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We use single-cluster Monte Carlo simulations to study the role of topological defects in the three-dimensional 
classical Heisenberg model on simple cubic lattices of size up to 803. By applying reweighting techniques to time 
series generated in the vicinity of the approximate infinite volume transition point K~, we obtain clear evidence 
that the temperature derivative of the average defect density d(n}/dT behaves qualitatively like the specific heat, 
i.e., both observables are finite in the infinite volume limit. 

1. I N T R O D U C T I O N  

It is well known that  topological defects can 
play an important  role in phase transitions [1,2]. 
Recently Lau and Dasgupta (LD) [3] have used 
Monte Carlo (MC) simulations to study the role 
of topological defects in the three-dimensional 
(3D) classical Heisenberg model, where the de- 
fects are point-like objects. Motivated by the im- 
portance of vortex points in the 2D XY model 
[4], LD tried to set up a similar pictorial descrip- 
tion of the phase transition in the 3D tteisenberg 
model. Analyzing their simulations on simple cu- 
bic (sc) lattices of size V = L 3 with L = 8, 12 
and 16, LD claimed that  the temperature deriva- 
tive of the average defect density, (n), diverges at 
the critical temperature Tc like d(n)/dT ..~ t -¢ ,  
t = IT-Tel~To, with an exponent ¢ ~ 0.65. They 
further speculated that  ¢ = 1-/3, where/3 ~ 0.36 
is the critical exponent of the magnetization, and 
then argued that  (n) should behave like a "disor- 
der" parameter. 

The existence of such a strong divergence of 
d(n)/dT seems unlikely, because the definition of 
defects is quasi-local. It is therefore more likely 
[5] that  (n) should qualitatively behave like the 
energy and d(n)/dT like the specific heat, which 
is a finite quantity for the 3D Heisenberg model. 

Using standard finite-size scaling (FSS) argu- 
ments we hence expect to see on finite lattices 

either 

d(n)/dT = L¢/U f(x)  (1) 

or, if the second argument holds true, 

d(n)/dT : const + L~/~ g(x), (2) 

where u ~ 0.7 and a ~ -0.1 are the correlation 
length and specific heat exponents for the 3D ttei- 
senberg model [6,7], x = t i  1/u , and f (x) ,g(x)  
are scaling functions. 

2. S I M U L A T I O N  

Using the single-cluster update algorithm [8] 
we ran simulations for sc lattices of size V = L 3 
with L=8, 12, 16, 20, 24, 32, 40, 48, 56, 64, 72, 80 
and periodic boundary conditions [9]. Our main 
emphasis was on the defect density n = ~ q2nld, 
where nl ,  n2 , . . ,  are defect densities of charge q = 
+1, + 2 , . . . .  To locate these charges we followed 
the definition of Berg and Liischer [10] according 
to which the charge qi. at the dual lattice site i* 
is given by 

1 12 
q,. = (3) 

i=1 

The 12 Ai refer to the directed areas of the sphe- 
rical triangles that  can be formed from the spins 
located at the vertices of the cube enclosing qi.. 
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All runs were performed at K0 = 0.6929 with 
a statistics of approximately 20000 measurements 
taken every rn sweep, where 1"n is the (integrated) 
autocorrelation time of the charge density. For 
each run we recorded the time series of the energy 
density e = E / V ,  the magnetization density m = 
] ~ i  gill V, and the charge densities nlq I. From 
this data  we computed the specific heat 

C = d(e)/dT = VK2((e 2) - (e)2), (4) 

the thermal expansion coefficient 

Cq = Td(n) /dT = Yg( (en)  - (e)(n)), (5) 

and the topological susceptibility 

Xq = d(n)/dp = V((n 2) - (n)2), (6) 

where p is the "field" in a fugacity term pVn, 
which one can imagine adding to the energy. 

We also computed the eigenvalues of the 2 × 2 
covariance matrix formed by e and n, which gives 
two uncorrelated quantities ,~1 and A2. To obtain 
results for the various observables O at K values 
in an interval around the simulation point K0, we 
applied the reweighting method [11]. To obtain 
errors we devided each run into 20 blocks and 
used the standard Jackknife technique. 

3. R E S U L T S  

We focussed first on the scaling behavior of Cq 
at our previous estimate [7] of the critical coup- 
ling Kc = 0.6930, and checked a scaling Ansatz 
for Cq of the form 

Cq = (7, r eg  - aoL a'lu. (7) v q  

Note that  this Ansatz covers both scaling hypo- 
theses (1) and (2). The resulting fit yields a'/u = 
-0.401(61), C~ eg = 1.50(8), and a0 = 1.82(6), 
with a quality factor Q = 0.30. The good quality 
of the fit basically rules out the divergence predic- 
ted by the Ansatz (1) of LD, and strongly favo- 
urs (2), which predicts a finite asymptotic value 
for Cq. We also tried to reproduce the exponent 
¢ ~ 0.65 of LD, by selecting only their lattice si- 
zes, and fitting a straight line to our first 3 data  
points. But even then we obtain a much smaller 
value of ¢/u  ,~ 0.36(3), leading to ¢ ~ 0.25(3). 

