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We report single-cluster Monte Carlo simulations of the Ising model on two-dimensional Poissonian random
lattices constructed according to the Voronoi/Delaunay prescription. One set of simulations is performed near
criticality on lattices with up to 80000 sites. Here we apply reweighting techniques to obtain the critical exponents
from a finite-size scaling analysis. The other set of simulations is performed in the disordered phase and the critical
parameters are extracted from fits to power-law divergencies as the critical point is approached. From both sets
we obtain unambiguous support for lattice universality, i.e., that the critical exponents of the Ising model on a

two-dimensional random lattice agree with the exactly known values for regular lattices.

1. INTRODUCTION

Random lattices [1,2] are a useful tool to dis-
cretize space without introducing any kind of
anisotropy. Recent applications can be found in
such diverse fields as quantum field theory or
quantum gravity [1,2], the statistical mechanics
of membranes (3], diffusion limited aggregation
[4], or growth models of sandpiles [5).

Here we consider the Ising model defined by the
partition function

Z=Y KB E=-) s si=21, (1)
{s:} (i)

where K = J/kgT > 0 is the inverse temper-
ature in natural units and (ij) denote nearest-
neighbour links of two-dimensional Poissonian
random lattices constructed according to the
Voronoi/Delaunay prescription [1,2]. We thus
take the relative weights of the links to be con-
stant as in previous work by Espriu et al. [6],
who studied this model using standard Metropo-
lis Monte Carlo (MC) simulations in the low-
and high-temperature phase on lattices with N =
10000 (10k) sites. Focussing mainly on the
question of lattice universality, we report high-
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statistics simulations in the very vicinity of the
phase transition, using considerably larger lat-
tices of size up to N = 80k, as well as further runs
in the disordered phase. To achieve the desired
accuracy of the data we made extensively use of
recently developed greatly refined MC simulation
techniques, such as the single-cluster update al-
gorithm [7] and reweighting methods [8]. As a
result of finite-size scaling (FSS) analyses of our
data at criticality and power-law fits in the dis-
ordered phase we obtain very strong support for
(lattice) universality in this model [9].

2. SIMULATION

The lattice sizes investigated in the FSS study
are N = 5k, 10k, 20k, 40k, and 80k, with three
replicas for each of the two smallest lattices, and
two replicas for N = 20k. We always employed
periodic boundary conditions, i.e., the topology
of a torus with an average coordination number
7 = 6 (Euler’s theorem). Locally the coordina-
tion numbers ¢ vary for Poissonian random lat-
tices (see Fig.1) between 3 and co with an exactly
known [10] distribution P(g). All our lattices sat-
isfy these constraints, with ¢ = 13 being the high-
est coordination number actually observed in the
N = 80k lattice simulation.

To update the spins s; we employed the single-
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Figure 1. Section of a Poissonian random lattice.

cluster update algorithm [7]. All runs were per-
formed at K = 0.263, the estimate of the criti-
cal coupling K, in Ref.[6]. After discarding from
50000 to 150000 clusters to reach equilibrium
from an initially completely disordered state, we
generated a further 4 x 108 clusters and recorded
every 10th cluster measurements of the energy
per spin, e = E/N, and the magnetization per
spin, m = ), s;/N in a time-series file. At the
scale of our measurements the corresponding in-
tegrated autocorrelation times are 7, ~ 0.8 - 1.3
and #,2 &~ 0.7 — 0.9, respectively. The statistical
errors are estimated by dividing the time series
into 20 blocks, which are jack-knived to avoid bias
problems in reweighted data.

3. RESULTS

3.1. Finite-size scaling region

To determine the transition point K. and the
correlation length exponent v we first considered
the Binder parameter Uz (K) = 1—(m?*)/3(m?)Z,
where I = /N is defined as the linear length
of the lattice in natural units. The intersec-
tion points (K (L, L'), U*(L, L")) of these curves
approach (K., U*) for large L,L’. In Table 1
we quote as estimate for K, the average of the
K*(L,L’) for the three largest lattices, with the

(rough) error estimate reflecting also the fluctua-
tions between different replicas, and from an av-
erage over all lattice sizes at K, we obtain

U* = 0.6123 % 0.0025. )

The very good agreement with MC estimates for
the square (sg) lattice of U* = 0.615(10) and
U* = 0.611(1) [11] may be taken as a first in-
dication of lattice universality.

Recalling that U, = dUr/dK o« L/ at KX,
the exponent v can be estimated from the effec-
tive exponents

Yo = In(L'/L) (3)
= UL KNV KR

Averages over various combinations of L and L'

give

14

1.008 4 0.022 (all crossings),
v = 1.0043+0.0036 (N = 80k crossings), (4)

in very good agreement with the exact regular
lattice value of v = 1.

