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We use the single-cluster Monte Carlo algorithm to simulate the periodic Gaussian XY model on L 2 x N lattices 
of film geometry (L :~ N) with up to N = 16 layers, imposing free boundary conditions at the bottom and top 
layer. Based on measurements of the specific heat, the spin-spin correlation function and the susceptibility in 
the high-temperature phase we study the crossover from three- to two-dimensional behaviour as criticality is 
approached. For the transition temperatures, determined from Kosteriitz-Thouless fits to the correlation length 
and susceptibility, we observe a pronounced scaling behaviour with N, but find an associated critical exponent 
that deviates from theoretical expectations. More qualitatively, we further investigate the shapes and distribution 
of vortex loops in the crossover region. 

1. I N T R O D U C T I O N  

According to the concept of universality quali- 
tative properties of systems with short-range in- 
teractions exhibiting continuous phase transitions 
should depend only on the spatial dimension and 
on the symmetry of the order parameter. Strictly 
speaking, in determining the spatial dimension 
only those directions count in which the system 
extends to infinity. For films of finite thickness we 
therefore expect a phase transition (if at all) that  
can be classified according to the two-dimensional 
(2D) universality class. More precisely we expect 
a crossover from three-dimensional (3D) bulk to 
2D behaviour as soon as the correlation length 

of the system approaches the order of the film 
thickness. Since ~ diverges at a continuous phase 
transition, this is always the case in the vicinity 
of the transition point. 

In a numerical simulation on present day com- 
puters the area L 2 of the film can never be re- 
ally large and additional care is necessary to dis- 
entangle the dimensional crossover from finite- 
size effects in L. And far sway from the transi- 
tion point the correlation length is so small that  
non-universal lattice corrections become impor- 
tant  and modify the universal 3D bulk behaviour. 

*Work supported in part by Deutsche Forschungsgemein- 
schaft under grant K1256. 

Thus altogether there are three types of crossover 
involved which must be carefully distinguished. 
It is therefore necessary to simplify the models as 
much as possible. Some time ago the Ising model 
has been investigated by Binder and Hohenberg 
[1] as the typical example for a system with a 
one-component order parameter. Here we report 
results for the XY model as the generic model 
with a two-component order parameter. 

2. T H E  M O D E L  

The partition function of the periodic Gaussian 
XY model is given by 

z : I I  
2 

where Vi0(z) = O(~ + i) - 0(z) are the lattice 
gradients in the i direction of the lattice, the in- 
teger variables ni(z)  run from - c o  to co, and 

=- J / k s T  is the (reduced) inverse tempera- 
ture. Our choice of the periodic Gaussian formu- 
lation is motivated by the fact that,  in contrast to 
the "cosine formulation" (with exp(/~cos(Vi0)), 
eq. (1) can exactly be rewritten in terms of topo- 
logical defects with long-range interactions of the 
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Coulomb type [3]. In 2D this is the starting point 
of the renormalization group treatment of Koster- 
litz and Thouless [2] (KT). Physically the defects 
can be interpreted as the vortex excitations in- 
voked in the description of liquid helium [3, 4]. 

Films of increasing thickness were simulated by 
stacking N = 1, 2, 3,4, 6, 10, and 16 layers of size 
L x L with L >> N on top of each other along 
the z-direction. The ferromagnetic coupling J 
was taken to be isotropic. Within each layer we 
took periodic boundary conditions in order to re- 
duce finite-size effects in L as much as possible, 
while at the top and bottom layer we imposed 
free boundary conditions in the z-direction. 

The limiting cases N = L (3D) and N = 1 
(2D) have been investigated by a variety of ap- 
proaches. In 3D, analyses of high-temperature 
series (HTS) expansions [5], resummations of 
field theoretic perturbation series [6], and recent 
Monte Carlo (MC) simulations [7, 8] are all com- 
patible with a conventional power-law behaviour 

oc ( 1 - ~ / ~ ) - "  and X oc ( 1 - ~ / ~ ¢ ) - 7  with crit- 
ical exponents u = 0.670 and 7 = 1.316. In 2D, 
however, the situation has been quite controver- 
sial. While the KT theory predicts an exponen- 
tially diverging correlation length, 

o¢ exp[b(1 - / 3 / ~ ) - ~ ] ,  v = 1/2, (2) 

and susceptibility X 0¢ ~2-~ with ~} = 1/4, alter- 
native considerations [9] suggested a conventional 
power-law behaviour with non-trivial critical ex- 
ponents v and 7. To clarify this point analyses 
of extended HTS expansions [10] and MC studies 
[11] of the "cosine formulation" were performed, 
and the results were interpreted in favor of the KT 
scenario. Since we decided to investigate the di- 
mensional crossover effects for the periodic Gaus- 
sian formulation we first studied the 2D limit with 
great care and found from high-statistics simula- 
tions on large lattices of sizes up to 12002 also in 
this formulation (an even stronger) evidence for 
the KT predictions [12, 13]. 

3 .  RESULTS 

In our MC simulations [13, 14] we worked with 
the single-cluster (1C) update algorithm [15], 
slightly adapted to the periodic Gaussian for- 

mulation (employing the Zn approximation with 
n = 100). To get an overview we measured the 
specific heat C, although it is well known that in 
2D the peak location does not coincide with the 
transition point but is displaced by about 25% 
to higher temperatures. The interesting ques- 
tion was how this would change with increas- 
ing thickness N of the film. The main results 
are based on analyses of the spin-spin correla- 
tions, g(z,=') - (~z). ~z')), and the sus- 

ceptibility, X -= V([ 1 ~=~=)]2), in the high- 
temperature phase, using for the measurements 
variance reduced "cluster observables" [16]. To 
reduce finite-size effects in L, we always took care 
that L ~ 6 - 8~. Extensive tests for the pure 
2D model showed that this is a save condition 
[12, 13]. 

