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Canonical versus microcanonical analysis of first-order phase transitions

Wolfhard Janke**
2Institut fiir Physik, Johannes Gutenberg-Universitat Mainz, Staudinger Weg 7, 55099 Mainz, Germany

I discuss the relation between canonical and microcanonical analyses of first-order phase transitions. In particu-
lar it is shown that the microcanonical Maxwell construction is equivalent to the equal-peak-height criterion often
employed in canonical simulations. As a consequence the microcanonical finite-size estimators for the transition
point, latent heat and interface tension are identical to standard estimators in the canonical ensemble. Special
emphasis is placed on various ways for estimating interface tensions. The theoretical considerations are illustrated

with numerical data for the two-dimensional 10-state Potts model.

1. INTRODUCTION

First-order phase transitions [1] play an im-
portant role in the statistical mechanics of many
physical phenomena ranging from the evolution of
the early universe over fragmentation processes
in nuclear physics to applications in condensed
matter physics and material science. In the past
few years considerable effort has been spent to
develop refined analytical [2] and numerical [3-5]
methods for their description. Most of this work
starts from the canonical ensemble whose prop-
erties are governed by the partition function

Z.B) = e P ="y (E)e"F, (1)
{o:} E

where H is the Hamiltonian of the system, {o;}
denotes the degrees of freedom, 3 = 1/kgT is the
inverse (canonical) temperature in natural units,
and the subscript L indicates the system size. Al-
ternatively one could also start directly from the
density of states,

S)L(E) = Z 6}:1'({0'.'}),1‘77 (2)
{o:}

which is the characteristic function of the micro-
canonical ensemble [6,7].

In the thermodynamic limit L — oo both ap-
proaches are known to be equivalent. In this note
I will consider small systems and focus on a com-
parison of finite-size scaling (F'SS) studies in the
two ensembles.
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2. CANONICAL AND MICROCANONI-
CAL OBSERVABLES

From (2) the microcanonical entropy density
and the inverse temperature can be defined as,
38[,(6)

52.(6) = M L(E), Pricro(e) = LD, (3

where V is the volume of the system and e =
E/V. In simulations of the canonical ensemble it
is straightforward to measure the energy distri-
bution,

Ps,L(E) = ot Q(E)e P, (4)

at a given inverse temperature 3. Here c; is a
constant independent of E which will be unim-
portant in the following. Together with (3) this
yields immediately the microcanonical entropy,

%ln(Pg,L(E)) — si(e) — e+ o, (5)

up to a constant and an additional linear term in
e, which, however, is also added in a purely micro-
canonical setting when visualizing the anomaly of
sz(e) at a first-order phase transition (cp., e.g.,
Fig. 1(a) of Ref. [7]). The microcanonical inverse
temperature (3), on the other hand, is completely
determined by the canonical data since the con-
stant drops out and the canonical 8 acts just as
a known constant offset,

Busros(€) = 5t [FPos(®)] 45, ©

For an illustration see Fig. 1{b).
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The microcanonical pseudo-transition point
Bt 1s defined in a Maxwell construction by re-
quiring that the line Bmicro,L(€) = B¢, divides
the s-shaped curve of Bmicro,1(€) into two equal
areas, A_ = Ay (see Fig. 1(b)) [6,7]. This also
yields a finite-size estimator for the latent heat,

A-Elmicro,L =FE4 - Em (7)
and the interfacial entropy,
Asfxl:ircfm,z. =A_ = A, (8)

How are these quantities related to observ-
ables usually considered in the canonical ensem-
ble? We will now prove that, for any system size
L, B is identical to Beqn,r, the inverse tem-
perature at which the two peaks of the canon-
ical energy distribution are of equal height (see
Fig. 1(a)). Let us denote the location of the
two maxima by E, and Ey4, and that of the
minimum by Eg;,. At these extrema we ob-
viously have 0Pz 1 /OF = 0, and thus by (6)
Bmicro,L(€i) = Beqn,L, ¢ = o,d,min. To con-
vince ourselves that feqn,r is equal to the mi-
crocanonically defined 3, ; we have now to show
that A_- = A4. By using (3) we obtain 4_ =
Beqh,L(€min — €,) — (5L(€min) — sL(€s)), and in-
serting (5) we arrive at