Another possibility to extract the exponent v
is to analyze the scaling of dIn{|m|P)/dK at their
maxima, (d1n{|m|P)/dK)|max x L/¥. The least-
square fits in Fig.2 give

v = 1.037£0.031 (p=1),
v = 1.042£0.030 (p=2), (5)

again consistent with v = 1.

The ratio of exponents v/v follows from the
scaling of the maxima of the (finite lattice) sus-
ceptibility x/(K) = K N({m?) — (|m|)?). From a
straight line fit through all data points in a log-log
plot of x/,a (L) & L/* vs L in Fig.3 we obtain

y/v = 1.7503 = 0.0059. (6)

This is again in perfect agreement with the exact
value for regular lattices, v/v = 1.75.

All other exponents can in principle be calcu-
lated by scaling or hyperscaling relations, e.g.,
28/v = d — y/v, where d is the dimension. An
independent estimate can be obtained from the
FSS behaviour of the magnetization (|m|) at its
point of inflection, {|m|)|int(L) o< L=#/¥. A linear
fit through all data points gives

B/v = 0.1208 + 0.0092, (7)
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Table 1

Estimates of the critical coupling K. from extrapolations of various quantities.

HTS (Ref.[6])  MC (Ref.[6])  K*(L,L') KE,, KX, K
~ 0.26303 0.2631(3) 0.2630(2) 0.26295(33)  0.262947(77) __ 0.26304(14)
7
7} slope = 0.960{28)
\ ér siops = 1.7503(56)
:
T csl {
% 5k slope = 0.964(28)
st 1
44,0 4?5 5.‘0 5?5 6.0 34.0 6?5 5.‘0 5.‘5 8.0
InL InL

Figure 2. FSS of the maxima of dIn(|m|P)/dK.
The slope of the linear fits is an estimate for 1/v.

in agreement with the scaling expectations.

Let us finally consider the specific heat C =
K?N({e?) — (e)?). Assuming hyperscaling, a =
2 — dv, and v = 1, the maxima of C should scale
as Cmax(L) = Bo + Bjln L, with non-universal
constants By and B;. As is demonstrated in the
semi-log plot in Fig.4 our data is consistent with
this prediction. We cannot claim, however, un-
ambiguous support for logarithmic scaling since
fits to a power-law Ansatz, Crax = bo + by L*/?
with a/v = 0.17(16) are equally acceptable. In
fact, even when imposing by = 0, we obtain fits of
very high quality. These problems are, however,
not special to random lattices but also occur for
the sq lattice.

Finally, to have collected in Table 1 further
estimates of the critical coupling K. obtained
from fits to the asymptotic FSS behaviour of
the pseudo transition points, e.g., KS, (L) =
K.+ aL~/" (assuming v = 1).

3.2. Disordered phase
In the disordered phase we have concentrated
on how the susceptibility and specific heat ap-

Figure 3. FSS of the susceptibility maxima. The
slope of the linear fit is an estimate for v/v.

proach K.. Most data is obtained from one ran-
dom lattice with N = 40k sites in the inverse
temperature range K = 0.22...0.26. For x we
have assumed a leading singularity of the form
x = A(K. — K)™7. Empirically it turned out
that in the range K € (0.22,0.25) correction
terms can only be omitted if x/K is fitted in-
stead of . Using the data from the improved
estimator x/K = (|C|}, where (|C|) is the av-
erage cluster size, the fit shown in Fig.5 yields
K. = 0.26281(10) and « = 1.7725(76).

For the specific heat we find that a logarithmic
behaviour, C = Ay — A; In(K, — K), is slightly
favored over a power-law Ansatz, but similar to
the FSS region also here the numerical data for
this quantity is not really conclusive.

4. CONCLUSIONS

As usual the specific-heat peaks are difficult to
analyze, since the asymptotic behaviour sets in
only for extremely large lattice sizes in FSS or
very close to K, in the disordered phase. While
our data is consistent with a logarithmic scaling,
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Figure 4. FSS of the specific-heat maxima to-
gether with logarithmic and power-law fits.

i.e., with a critical exponent & = 0, it is not yet
sufficient to exclude a power-law scaling with a #
0 on a statistically firm basis.

Our results for the critical exponents v, ¥ and
3, on the other hand, clearly agree with the regu-
lar lattice values and thus provide strong support
for lattice universality in the two-dimensional
Ising model.

As a future project it would be interesting
to perform a similar study for dynemical ran-
dom lattices satisfying the Voronoi/Delaunay
construction at all times [12] and to investigate
whether the critical behaviour is still governed
by the critical exponents of the static random (or
regular) lattice or by the critical exponents pre-
dicted by matrix model theory [13].
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