One can ask, if a '  is equal to the specific-heat 
exponent a.  Using our earlier MC result [7] of 
u = 0.704(6), we get a value of a '  = -0.282(46), 
which does, on the first glance, not strongly sup- 
port this conjecture. The best field theoretical 
estimates are u = 0.705(3), c~ = -0.115(9), and 
a / v  = -0.163(12) (resummed perturbation se- 
ries [12]), while our earlier MC study [7] yiel- 
ded v = 0.704(6), c~ = -0.112(18), and a / v  = 
-0.159(24). However, the accuracy of the va- 
lues of a is somewhat misleading, because they 
were obtained from hyperscaling, a = 2 - 3u. 
The directly measured values have much larger 
error bars, for example o~/v = -0.30(6) [6] and 
a / u  = -0.33(22)[7]. 

To compare a '  directly with the measured 
specific-heat exponent of the present MC simu- 
lation, we fitted C to 

C = C reg - boL ~'/'. (8) 

The resulting fit yields a/u  = -0.225(80), C reg = 

4.8(7), and b0 = 4.1(5) with Q = 0.55, leading to 
= -0.158(59). These values are in very good 

agreement with the hyperscaling prediction, but 
noteworthy is also the tendency for the values to 
come out too large. 

Other estimates for a '  and ~ can be obtai- 
ned [9] by means of analogous fits of i n) and 
(e) at g¢ = 0.6930, which yield ( a ' -  1)/u = 
-1.547(15), (n/reg = 0.1074(1), and co = 0.42(2), 
with Q = 0.30, and ( a -  1)/u = -1.586(19), 
(e) rcs = 2.0106(1), and do = 1.68(8), with 
Q = 0.25. This results in a'/u = -0.127(27), 
a '  = -0.089(20), and a/u  = -0.166(31), a = 
-0.117(23). The results for a and a / v  are in ex- 
cellent agreement with the hyperscaling predic- 
tion, and have not been directly measured before 
with such a high precision. The results for ~' and 
a' /u are lower than those obtained from (7), but 
now they are almost consistent with the values 
for a and a/u.  

We further looked at the scaling behavior of 
Xq, defined in eq.(6), which looked similar to Cq. 
Therefore we tried again a scaling Ansatz of the 
form 

_ r e g  e_La"/v 
Xq ---- Xq  - -  o (9) 
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A three-parameter fit yields a " / v  = -0.554(57), 
X~ g = 0.67(2), and e0 = 0.95(6) with Q - 0.41, 
leading to 0" = -0.390(44). If one discards the 
two lowest L values from the fit, one observes a 
clear trend towards a lower a"-value, but with 
the drawback of increased error bars and no im- 
provement in x2/dof (per degree of freedom). 

We tested in all fits if there were corrections to 
FSS, and observed in all quantities a trend to the 
value of a /v  predicted by hyperscaling, but at the 
price of much larger error bars. Also the x2/dof 
did not improve. We also checked that our results 
did not depend strongly on the choice of Kc by 
repeating the fits of all quantities at Kc -q- 0.0002. 

For A1 and A2 we used again the Ansatz 

Ai = A~ eg - alL ad~, (10) 

which results in a l / v  = -0.273(73), "l~reg _- 
5.1(5), and el = 4.7(2), with Q = 0.49, 
and a2/v = -1.45(42), A~ eg = 0.1307(8), and 
a2 = 0.2(2), with Q = 0.60, leading to al = 
-0.192(54) and a2 = -1.02(31). This suggests 
~1 ~ a and ~2 ~ o - 1 .  Because At+A2 = C+Xq, 
this means that at least Xq should see something 
of an exponent c~2. The existence of an uncorre- 
lated observable which scales with an exponent 
different from a suggests that we see either cor- 
rections to FSS, a new scaling field, or that Cq 
and Xq scale with some rationale multiple of a/v.  
The problem is that there is no satisfactory theory 
of the scaling of topological quantities. 

4. C O N C L U S I O N S  

We have shown that in the 3D classical Hei- 
senberg model the topological defect density In/ 
and its temperature derivative Cg behave quali- 
tatively like the energy (e / and its temperature 
derivative C. We obtain evidence that asympto- 
tically for large L the scaling of Cq is governed 
by the specific-heat critical exponent o. In parti- 
cular, we can reject the conjecture of LD that Cq 
diverges with a new critical exponent ¢, and we 
find no evidence for an unusual behavior of the 
defects near the phase transition. For the topolo- 
gical susceptibility Xq we find that it also remains 
finite, and that it can be fitted with an Ansatz of 
the form (2) as well, but that its scaling exponent 

deviates from a. In fact, our fits of the eigenva- 
hes A~ of the covariance matrix indicate that Cq 
and Xq are a mixture of a part which scales with 
o, and a part which scales according to a - 1. 

Finally, the present fits of the specific heat at 
Kc yielded a value of a/u  of better accuracy and 
in better agreement with the hypersca/ing value 
than fits of the specific-heat maxima as used in 
previous works [6,7]. Moreover, by fitting the 
energy at Ke, we obtained an estimate for a / v  
with a precision unprecedented by direct numeri- 
cal MC simulations. 
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