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We report Monte Carlo simulations of 2D q-state Potts models with q = 10,15, and 20 in the disordered phase 
and compare numerical results for the correlation length ~d at the first-order transition point /~t with an analytic 
formula. To measure the exponential decay of the correlation function over several decades with the desired 
accuracy we made extensively use of cluster-update techniques and improved estimators. As a byproduct we also 
obtain the energy moments in the disordered phase in very good agreement with a recent large q expansion at fit. 

1. I N T R O D U C T I O N  

The two-dimensional q-state Ports model de- 
fined by the partit ion function 

Z :  l , . . . ,q ,  (i) 
(,~} (ij) 

is one of the rare statistical systems for which 
non-trivial exact results are available [1]. On 
square lattices it exhibits at ~t = ln(1 + ~ )  a 2nd 
(lst) order phase transition for q < 4 (q > 5). For 
q > 5, also the energies eo and ed of the ordered 
and disordered phase at ~t as well as the differ- 
ence Ac = Cd -- co of the corresponding specific 
heats are known exactly. 

Recently the 7-state model has served as a test- 
ing ground for numerical techniques to extract 
the interface tension O'od between the coexisting 
phases at ~t [2-4]. Depending on the employed 
technique, the numerical predictions for ~rod dif- 
fered by a factor of eight. Only shortly after 
these numerical investigations a formula for the 
correlation length ~d(~) in the disordered phase 
[5] could be converted into an explicit expres- 
sion for the interface tension, ~od = 1/2~d [6], 
which clearly supported the histogram technique 
[7] used in Ref.[4] and initiated many more refined 
simulation studies of the interface tension ~od [8]. 
Besides duality arguments the derivation involves 
the (weak) assumption of complete wetting which 
can only be proven in the limit of large q. 

Here we focus on the correlation length and 
present direct numerical tests of the formula for 

~d(~) [9]. AS a byproduct we also compare var- 
ious energy moments with recently derived large 
q expansions [10]. 

2. S I M U L A T I O N  

Using the single-cluster (SC) update algorithm 
[11] we ran simulations for q = 10, 15 and 20 on 
lattices of size V = L x L with L = 150, 60 and 
40 (~ 14~d) and periodic boundary conditions. 
The lattice sizes proved to be large enough to 
suppress tunneling events such that,  starting from 
a completely random configuration, the system 
remained a sufficiently long time in the disordered 
phase. The choice of update algorithm is based on 
measurements of the integrated autocorrelation 
time r of the spatial correlation function. As is 
illustrated for q = 20 in Fig.l,  at large distances 
the SC update decorrelates (in real time) much 
faster than the heat-bath algorithm. 

After many SC steps we performed one 
multiple-cluster [12] update to facilitate the most 
efficient use of the "improved estimator" for mea- 
surements of the correlation function 

a ( i ,  j )  - -  - = ( e ( i ,  j ) ) ,  (2) 

where O(i, j)  = 1, if i and j belong to the same 
cluster, and O = 0 otherwise. In the analysis we 
focussed on the k~ = 0 projection g of G in order to 
avoid power-like prefactors in the large-distance 
behavior. 

All error bars are estimated by means of the 
jack-knife technique. 
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Table 1 
Comparison of numerical and analytical results for energy moments in the disordered phase. 

q = 10 q = 15 q = 20 
ed(MC) -0.98823(10) -0.75065(9) -0.62659(6) 
ed(exact) --0.968203... --0.750492... --0.626529... 
Cd(MC) 18.41(13) 8.701(37) 6.153(16) 
Cd(large q) 18.51(4) 8.661(5) 6.133(3) 

#(3)(MC) -2066(81) - 175(5) -55.8(9)  

#(43)(large q) ~ -1780 ~ -175  ~ - 5 6  

3. R E S U L T S  

To convince ourselves that the system was al- 
ways in the disordered phase, we monitored the 
time series of the energy and measured the first 
three moments of the energy distribution, ed --= 

~2, (~) - ~ ( ( E  2) _ (E)2)/V, and ( E ) / V ,  Cd "- / . .$.d 

p(3) = ( (E - (E ) ) s ) /V .  By using duality they can 
be related to the corresponding moments in the 

ordered phase (Cd--Co-kfl~(ed--eo)/V~, p(a)_ 
--#(o3)-{-2(1 -- q)/q3/2 + 3(ed -- eo)lqq-6Col~ V~), 
which have recently been computed by means of 
large q expansions [10]. For a comparison with 
our numerical results see Table 1. 

