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Monte Carlo study of 8-state Potts model on 2D random lattices *

Wolfhard Janke®*' and Ramon VillanovaP

*Institut fiir Physik, Johannes Gutenberg-Universitit Mainz,

Staudinger Weg 7, 55099 Mainz, Germany

bMatematiques Aplicades, Universitat Pompeu Fabra,

La Rambla 32, 08002 Barcelona, Spain

We study the effect of quenched coordination-number disorder of random lattices on the nature of the phase
transition in the two-dimensional eight-state Potts model, which is of first order on regular lattices. We consider
Poissonian random lattices of toroidal topology constructed according to the Voronoi/Delaunay prescription.
Monte Carlo simulations yield strong evidence that the phase transition remains first order.

1. INTRODUCTION

Pure systems exhibiting a continuous phase
transition are very susceptible to the addition of
random disorder. The critical behaviour can be
driven to new universality classes or the phase
transition can be eliminated altogether [1]. Also
for first-order phase transitions phenomenological
renormalization-group arguments suggest strong
effects caused by random disorder [2]. In partic-
ular the order of the transition can change from
first to second.

The well-known paradigm to investigate such
effects is the two-dimensional ¢-state Potts model
which undergoes on regular lattices for ¢ > 5
a temperature driven first-order phase transition
[3]. Monte Carlo (MC) simulations for ¢ = 8 with
a certain type of quenched bond-disorder pro-
vided clear evidence for a continuous phase transi-
tion of the Ising type [4]. Also in two-dimensional
quantum gravity studies of Potts “matter” cou-
pled to dynamically triangulated random surfaces
(DTRS), a similar softening effect was observed
[5]. From a statistical mechanics viewpoint, in
this case the Potts model is subject to annealed
disorder in the local coordination numbers of the
dynamical triangulation.
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Here we report on a study [6] of the same model
on static Poissonian random lattices constructed
according to the Voronoi/Delaunay prescription
(7]. The locally varying coordination numbers
cause the disorder similar to Ref. [5], but in our
case the disorder is assumed to be frozen in, i.e.
“quenched”, as in Ref. [4].

2. MODEL AND SIMULATION

The 8-state Potts model is defined by the par-
tition function

Z= e_ﬁE;Ez_Zédaa_j;aizla"wqa (1)
{oi} (i5)
with ¢ = 8. The o, are integer valued spins at the
lattice sites i, d¢,,, denotes the usual Kronecker
delta symbol, and the nearest-neighbor bonds (i5)
are determined by the Voronoi/Delaunay con-
struction of the random lattices. We always used
periodic boundary conditions, i.e., toroidal topol-
ogy as depicted in Fig. 1.

Using a standard algorithm [8] we generated
20 independent replica of random lattices with
V' = 250, 500, 750, 1000, 2000, and 3000 sites and
performed long single-cluster simulations near the
transition point at g = 0.826, 0.830, 0.830, 0.830,
0.832, and 0.833, respectively. After equilibra-
tion we recorded 1000000 measurements (taken
after 1, 1, 1, 1, 2, 4 clusters had been flipped)
of the energy E and the magnetization M =
(g max{n;}-V)/(g—1) in a time-series file, where
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Figure 1. Random lattice with toroidal topology.

n; < V denotes the number of spins of “orien-
tation” ¢ = 1,...,¢ in one lattice configuration.
The corresponding quantities per site will be de-
noted by e = E/V and m = M/V.

We then applied the reweighting method to
compute, e.g., the specific heat C)(8) =
BV ((e?) — (e)?) for each replica labeled by
the superindex (i), performed the replica av-
erage C(8) = [CO(B)] = (1/20) ¥ CO)(p),
and finally determined the maximum, Cp.x =
C(Be,.)- For the magnetic susceptibility,
x(8) = BV ([(m?) — (m)?]) we followed exactly
the same lines.

The proper replica average for the specific heat
and susceptibility follows from the general rule
that in the quenched case the free energy (and its
derivatives) should be averaged {9]. For the (ener-
getic) Binder parameter, usually defined for pure
systems as B(8) = 1 — (e*)/3(e?)?, the proper
replica average is less clear to us. We have there-
fore studied three different definitions: B;(8) =
1 [(e')/3(e2)?], Ba(B) = 1~ [(e4)] /3 [(e2)?],
and B3(8) = 1 — [(e*)] /3 [(62)]2. While in spin
glass simulations [10] usually the analog of Bs
(with e replaced by the overlap) is used, for a
random bond Ising chain [11] a better scaling be-
haviour was observed for the analog of B; (with
e replaced by m).

