
I |  i l [ l i  I I1';I " i  "i -" t't¢l [15"11 "! 

PROCEEDINGS 
SUPPLEMENTS 

Nuclear Physics B (Proc. Suppl.) 34 (1994) 698-701 

North-Holland 

Ising model on 2D random lattices* 

Wolfhard Janke a, Mohammad Katoot b and Ramon Villanova c 

~Institut ffir Physik, Johannes Gutenberg-Universit~t Mainz, 55099 Mainz, Germany 

bphysics Dept., Embry-Riddle Aeronautical University, Daytona Beach, Florida 32114, USA 

CGrup de Ffsica Tebrica and IFAE, Universitat Autbnoma de Barcelona, 08193 Bellaterra, Spain 

We report single-cluster Monte Carlo simulations of the Ising model on two-dimensional Poissonian random 
lattices constructed according to the Voronoi/Delaunay prescription. One set of simulations is performed near 
criticality on lattices with up to 80 000 sites. Here we ~pply reweighting techniques to obtain the critical exponents 
from a finite-size scaling analysis. The other set of simulations is performed in the disordered phase and the critical 
parameters are extracted from fits to power-law divergencies as the critical point is approached. From both sets 
we obtain unambiguous support for lattice universality, i.e., that the critical exponents of the Ising model on a 
two-dimensional random lattice agree with the exactly known values for regular lattices. 

1. I N T R O D U C T I O N  

Random lattices [1,2] are a useful tool to dis- 
cretize space without introducing any kind of 
anisotropy. Recent applications can be found in 
such diverse fields as quantum field theory or 
quantum gravity [1,2], the statistical mechanics 
of membranes [3], diffusion limited aggregation 
[4], or growth models of sandpiles [5]. 

Here we consider the Ising model defined by the 
partition function 

z = e-K ; z = - E s, = ± l ,  (1) 
{~d (it) 

where K = Y/ksT > 0 is the inverse temper- 
ature in natural  units and (ij) denote nearest- 
neighbour links of two-dimensional Poissonian 
random lattices constructed according to the 
Voronoi/Delaunay prescription [1,2]. We thus 
take the relative weights of the links to be con- 
stant as in previous work by Espriu et al. [6], 
who studied this model using standard Metropo- 
lis Monte Carlo (MC) simulations in the low- 
and high-temperature phase on lattices with N = 
10000 (10k) sites. Focussing mainly on the 
question of lattice universality, we report high- 
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statistics simulations in the very vicinity of the 
phase transition, using considerably larger lat- 
tices of size up to N = 80k, as well as further runs 
in the disordered phase. To achieve the desired 
aecur~y of the data  we made extensively use of 
recently developed greatly refined MC simulation 
techniques, such as the single-cluster update al- 
gorithm [7] and reweighting methods [8]. As a 
result of finite-size scaling (FSS) analyses of our 
data at criticality and power-law fits in the dis- 
ordered phase we obtain very strong support for 
(lattice) universality in this model [9]. 

2. S I M U L A T I O N  

The lattice sizes investigated in the FSS study 
are N = 5k, 10k, 20k, 40k, and 80k, with three 
replicas for each of the two smallest lattices, and 
two replicas for N = 20k. We always employed 
periodic boundary conditions, i.e., the topology 
of a torus with an average coordination number 

= 6 (Euler's theorem). Locally the coordina- 
tion numbers q vary for Poissonian random lat- 
tices (see Fig.l) between 3 and c¢ with an exactly 
known [10] distribution P(q). All our lattices sat- 
isfy these constraints, with q - 13 being the high- 
est coordination number actually observed in the 
N = 80k lattice simulation. 

To update the spins si we employed the single- 
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Figure i. Section of a Poissonian random lattice. 

cluster update algorithm [7]. All runs were per- 
formed at K = 0.263, the estimate of the criti- 
cal coupling Kc in Ref.[6]. After discarding from 
50000 to 150000 clusters to reach equilibrium 
from an initially completely disordered state, we 
generated a further 4 × 10 s clusters and recorded 

every lOth cluster measurements of the energy 
per spin, e = E/N, and the magnetization per 
spin, m = ~'~i si/N in a time-series file. At the 
scale of our measurements the corresponding in- 
tegrated autocorrelation times are ~e ~ 0.8 - 1.3 
and ~m2 ~ 0.7- 0.9, respectively. The statistical 
errors are estimated by dividing the time series 
into 20 blocks, which are jack-knived to avoid bias 
problems in reweighted data. 

3. RESULTS 

3:1. Finite-size scaling region 
To determine the transition point K¢ and the 

correlation length exponent v we first considered 
the Binder parameter UL(K)  = 1 -  (m4)/3(m2) 2, 
where L _= ~ is defined as the linear length 
of the lattice in natural units. The intersec- 
tion points ( g  x (L, L'),  UX(L, L')) of these curves 
approach (K¢, U*) for large L,L'.  In Table 1 
we quote as estimate for Ke the average of the 
K×(L ,  L') for the three largest lattices, with the 

(rough) error estimate reflecting also the fluctua- 
tions between different replicas, and from an av- 
erage over all lattice sizes at Ke we obtain 

U* = 0.6123 4- 0.0025. (2) 

The very good agreement with MC estimates for 
the square (sq) lattice of U* : 0.615(10) and 
U* = 0.611(1) [11] may be taken as a first in- 
dication of lattice universality. 