1 Pﬂ L(Eo) 2ood L
= '—l s —_ ) 9
A= gl g Ei) L’ ©)

with 8 = Beqn,z. Similarly we derive

Ay = 2in222lBD) _ 200z (10)
V" Ps,1(Emin) L

Since Py 1(E,) = Pp,1(Ea) at § = Beqn, we find

as anticipated that A_ = A, , and therefore that

/Ht,L = ,Beqh,L-

Moreover, Eqgs. (9) and (10) also show that the
definition (8) of Asiur | coincides with the com-
mon canonical definition of the interface tension
Ood,r evaluated from equal-height energy distri-
butions. Finally it is now trivial that the mi-
crocanonical definition (7) of AFEmicro,r is iden-
tical to the distance of the peaks of Pg (E) at
B = Beqn,r- In summary we have shown that mi-
crocanonical and canonical definitions of pseudo-
transition points, latent heat, and interface ten-
sion are identical for all system sizes L. Therefore
their FSS behaviour must trivially be the same.
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Figure 1. (a) Canonical energy distribution for
L =50 reweighted to Beqn,r on a logarithmic scale.
(b) The microcanonical inverse temperature (6)
derived from the energy distribution in (a).

3. NUMERICAL RESULTS

To illustrate these results we now consider the
two-dimensional g-state Potts model Hamiltonian

H=-) 450, (11)
(i7)
with spins o; = 1,...,q living on square lattices
of size V = L x L with periodic boundary con-
ditions. Our canonical data for L = 12, 16, 20,
26, 34, and 50 are a combination from (unpub-
lished) high-statistics simulations with the heat-
bath and Metropolis algorithm and more recent
multicanonical and multibondic simulations [5].
The canonical energy distribution reweighted to
Beqn,z for L = 50, and the resulting s-shaped
curve for Bmicro,1, are shown in Fig. 1. In Fig. 2
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the estimates of the interface tension according to
the microcanonical definition (8) (i.e., (9) or (10)
at Bi,, = Peqn,r) are plotted against 1/L. As
noticed previously (7], these finite-size estimates
are closer to the infinite-volume limit than those
obtained by evaluating (9) or (10) at the exactly
known transition point 8, = In(1 + \/q) [8]. As
we have shown above, however, this observation
has nothing to do with the difference between mi-
crocanonical and canonical analyses. Rather, it is
only caused by choosing two different S-sequences
(Bt,. = Beqn, O Bt).

Moreover, even though the data according
to the microcanonical definition are apparently
closer to the infinite-volume limit, they are much
more difficult to extrapolate. In fact, by using
our data up to L = 50, we would clearly over-
estimate o0,4. This is even true for the data
of Ref. [3] up to L = 100 and also most other
earlier studies employing the equal-peak-height
criterion. On the other hand, a least-squares
fit to the FSS ansatz g,41 = 0. + ¢/L of
our data at §; yields 20,4 = 0.09498(31) (with
@ = 0.27), in excellent agreement with the ex-
act result 20,4 = 0.094701 . .. [9] and the numeri-
cal estimate 20,4 = 0.0950(5) at [, of Ref. [8].
Of course, in general B; is not known exactly.
We have therefore evaluated (9), (10) also at the
points By, 1 (ratio-of-weights method) as defined
in Ref. [4], which exhibit only exponentially small
deviations from ;. Here the FSS extrapolation
yields 20,4 = 0.09434(40) (with @ = 0.63), again
in very good agreement with the exact result.
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Figure 2. FSS of the interface tension.

4. CONCLUSIONS

We have explicitly demonstrated that the mi-
crocanonical Maxwell construction at first-order
phase transitions is equivalent to the equal-peak-
height criterion often employed in canonical sim-
ulations. This implies that the microcanonical
and canonical pseudo-transition points 3; ;, and
Beqh, coincide for all system sizes L. Conse-
quently also the finite-size definitions of the la-
tent heat and the interface tension are identical
in the two ensembles. Furthermore it is shown
that, contrary to a recent claim in the literature,
FSS extrapolations of interface tensions at 3; or
Buw,r (ratio-of-weights method) are more reliable
than those at 53¢ 1 = Beqn,L-
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