 and M2, and the three estimates for K~ vary only weakly: K~ = 0.6928 from 
analyses of X, K~ = 0.6930 from m ~2) and Kc = 0.6928 from X ~4~. Taking the 
average of these three values as the final result we get 

K c = 0.6929 ± 0.0001 (SC lattice).  (13) 

To illustrate the method of analysis we show for the susceptibility in fig. 1 
graphs of the highest near diagonal Pad6 approximants to the critical exponent  
3, in the three-parameter  space K c, A 1 computed according to method M2. A 
two-dimensional plot of the central slice at K c = 0.6928 is shown in fig. 2b. The 
corresponding plot for method M1 is displayed in fig. 2a. From the point of the 
best intersection of the different Pad6 approximants shown in fig. 2 we read off 

y =  1.400 ± 0 . 0 1 0 ,  (14) 

and A 1 = 0.7 ±0.2 .  Similar analyses of the series for m (2) yield 3, + 2v = 
2.825 ± 0.020 or inserting (14), 

v = 0.712 ± 0.010, (15) 

and f r o m  )((4) we get 33, + 2/3 = 4.925 ± 0.020 or using (14) 

/3 = 0.363 ± 0.010. (16) 

Using the scaling relation a + 2/3 + 3, = 2 and the estimates (14), (16) we 
calculate 

= -0 .125  ± 0.020. (17) 

Since we have three independent  estimates of critical exponents this result can 
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Fig. 1. Graphs  of highest near  diagonal Pad~ approximants to y in the three-parameter  space K¢, 
~1, Y for method M2. A two-dimensional plot of the central slice at K¢ = 0.6928 is shown in fig. 2b. 

be used to test the hyperscaling relation a = 2 -  D r .  Using the est imate (15) 

we obtain 

a = -0 .136  +- 0.030, 

in good agreement  with (17), thus supporting 
Similarly, the scaling relation 6 = 1 + y//3 gives 

= 4.86 -+ 0.10,  

while the hyperscaling relation 

(18) 

the hyperscaling hypothesis.  

(19) 

y / v  = 2 - ~ 1  = D ( 6  - 1)/(6 + 1) yields a c o m -  
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Fig. 2. Graphs of highest near diagonal Pad~ approximants to 3, plotted against zl 1 at fixed 
K c -= 0.6928 for (a) method M1 and (b) method M2. 

par ison be tween  central  est imates o f  3,/v = 1.966 f rom the values q u o t e d  above  

and the rhs o f  the scaling relat ion 

D ( ~ -  1)/(~ + 1) = 1 .975,  (20) 

again in good  ag reement  with each other .  O u r  results for  the critical exponen t s  
are summar ized  in table IV, where  they are c o m p a r e d  with the s t andard  field 

theory  values and the results f rom recent  M C  simulations.  

B C C  lattice: The  susceptibility series [19] consists of  only 11 terms,  but  the 

overall  behav ior  is similar. We find opt imal  convergence  at 

K c = 0.4867 _ 0.0001 ( B C C  la t t ice) ,  (21) 
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Table IV 
Critical exponents for the three-dimensional classical Heisenberg 
sources. 

(n = 3) model from various 

Method v 3' /3 a 6 

g-expansion [2] 0.705(3) 1.386(4) 0.3645(25) -0.115(9) 4.802(37) 
c-expansion [3] 0.710(7) 1.390(10) 0.368(4) -0.130(21) 4.777(70) 
MC [14] 0.706(9) 1.390(23) 0.364(7) -0.118(27) 4.819(36) 
MC [15] 0.704(6) 1.388(14) 0.362(4) -0.112(18) 4.837(11) 
MC [21] 0.7036(23) 1.3896(70) 0.3616(31) -0.1108(69) - 
This work 0.712(10) 1.400(10) 0.363(10) -0.125(20) 4.86(10) 

again with y ~ 1.4 but with a lower correction-to-scaling exponent  A 1 than was 
seen in the SC case. We quote central estimates of A~ ~ 0 . 6  f rom M1 and 
~11 ~ 0.5 from M2. 

FCC lattice: For the FCC lattice the 12th order  susceptibility series was 
analyzed, including corrections to scaling, in ref. [19]. It was found that the 
ampli tude of the confluent correction (with A 1 = 0.55 held fixed at the R G  
value [2]) was very small, and that the analytic correction was the dominant  
one. We find 

K c = 0.31475 -+ 0.00010 (FCC lattice) (22) 

and 7 ~ 1.39, in good agreement  with [19]. This 3' is a little lower than our 
values on the other lattices, and closer to the values of other calculations. In 
contrast  to [19], we saw clear evidence of a non-analytic correction to scaling at 
A 1 ~ 0.6 f rom the M2 study of a first derivative of the susceptibility series. 

4.2. X Y  (n = 2) model 

SC lattice: For the X Y  model  we have only analyzed the new longer series for 
the simple cubic lattice. In this case the series for the susceptibility turned out 
to be not well-behaved and it was very difficult to get precise est imates of  the 
critical parameters .  With this caveat in mind we estimate K c = 0.45407 and 
y = 1.325. On the other hand the series for m (2) a n d  X (4) behaved similar to 
the Heisenberg model ,  i .e.,  both methods M1 and M2 gave consistent results 
and the estimates of K c f rom both series agreed with each other,  

K c = 0.45414 +- 0.00007 (SC latt ice).  (23) 

While the previous estimate K c = 0.4539 [23] f rom series analyses is again 
lower (and clearly below the error  limits of the present  study), our  value (23) is 
consistent with recent Monte  Carlo studies which gave K c --0.45421(8) [24] 
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using multiple and K c = 0.4542(1) [25] using single cluster simulations. For  the 
exponents we obtain central estimates of 3' + 2v = 2.67 from the expansion of 
m ~2), and 33" + 2/3 = 4.67 from the expansion of X ~4). The exponents calculated 
from these estimates are v = 0.673, 3"/v = 1.970 = 2 - ~7, and /3  = 0.348. These 
values are again consistent with field theoretical estimates [2, 3] The scaling 
relations yield a = - 0 . 0 2 0  and ~ = 4.81. The hyperscaling relations result in 
a = -0 .018,  and 3"/v = D ( ~  - 1)/(~ + 1) = 1.968, again in good agreement  with 
our previous values. 

5. Concluding remarks 

Analyzing new longer series for the Heisenberg (n = 3) model using more  
refined methods than in early works we obtain for the SC lattice critical 
parameters that are in good agreement with completely independent  results 
from two recent MC simulations. Our reanalysis of existing series for the FCC 
and BCC lattices indicate that the improvement  comes mainly from the refined 
methods that are able to take into account confluent correction terms. With 14 
(or even only 12 or 11) terms these series are, however,  still too short to 
compete with the accuracy achieved by field theoretical methods for critical 
exponents,  or with the precision claimed from simulations. However ,  the 
results clearly show that there remain no major  discrepancies between series 
estimates and other calculations. Longer  series clearly stabilize and thus 
increase the reliability of the estimates along the lines discussed here,  and it 
therefore would be very desirable to have a few more terms available. 
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Note added in proof 

See also exponent  estimates for the Heisenberg model given in ref. [26]. 
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