Recalling that U~L =_ dUL/dK cc L I/~ at K x, 
the exponent u can be estimated from the effec- 
tive exponents 

In(L'/L) 
Vee~ = ln(U~L,(Kx) /U~(K×) ) • (3) 

Averages over various combinations of L and L' 
give 

v = 1.008+ 0.022 (all crossings), 

v = 1.0043q- 0.0036 (N = 80k crossings), (4) 

in very good agreement with the exact regular 
lattice value of v = i. 

Another possibility to extract the exponent v 
is to analyze the scaling of d ln<[mlPI/dK at their 
maxima, (dln<lm[P)/dg)[max oc n 1/~'. The least- 
square fits in Fig.2 give 

v = 1.037 4- 0.031 ( p =  1), 

= 1.042+0.030 ( p =  2), (5) 

again consistent with v = 1. 
The ratio of exponents 7 / v  follows from the 

scaling of the maxima of the (finite lattice) sus- 
ceptibility x ' ( g )  = g Y ( ( rn  2) - ([ml)2). From a 
straight line fit through all data  points in a log-log 
plot of X~max(L) oc L "fly vs L in Fig.3 we obtain 

7Iv  = 1.7503 -4- 0.0059. (6) 

This is again in perfect agreement with the exact 
value for regular lattices, 7 / v  = 1.75. 

All other exponents can in principle be calcu- 
lated by scaling or hyperscaling relations, e.g., 
2/3/v = d - 7 /v ,  where d is the dimension. An 
independent estimate can be obtained from the 
FSS behaviour of the magnetization (Iml> at its 
point of inflection, (Iml)linf(L) oc L -~/~. A linear 
fit through all data points gives 

~ / v  = 0.1208 4- 0.0092, (7) 
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Table 1 
Estimates of the critical coupling Ko from extrapolations of various quantities. 

HTS (Ref.[6]) MC (Ref.[6]) K x (L, L') KCax KmX~x 
~, 0.26303 0.2631(3) 0.2630(2) 0.26295(33) 0.262947(77) 

Ki•Iml} nf 
0.26304(14) 

E "V 
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Figure 2. FSS of the maxima of dln(ImlV)/dK. 
The slope of the linear fits is an estimate for I/v. 
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Figure 3. FSS of the susceptibility maxima. The 
slope of the linear fit is an estimate for 7/v .  

in agreement with the scaling expectations. 
Let us finally consider the specific heat C = 

K2 N(  <e 2) - (e)~). Assuming hyperscaling, ~ = 
2 - d~, and ~ = 1, the maxima of C should scale 
as Cm~(L)  = Bo + B1 In L, with non-universal 
constants B0 and B1. As is demonstrated in the 
semi-log plot in Fig.4 our data  is consistent with 
this prediction. We cannot claim, however, un- 
ambiguous support for logarithmic scaling since 
fits to a power-law Ansatz, Cmax = bo + blL ~/~ 
with oL/v = 0.17(16) are equally acceptable. In 
fact, even when imposing b0 = 0, we obtain fits of 
very high quality. These problems are, however, 
not special to random lattices but also occur for 
the sq lattice. 

Finally, to have collected in Table 1 further 
estimates of the critical coupling Kc obtained 
from fits to the asymptotic FSS behaviour of 
the pseu~lo transition points, e.g., KCax(L) = 
K~ + aL -z/~' (assuming ~, = 1). 

3.2. D i s o r d e r e d  p h a s e  
In the disordered phase we have concentrated 

on how the susceptibility and specific heat ap- 

proach Kc. Most data  is obtained from one ran- 
dom lattice with N = 40k sites in the inverse 
temperature range K = 0.22. . .0.26.  For X we 
have assumed a leading singularity of the form 
X = A(K¢ - K)  -'Y. Empirically it turned out 
that in the range K E (0.22,0.25) correction 
terms can only be omitted if x / K  is fitted in- 
stead of X. Using the data  from the improved 
estimator x / K  = {]CI), where (ICI) is the av- 
erage cluster size, the fit shown in Fig.5 yields 
Kc -- 0.26281(10) and 7 -- 1.7725(76). 

For the specific heat we find that  a logarithmic 
behaviour, C = A0 - A1 ln(K~ - K),  is slightly 
favored over a power-law Ansatz, but similar to 
the FSS region also here the numerical data  for 
this quantity is not really conclusive. 

4. C O N C L U S I O N S  

As usual the specific-heat peaks are difficult to 
analyze, since the asymptotic behaviour sets in 
only for extremely large lattice sizes in FSS or 
very close to K~ in the disordered phase. While 
our data is consistent with a logarithmic scaling, 
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Figure 4. FSS of the specific-heat maxims to- 
gether with logarithmic and power-law fits. 
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Figure 5. Scaling of the susceptibility in the dis- 
ordered phase. 

i.e., with a critical exponent a = 0, it is not yet 
sufficient to exclude n power-law scaling with a 
0 on a statistically firm basis. 

Our results for the critical exponents ~,, 7 and 
~, on the other hand, clearly agree with the regu- 
lar lattice values and thus provide strong support 
for lattice universality in the two-dimensional 
Ising model. 

As s future project it would be interesting 
to perform s similar study for dynamical ran- 
dom lattices satisfying the Voronoi/Delaunay 
construction at all times [12] and to investigate 
whether the critical behsviour is still governed 
by the critical exponents of the static random (or 
regular) lattice or by the critical exponents pre- 
dicted by matrix model theory [13]. 
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