
Nuclear Physics B (Proc. Suppl.) 34 (1994) 771-773 
North-Holland 

n ~ t l [ l l  1 I_.I . i  .J P, |-4,,.i [ l i , , l  :! 

PROCEEDINGS 
SUPPLEMENTS 

Multicanonical multigrid Monte Carlo method and effective 
autocorrelation time 

W. Janke a* and T. Sauer b 

aInstitut fiir Phy~ik, Johannes Gutenberg-Universit~it Mainz, 55099 Mainz, Germany 

bInstitut fiir Theoretische Physik, Freie Universit~it Berlin, 14195 Berlin, Germany 

We report tests of the recently proposed multicanonical multigrid Monte Carlo method for the two-dimensional 
¢4 field theory. Defining an effective autocorrelation time we obtain real time improvement factors of about one 
order of magnitude compared with standard multicanonical simulations. 

1. I N T R O D U C T I O N  

At first-order phase transitions [1] standard 
Monte Carlo simulations in the canonical ensem- 
ble exhibit a supercritical slowing down. Here 
extremely large autocorrelation times are cau- 
sed by strongly suppressed transitions between 
coexisting phases which, on finite periodic lat- 
tices, can only proceed via mixed phase confi- 
gurations containing two interfaces. Since the 
probability of such configurations is suppressed 
by a factor exp(--2~Ld-1),  where a is the inter- 
face tension and L d- 1 the cross-section of the sy- 
stem, the autocorrelation times in the simulation 
grow exponentially with the size of the system, 
7- o¢ exp(2o-Ld-1). A way to overcome this pro- 
blem, known as multicanonical sampling [2], is 
to simulate an auxiliary distribution in which the 
mixed phase configurations have the same weight 
as the pure phases and to compute canonical ex- 
pectations by reweighting [3]. While this does re- 
duce the supercritical slowing down to a power- 
law behaviour the remaining slowing down pro- 
blem is still severe. In fact, in most cases it is 
even worse than for standard (e.g., Metropolis 
or heat-bath) Monte Carlo simulations of critical 
phenomena. For these latter applications, on the 
other hand, multigrid techniques [4-7] have been 
shown to greatly reduce or even completely eli- 
minate critical slowing down. Here collective up- 
dates on different length scales are performed by 

*W.J. thanks the Deutsche Forschtmgsgemeinschaft for a 
Heisenberg fellowship. 

visiting various coarsened grids in a systematic, 
recursively defined way. For a further reduction 
of autocorrelations both approaches may easily 
be combined and give a much better  performance 
than each component alone [8]. 

2. S I M U L A T I O N  

We studied the ~4 lattice field theory in d = 2 
dimensions defined by the parti t ion function 

L ~ L ~ ~ 2 A~ 

\ , = , \ 2  2 

with #~,g > 0. Here reflection symmetry  is 
spontaneously broken for all #2 > #e2(g) > 0 as 
L ~ c~. Consequently, if a term h ~-~i ¢i  is ad- 
ded to the energy, the system exhibits first-order 
phase transitions driven by the field h. 

For the multicanonical sampling the reweigh- 
ting factor is denoted by w - l ( m )  = e x p ( - f ( m ) ) ,  
where m = ~ i  ¢ i / V  is the average field. Ca- 
nonical expectation values (O/can of an observa- 
ble O are then obtained by the basic reweighting 
formula (O)can = (wO)/ (w) ,  where ( . . . /  on the 
r.h.s, are multicanonical expectation values. To 
update field values with, say, Metropolis moves, 
¢i  ---* ePi + A¢i ,  the decision of acceptance is now 
based on the value o f A E + f ( m + A ¢ i / V ) - - f ( m  ) 
with A E  being the canonical energy difference. 

For the multigrid Monte Carlo we use the 
piece-wise constant interpolation scheme which 
amounts, in the equivalent unigrid viewpoint, to 
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proposing moves for blocks of 1, 2 d, 4d , . . . ,  V = 
L d = 2 "d adjacent variables in conjunction. In a 
canonical simulation a multigrid update at level k 
thus consists in considering a common move A(~ 
for all 2 kd variables of one block, (Ih ) ¢i  + A ~ ,  
i E block. For the sequence of length scales 
2 k,k = 0 , . . . , n  we use the W-cycle. 

For the multicanonical multigrid simulation the 
modifications are now rather simple. Since at 
level k the proposed move would change the 
average field by 2 k d A ~ / V ,  the decision of ac- 
ceptance is now to be based on the value of 
A E  + f ( m  + 2 k d A ¢ / Y )  -- f (m) ,  where A E  is to 
be computed as in the canonical case. While this 
modification is obvious from the unigrid view- 
point, it should be stressed that  in the recursive 
mul t i g r id  formulation the multicanonical modifi- 
cation is precisely the same. 

