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We qualitatively compare two versions of quantum Regge calculus by means of Monte Carlo simulations. In 
Standard Regge Calculus the quadratic link lengths of the triangulation vary continuously, whereas in the Z2- 
Regge Model they are restricted to two possible values. The goal is to determine whether the computationally 
more easily accessible Z2 model retains the characteristics of standard Regge theory. 

Standard Regge Calculus (SRC) [1] provides an 
interesting method to explore quantum gravity in 
a non-perturbative fashion [2]. Although its code 
can be efficiently vectorized for large scale com- 
puting, it is still a very time demanding enter- 
prise. One therefore seeks for suitable approxi- 
mations which will simplify the SRC and yet re- 
tain most of its universal features. The Z2-Regge 
Model (Z2RM) [3] could be such a desired sim- 
plification. Here the quadratic link lengths of the 
simplicial complexes are restricted to take on only 
the two values 

qt = l + eat , O < e < e,nax , a z = ± l ,  (1) 

in close analogy to the ancestor of all lattice mod- 
els, the Ising-Lenz model. To test whether this 
simpler model is in a reasonable sense still simi- 
lar to SRC, we study both models in two dimen- 
sions and compare a number of observables for 
one particular lattice size. 

Starting point for both SRC and Z~.RM is 
Regge's discrete description of General Relativ- 
ity [1] in which a given continuum manifold is 
replaced by a piecewise flat simplicial space. In 
two dimensions this procedure is easily illustrated 
by choosing a triangulation of the surface under 
consideration. Every triangle then represents a 
part of a piecewise linear manifold. 
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Quantization of SRC proceeds by evaluating 
the Euclidean path integral 

Z = dqtq~-myZ({qt}) e -X  ~_, A, (2) 

In principle the functional integration should ex- 
tend over all metrics on all possible topologies, 
but, as is usually done, we restrict ourselves to 
one specific topology, the torus, whose Euler char- 
acteristic is zero. Consequently the action in the 
exponent of (2) consists only of a cosmological 
constant A times the sum over all triangle areas 
At .  Moreover the path-integral approach suffers 
from a non-uniqueness of the integration measure 
and it is even claimed that the true measure is 
of non-local nature [4]. We used as a trial func- 
tional integration measure the expression within 
the square brackets of (2) with m E IR permit- 
ting to investigate a 1-parameter family of mea- 
sures. The function ~" constrains the integration 
to those Euclidean configurations of link lengths 
which do not violate the triangle inequalities. 

In the Z2RM [3] the squared link lengths as well 
as functions of them are rewritten with respect 
to (1). Thus the area of a triangle with edges 
ql, q2, qt is expressed as 

At  = co + Cl(al + ~r2 + az) + c2(~rla2 + 

3uO'10"l "~- 0"20"/) 71- C30"ldr20r / • (3)  

The coefficients ci depend on e only and im- 
pose the condition e < ~ = e,~,~ in order 
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to have real and positive triangle areas [3], i.e. 
~" = 1 for all possible configurations. The mea- 
sure IIt f dqtq~ 'n is replaced by 

E expI -m Zln(l + ea,)] = 
al=~=l l 

Z exp[-Nlrno(e)- E m l ( e ) a , l  , (4) 
o"1 = ~ 1  ! 

~21--1 
with ml = m M  and M = ~ 1  2i-1" N1 is the 
total number of links and m o =  - ] m e  2 + O(e4). 
Hence the partition function of the Z2RM results 
in 

a' l=' t-1 l 

+ + + <5) 
t 

with a constant J.  A particular simple form of 
(5) is obtained if ml = -2ACl and therefore 

-2ACl 
m - - -  <6) 

M 
is henceforth used for the measure in the Z2RM 
as well as in SRC. We set the parameter e = 0.5 
in the following. 

To compare both models we examined the 
quadratic link lengths and the area fluctuations 
on the simplicial lattice. Furthermore the Liou- 
ville mode is of special interest because it rep- 
resents the only degree of freedom of pure 2d- 
gravity. The discrete analogue of the contin- 
uum Liouville field ~(x) = In V / ~  is defined 
by ¢ = -~ ~ ,  In A,, where A, = ~ ~ t ~ ,  At is the 
area element of site i and A the total area [5]. 
Figure 1 displays the corresponding expectation 
values as a function of the cosmological constant 

measured from 100k Monte Carlo sweeps after 
thermalization on lattices with 16 x 16 vertices. 

Within the SRC the area increases with de- 
creasing k in perfect agreement with the scaling 
relation 

1 - - m  
( A )  = g l - - y - -  

One also expects that (q) will increase as ~ tends 
to zero. The Liouville field (~b) behaves accord- 
ingly. Actually we observe that the system ther- 
realizes extremely slowly for very small A and 

therefore display only statistically reliable data 
points for A > 1 in the upper plots of Fig. 1. 

Whereas the SRC becomes ill-defined for nega- 
tive couplings A, the Z2RM is well-defined for all 
values of the cosmological constant. The phase 
transition the Z2RM undergoes at Ac ~ -11  can 
be viewed as the relic of the transition from a well- 
to an ill-defined regime of SRC. So Ac -+ 0 if we 
allow for more than two link lengths. Altogether 
there is already in our simple case correspondence 
of observables for A > Ac. 

Another interesting quantity to consider would 
be the Liouville susceptibility 

= <A) [ (¢  2) - (S) 

From continuum field theory it is known that for 
fixed total area A the susceptibility scales accord- 
ing to 

lnx¢(L ) L ~  c + (2 - ~/~)lnL, (9) 

with L = V ~  and the Liouville field critical expo- 
nent 7¢ = 0. This has indeed been observed for 
SRC with the dq/q scale invariant measure and 
fixed area constraint [5]. It is, however, a priori 
not clear if this feature will persist in the present 
model due to the fluctuating area and the non- 
scale invariant measure. This point is presently 
under investigation. 

To conclude, physical observables like the Liou- 
ville field and the squared curvature behave sim- 
ilar for the bare coupling A > ~c. The phase 
transition of the Z2RM in the negative coupling 
regime is interpreted as the remnant of the ~ = 0 
singularity of SRC. There remains the interest- 
ing question if by allowing for more than two 
link lengths the phase transition of such extended 
Z2RM approaches that of SRC. Then the sit- 
uation might resemble the more involved four- 
dimensional case where one has to deal with 10 
edges per simplex and the nontrivial Einstein- 
Hilbert action ~-.t~i ~tAt with 50 triangles t per 
vertex i. Thus the action takes on a large variety 
of values already for Z2RM and therefore SRC 
can be approximated more accurately [6]. 
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Figure  1. E x p e c t a t i o n  values of  the  a rea  A normal ized  to  the  to ta l  n u m b e r  of  vertices,  the  average  squared  
l ink length  q, and  the  Liouvil le field ~ as a funct ion of the  cosmological  cons tan t  A for S t a n d a r d  Regge 
Calculus  (upper  plots)  and  the  Z2-Regge Model  (lower plots).  
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