Our data for the projected correlation functions 
g(x) for q - 10, 15, and 20 is shown in the semi- 
log plots of Fig. i. The quite pronounced curva- 
ture for relatively small z indicates that the sim- 
plest Ansatz taking into account just the lowest 
excitation (largest correlation length) can only be 
justified for very large x. We have therefore con- 
sidered the more general Ansatz 

g ( x ) = a c h ( L / 2 - x  2 :  ), (3) ~d ) +bch(cL/ x 

with four parameters a, b, c, and ~d. Since non- 
linear four-parameter fits are notoriously difficult 
to control, we first fixed ~d at its theoretical value 
(~d = 10.559519..., 4.180954..., and 2.695502... for 
q - 10, 15, and 20, respectively), and optimized 
only the remaining three parameters. The result- 
ing fits are shown in Fig.1 as solid lines. We see 
that over a wide range the lines are excellent fits 
to the data, but  noteworthy is also the tendency 
of the data  to be systematically lower at large 
distances. This suggests that fits to the Ansatz 
(3) with ~d as a free parameter should somewhat 

underestimate the value of ~d. 
In fact, from four-parameter fits over the same 

x range we obtain values of ~d "" 9.2(8), 3.6(2) 
and 2.2(1) for q = 10, 15 and 20, respectively, 
which are about  15 - 20% lower than the analyt- 
ical values. Restricting the fit interval to larger 
x values, we observe a tendency to higher values, 
but also the errors increase rapidly. The problem 
is that at the distances we have studied so far 
(Xmax = L/2 ~ 7~d) even higher excitations can- 
not be neglected. Due to convexity properties it 
is then natural that ~d is underestimated by using 
the truncated Ansatz (3). 

As a check we put q = 2 in our programs, and 
thus simulated the Ising model in the disordered 
phase at ~/ = 0.71 ~ 0.80~.  Here the exactly 
known correlation length, ~d = 2.7289.. . ,  is com- 
parable to that of the q = 20 model at ~t. Our 
data points for g(x) on a 40 x 40 lattice look per- 
fectly straight in a semi-log plot. Consequently, 
a much simpler fit of the form (3) with b = 0 was 
sufficient. As a result we obtained ~d = 2.726(3), 
in very good agreement with the theoretical value. 

In both situations we also tried so-called corre- 
lated fits which, in general, seemed to be a little 
more stable. The resulting values for ~ ,  however, 
did not change significantly. 

4. C O N C L U S I O N S  

Our data for the projected correlation function 
g(x) in the disordered phase at ~t is compati- 
ble with the asymptotic decay predicted by the 
analytical value for &(~t) .  By performing four- 
parameter fits, however, we systematically under- 
estimate ~d. We attr ibute this to higher mass 
excitations which cannot be neglected at the dis- 
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Figure 1. Autocorrelstion times for q = 20, and semi-log plots of the correlation functions g(z) vs distance 
for q = 10, 15, and 20. The solid lines are fits to the Ansats (3) with ~d fixed at its theoretical value. 

tances investigated so far. Since including fur- 
ther correction terms in the fits is a hopeless en- 
terprise, we are currently performing additional 
simulations on elongated 2L x L lattices, which 
should Mlow a study of correlations over larger 
distances in reasonable computer time. 

A C K N O W L E D G E M E N T S  

We thank C. Borgs for useful discussions, and 
W3 gratefully acknowledges a Heisenberg fellow- 
ship by the DFG. 

REFERENCES 

1. F.Y. Wu, Rev. Mod. Phys. 54 (1982) 235. 
2. 3. Potvin and C. Rebbi, Phys. Rev. Left. 62 

(1989) 3062. 
3. K. Kajantie,  L. K~rkk~inen, and K. Rum- 

mukainen, Phys. Lett.  B223 (1989) 213. 

4. W. Janke, B.A. Berg, and M. Katoot ,  Nucl. 
Phys. B382 (1992) 649. 

5. E. Buffenoir and S. Wallon, J. Phys. A26 
(1993) 3045; A. KlSmper, Int. J. Mod. Phys. 
B4 (1990) 871; A. Kliimper, A. Schadschnei- 
der, and J. Zittartz, Z. Phys. B76 (1989) 247. 

6. C. Borgs and W. Jsnke, J. Phys. I (France) 2 
(1992) 2011. 

7. K. Binder, Phys. Rev. A25 (1982) 1699; Z. 
Phys. B43 (1981) 119. 

8. For a table of results and references, see W. 
3anke, in IMACS '93 proceedings, St. Louis, 
to appear in Int. 3. Mod. Phys. C. 

9. W. 3anke and S. Kappler, to be published. 
10. T. Bhattacharya, R. Lacaze, and A. Morel, 

Europhys. Lett. 23 (1993) 547. 
11. U. Wolff, Phys. Rev. Left. 62 (1989) 361. 
12. R.H. Swendsen and 3.S. Wang, Phys. Rev. 

Lett. 58 (1987) 86. 