For a fair comparison with canonical simu- 
lations, we define for multicanonical simulati- 
ons an effective autocorrelation time r eft by the 
standard error formula for N m  correlated (mul- 
ticanonical) measurements, e2 = O.can2 T 2  eff /Nm, 
where  o'c2an (02)can 2 = - (Oi)¢~n is the variance 
of the canonical  distribution of single measu- 
rements. Here e2 = ~02 = ( 0 2 ) _  (0)2 is 

the variance of the (weakly biased) estimator 

for (O)¢~n. This variance can be estimated by 
jack-knife blocking procedures, or by applying 
standard error propagation to the variance of O, 
which involves the (multicanonical) variances and 
covariances of w i O i  and wi, and the three associa- 
ted autocorrelation times ro ;o  - TO, rwO;wO -- 

7"~o, and r ~ o ; o  = ro;wo [8]. By symmetry, for 
O = m this simplifies to 

e2 = (wimi ;  w i m i )  2rwm a2 2rwm 
(wi) ~ N.~ ~ muca "g--m'm ' (2) 

where (x;y)  = (xy)  - ( x ) ( y )  and r:c;y = 1/2 + 
~ k  (x0; Y k ) / ( x o ;  Y0) is the integrated autocorrela- 
tion time of multicanonical measurements. In this 
way properties of the multicanonical distribution 
(given by Cr~mu¢~ ) are disentangled from properties 
of the update algorithm (given by vwm). Note 
that  in v ~ff 2 2 = (O'muca/O'can)Twrn, it is the integra- 
ted autocorrelation time of w ( m ) m  that enters 

(0) and not the exponential autocorrelation time r,h , 

as previously investigated [9]. 

3. R E S U L T S  

In our studies of model (1) we investigated the 
first-order phase transition between the two orde- 
red phases at the points g -- 0.25 and p2 = 1.30, 
1.35, and 1.40 which are sufficiently far away from 
the critical point at ~ = 1.265(5) [10] to dis- 
play the typical behavior already on quite small 
lattices. A sensitive measure of the strength of 
the transition is the interface tension aoo bet- 
ween the + and - phase. For p2 = 1.30 and 
L ~ c¢ this turns out [8] to be aoo = 0.03443(47) 
which is comparable to the analytical result [11] 
of (rod = 0.03355. . .  for the order-disorder inter- 
face tension in the two-dimensional 9-state Potts 
model. For p2 = 1.35 we find aoo = 0.09785(60) 
and for p2 ~_ 1.40 the interface tension is aoo = 

0.16577(73) [81. 
We performed multicanonical simulations using 

the Metropolis update and the W-cycle without 
post-sweeps for lattices of size V = L 2 with 
L = 8, 16 and 32. With the multigrid algorithm 
we also studied lattices of size L = 64. After 
thermalization, each time series contains a total 
of 106 measurements taken every ne fh  sweep. The 
number of sweeps between measurements, n , ,  was 
adjusted in such a way that  in each simulation the 
length of each time series is at least 20,000 vwm. 

In Table 1 we give for both update algorithms 
the various autocorrelation times of the magne- 
tization m which reflects most directly the tun- 
neling process. We see that  rm and r(m °) agree 
well with each other, showing that  the correspon- 
ding autocorrelation function can be approxima- 
ted by a single exponential. For w m  we obtain 
values for r(°) that  are consistent with those for 
m within error bars. The integrated autocorre- 
lation times, however, are significantly lower, im- 
plying that the autocorrelation function is com- 
posed of many different modes. We also observe 
that  the difference between rwm and T eft can be 
quite appreciable. From L -- 8 to L = 64 the ra- 
tio Teff / rwm 2 2 = amu¢~/a¢~n varies from about 1.9 
to 4.6, reflecting the varying probability distribu- 
tion shapes with increasing L. By fitting V eft to a 
power law, T eft ~ L z, we obtain for both update 
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Table 1 
Autocorrelation times in units of sweeps resp. cycles for the Metropolis (M) or multigrid W-cycle (W) 
update in multicanonical simulations of the model (1) with g = 0.25 and p2 __ 1.30. 

L = 8 L = 16 L = 32 L = 64 
M W M W M W W 

v(m °) 212(12) 11.30(32) 668(23) 37.2(2.0) 3120(200) 148(11) 746(62) 
rm 204.4(4.0) 10.88(12) 690(11) 34.69(76) 2984(63) 150.0(4.0) 758(37) 

r~°m ) 209(12) 11.34(33) 655(31) 36.9(2.0) 2880(190) 146(13) 600(120) 
rwm 171.1(3.4) 9.82(11) 509.8(8.9) 27.58(59) 1840(40) 96.6(2.4) 374(23) 
r cn 322.7(6.1) 18.51(20) 1258(21) 67.4(1.3) 6050(120) 321.9(7.6) 1724(86) 

algorithms an exponent of about z ~ 2.3, 2.7, and 
3.0 for #~ = 1.30, 1.35, and 1.40; see Fig.1. 
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Figure 1: Autocorrelation times as a function of 
lattice size L for g = 0.25. 

4. C O N C L U S I O N S  

The multigrid update enhances the perfor- 
mance of the multicanonical simulation by redu- 
cing the overall scale but it does not affect the 
exponent z. For the W-cycle the autocorrelation 
times are reduced by a roughly constant factor of 
about 20 as compared with the Metropolis algo- 
rithm. Taking into account that a W-cycle requi- 
res more elementary operations than a Metropo- 
lis sweep [4] we obtain a real time improvement 
factor of about 10 with our implementation on a 
CRAY Y-MP. 
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