3. RESULTS

Our estimates of the extrema of C, x, and
B, for the various lattice sizes are collected in
Table 1. The error bars are estimated by jack-
kniving over the 20 replica. This takes into ac-
count both the statistical errors on each C()(3)
and the fluctuations among the different replica.
Already a first qualitative inspection of the data
indicates that the first-order nature of the phase
transition persists on quenched random lattices.

To make this statement more precise we per-
formed a finite-size scaling (FSS) analysis. As-
suming a first-order phase transition, we expect
for large system sizes an asymptotic FSS be-
haviour of the form [12-14]

Cmax = ac +bcV +..., (2)
Xmax = @y + 0V +..., (3)
Bimin =ap; +bp,/V +..., 4)
and

BCmax =Bt +ec/V +..., (5)

etc., where f3; is the infinite volume transition
point. The data for Cyax and xmax shown in
Fig. 2 are clearly consistent with this assump-
tion. From least-square fits we obtained a¢c =
23.3(2.0),bc = 0.0659(30), with a goodness-of-
fit parameter @ = 0.16 (corresponding to a chi-
square per degree of freedom of 1.7), and a, =
—0.70(43), b, = 0.0629(13), with @ = 0.45.

Also the data for the Binder parameter min-
ima confirms the hypothesis of a first-order phase
transition. Here the least-square fits gave ap, =
0.6240(20), bp, = —18.8(1.4), Q = 0.17, ap, =
0.6236(22), bp, = —18.5(1.4), @ = 0.47, and
ap, = 0.61125(68), bp, = —16.45(71), Q = 0.55.
Notice the much higher accuracy of Bs.

Our data for the pseudo-transition points and
the corresponding fits through all data points are
shown in Fig. 3. The resulting estimates for 3; are
0.83360(14) from Chax (@ = 0.51), 0.83365(14)
from xmax (@ = 0.47), and 0.83371(14) from
Bi min (@ = 0.40). On the scale of Fig. 3 the
data points for Bg min and Bs min could hardly
be disentangled from Bj min and are therefore
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Table 1
Extrema of the specific heat (Cpax), the susceptibility (xmax), and the Binder parameter (Bi min), to-
gether with the respective pseudo-critical couplings.
Vv BCornax Cmax ﬂxmax Xmax ﬂBlein B1,min
250 0.82500(44) 33.15(45)  0.82404(46) 14.96(20)  0.81872(48)  0.5662(11)
500  0.82946(35) 55.51(93)  0.82907(34) 31.09(56)  0.82655(34)  0.5875(13)
750  0.83087(23) 76.1(2.0)  0.83065(24) 47.7(1.3)  0.82901(24)  0.5960(18)
1000  0.83112(31) 90.4(2.6)  0.83095(31) 61.0(1.8)  0.82072(32)  0.6044(17)
2000  0.83232(22)  144.8(9.0)  0.83225(21)  114.8(7.7)  0.83164(21)  0.6180(31)
3000 0.83300(16) 216(11) 0.83297(16) 185.1(9.9) 0.83257(16) 0.6190(25)

omitted. The results for §; are 0.83350(13) from
Bj min (@ = 0.25), and 0.83362(13) from Bs min
(Q = 0.23). By taking the average of these esti-

mates we finally obtain 0.83
B = 0.83362 + 0.00013. (6) B
Notice that this value is very close to the exactly

known transition point of the 8-state Potts model

on a triangular lattice (§; = = 0.85666...) [3]. 0.82

Finally we show in Fig. 3 the “ratio-of-weights”
definition of pseudo-transition points, 8w, which
are expected to approach J; exponentially fast

—

s . . . . X 0.000 0.001 0.002 0.003 0.004
with increasing lattice size [15]. Basically the idea N

is to reweight the energy histograms to a point Bw
where the weights of the ordered and disordered
phase arein aratio ¢ : 1. Asin earlier studies for

Figure 3. FSS of pseudo-transition points.

regular square lattices [14,15], we find also here
that the Bw are quite accurate estimates of G;

300 — . . already for very small system sizes.
0 Cpoa 4. CONCLUSIONS
O Xemax
200 } ] Summarizing, we have obtained clear numerical

evidence for a first-order phase transition in the
8-state Potts model on quenched random lattices
of Voronoi/Delaunay type. We can savely exclude
100 : a cross-over to a continuous transition as was ob-
served for a certain type of quenched bond dis-
order on square lattices [4) and for the annealed

- disorder of dynamically triangulated surfaces [5].

% 1000 2000 3000 This conclusion is based on the FSS behaviour

v of standard thermodynamic cbservables. We are

currently extending the analysis to quantities

Figure 2. FSS of specific-heat and susceptibility that are directly related to the probability distri-

maxima. butions of the energy or magnetization, such as
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the interface tension and the briefly mentioned
“ratio-of-weights” definition of pseudo-transition
points. Details of this study, which is based on a
much larger set of 128 replica, will be presented
elsewhere [16].
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