To determine the transition point ~c(N) for 
each film thickness N, we first located the onset of 
the two-dimensional KT behaviour via goodness- 
of-fit analyses. As a general rule we find that this 
is the case for ~ > N/2. Only for the thickest 
film with N = 16 layers we start seeing a region 
with 3D bulk behaviour; see Fig. i. It is tempt- 
ing to identify this 3D region with ~ < N/10, but 
even for N = 16 layers this is of course still per- 
turbed by non-universal lattice corrections. Hav- 
ing determined the region of 2D behaviour, we 
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Figure I. Crossover from 3D power-law behaviour 
(dashed line, using 73D = 1.316) to 2D KT be- 
haviour (solid line) of the susceptibility for N = 
16 layers. 
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then fitted the data for ~ and X to the KT pre- 
diction (2) and the corresponding formula for X, 
respectively. As a test for systematic errors we 
also used (2) rewritten as a function of T. De- 
pending on N, the number of data points included 
in the fits was 5 or 6, with a maximal correlation 
length between 26 and 46, requiring layer sizes of 
the order of 2002 to 400 ~. For each film thickness 
N these fits provided us with four estimates of 
#e(N), which according to Fisher's scaling pre- 
diction [17] should scale asymptotically as 

#e(N)  - fic(oo) + c g  -~, (3) 

with 

1/A = :/3o = 0.670 =t= 0.002. (4) 

Here fi¢(oo) - #~D is the critical coupling of the 
3D bulk system and VaD is the bulk correlation 
length exponent. The results of three-parameter 
fits to (3) for each of the four sets of #e(N) values 
(labeled according to the type of KT fit used to 
determine #e(N)) are collected in Table 1. In 
Fig. 2 we plot f le (g) -#e(oo)  with fie(oo) = 0.334 
vs N on a log-log scale. We see that the critical 
couplings do indeed scale quite nicely down to 
remarkably small values of N. The solid curve is 
a straight line corresponding to the exponent 

1/A -- 0.71 :t: 0.01. (5) 

This value is significantly larger than the theoret- 
ical prediction (4). For this comparison, however, 
it should be kept in mind that (3) is only valid 
asymptotically for large N. We have checked for a 
systematic trend in our data by discarding more 
and more points for small N in the fits. As a 
result we observe only a slight trend to smaller 
values of 1/~, which is hardly significant in view 
of the increasing error bars. After completion of 

Table 1 
Three-parameter fits #c(g)  = #,(oo) + cN -~. 

fit X ~ Q fi~(oo) 1/A 
~(T) 7.21 0.07 0.3343(9) 0.706(19) 
~(fi) 8.24 0.04 0.3344(10) 0.703(20) 
x(T) 3.86 0.28 0.3336(4) 0.725(8) 
X(fi) 2.02 0.57 0.3334(4) 0.721(9) 
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Figure 2. Scaling of fie(N) with N, calculated 
from KT fits to ~(T) (+), ~(fi) (o), X(T) (A) ,  
and X(fi) (V). Also shown are the peak locations 
of the specific heat (o). 

this work we received a preprint [18] in which 
1/A = 0.70(8) was found from an independent 
simulation of the "cosine formulation". Clearly, 
the only way to clarify this discrepancy is to per- 
form further simulations for much larger systems. 

In Fig. 2 we also show the scaling of the peak 
locations fimax(N) of the specific heat. We see 
that the absolute distance from fie(N) decreases 
with increasing N. Assuming that also firnax(N) 
scales according to (3), a three-parameter fit gives 
an even larger exponent of 1/)~ ~ 0.8 and favors a 
value of #m~x(oo) - fiamD~x ~ 0.331 that is slightly 
smaller than ficaD ~ 0.334. Recalling that also in 
3D the specific-heat peak is finite (the critical ex- 
ponent a = 2 - Du ~ -0.01 is slightly negative), 
we are not aware of any argument enforcing the 
equality of find and #amD x. 

Let us finally discuss the topological defect 
structure in the film geometry. Since geomet- 
rically the films are 3D, the topological excita- 
tions are vortex lines. On the other hand one 
expects that near criticality these lines should be- 
have effectively like the vortex points invoked in 
the KT picture. One possible scenario advanced 
in the literature [19] is that near criticality these 
lines degenerate to rod-like objects in z-direction, 
such that the projection onto the zy-plane should 
look like a gas of vortex points (with the correct 
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Figure 3. Vortex lines in a 6 x 102 section of a 
6 x 2002 lattice at ~ = 0.355 (~ ~ 19). 

logarithmic long-range interaction derived from a 
summation over the 1/r interactions between all 
line elements, similar to the treatment of paral- 
lel currents in electrodynamics). The vortex line 
distribution displayed in Fig. 3 clearly shows that 
this explanation does not work. In fact, corre- 
sponding plots for the pure 3D case [20] look quite 
similar. And it is straightforward to show that 
due to the finite number of layers the interaction 
potential must become anisotropic with logarith- 
mic terms. To understand the entropic contribu- 
tions, however, is a difficult problem which is not 
yet solved. 

To summarize, for films of XY spins in the pe- 
riodic Gaussian formulation with up to N = 16 
layers and free boundary conditions in the z- 
direction we observe a pronounced scaling of the 
critical couplings with N. The associated criti- 
cal exponent, however, is not in agreement with 
theoretical expectations. 
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