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Extreme order statistics has recently been conjectured to be of relevance for a large class of correlated systems, 
including critical phenomena, turbulent flow problems, some self-organized systems, percolation and other models 
of lattice field theory. For certain probability densities the theory predicts the characteristic large I fall-off 
behavior f(z) 0; exp(-ae2), a > 0, usually called Gumbel’s first asymptote. Using the multi-overlap algorithm 
we have tested this prediction over many decades for the overlap distribution P(q) of (i) the Edwards-Anderson 
Ising spin glass and (ii) the standard Ising model in three dimensions. 

1. INTRODUCTION 

Inspired by studies of the 2D XY model in the 
low-temperature phase, Bramwell et al. [l] have 
recently conjectured that a variant of extreme or- 
der statistics describes the asymptotic behavior 
of certain probability densities for a large class of 
correlated systems. Besides the XY model their 
class includes turbulent flow problems, percola- 
tion models and some self-organized critical phe- 
nomena. For large system sizes the asymptotic 
behavior is claimed to be described by a system 
size-independent variant of Gumbel’s first asymp- 
tote, 

P/(x’) = Cexp [a (z’ - zk,, - eb(Z’-Zlax))] , (1) 

where C, a, and b are constants, and XL,, = 
xmax/o~ is the position of the maximum of the 
scaled probability density Pt (x’) = a&(x) with 
UL denoting the standard deviation. In its clas- 
sical form due to Fisher and Tippett, Kawata 
and Smirnov the exponent a takes the values 
a = 1,2,3,. . ., corresponding, respectively, to the 
distribution of the first, second, third, . . . smallest 
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number of a set of N random numbers, N + 00 
(under certain mild conditions). For reviews on 
extreme order statistics, see e.g. Ref. [a]. 

2. 3D EAI SPIN GLASS 

Let us start with the three-dimensional (3D) 
Edwards-Anderson Ising (EAI) [3] spin-glass, 

H = - C Jik S~S~C , Si=fl, (2) 
(ik) 

where Jik = fl are quenched, random coupling 
(1) constants. The overlap of the spins si and si2) z 

of two copies (replica) of the realization J, 

N=L3, 
i=l 

serves as an order parameter. Its probability 
density &(q) is, therefore, a quantity of cen- 
tral physical interest. At the freezing tempera- 
ture [4] 7’ = 1.14 we generated 8192 realizations 
for L = 4, 6 and 8, 1024 realizations for L = 12 
and 256 realizations for L = 16, using the multi- 
overlap algorithm [5] which simulates a statistical 
ensemble for which the distribution of q-values is 
approximately flat. As a consequence the tails of 
the distributions are (for L = 16) accurate down 
to 10-i60 (for Iqf towards 1) [6]. Alongside with 
our data at the critical point, we analyzed our 
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Figure 1. Resealed overlap probability densities 
P’(q’) = CTL &(q) versus q’ = q/at for the 3D 
EAI spin-glass model. 

data [7] in the spin-glass phase at T = 1, based 
on 8192 realizations for L = 4, 6 and 8, and 640 
realizations for L = 12. In the tails the data (for 
L = 12) are accurate down to 10-53. 

A finite-size scaling (FSS) plot [8] of the prob- 
ability densities at T = 1.14 is depicted in Fig. 1 
where P’(q’) = (r~ PL(Q) versus q’ = q/or, with 
ClL = Cl L -fl/“, p/v = 0.312(4), is shown. At 
T = 1 we obtained B/Y = 0.230(4). A major fo- 
cus of our investigation is on the tails of the PL (q) 
distribution, which are shown in the lower part of 
Fig. 1 on a logarithmic scale. 

When fitting the density to the Gumbel form 
(1) we introduced two slight modifications [6]: 
First, while (1) predicts, on a logarithmic scale, 
a constant slope a with decreasing 2’ < z&,, 

for the data of Fig. 1 the slope levels off and at 
z’ = 0 the derivative of P’(s’) becomes zero. To 
incorporate this property we replaced the first z’ 
on the r.h.s. of (1) by ctanh(z’/c), where c > 0 
is a constant. Second, to take into account the 
q’ fs -q’ invariance, we constructed a symmet- 
ric expression by multiplying the above construc- 
tion with its reflection about the q’ = 0 axis. Of 
course, the important large z’ behavior of (1) is 
not at all affected by our manipulations. 

The results of this fit (with a = 0.446(37) for 
T = 1 and a = 0.448(40) for T = 1.14) are shown 
in Fig. 1 where for T = 1.14 also the deviation 
of the fit from (a subset of) the L = 16 data 
is high-lighted. We observe a very good agree- 
ment which extends over the remarkable range of 
200/ ln(19) M 87 orders of magnitude. 

3. 3D ISING MODEL 

By simply setting all coupling constants Jik 
to one, we have used exactly the same simu- 
lation set-up for studying the 3D Ising model 
at its critical point [9] ,!$ = 0.221654. Here 
we performed 32 independent runs (with differ- 
ent pseudo random number sequences) for lat- 
tices up to size L = 30 and 16 independent runs 
for L = 36. After calculating the multi-overlap 
parameters [5] the following numbers of sweeps 
were performed per repetition (i.e. independent 
run): 21g,221,222,223,223,224,225, and 224 for 
L = 4,6,8,12,16,24,30, and 36, respectively. 

We find the maximum of the PL(~) densities at 
!l max = 0 [lo]. This is in contrast to the well 
known double-peak of the magnetization prob- 
ability density. In the tails the L = 36 den- 
sity continues to exhibit accurate results down 
to -1200, thus the data from this system cover 
1200/ ln(lO) = 521 orders of magnitude. 

The collapse of the PL (q) functions on one uni- 
versal curve P’(q’) is depicted in Fig. 2. The fig- 
ure shows some scaling violations, which become 
rather small from L > 24 onwards. The stan- 
dard deviation UL behaves with L according to 
(TL 0: Lp2p/” (1 + c2Lpw + . . .), and from fits to 
our data we obtained 2p/v = d-2+77 = 1.030(5), 
in good agreement with FSS estimates for the 
magnetization which cluster around n = 0.036. 
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We compared fits of the data with the Gumbel 
form (1) and the standard large-deviation behav- 
ior, based on the proportionality of the entropy 
with the volume [ll], 

h(q) 0: =-pi-Nf(q)l , (4) 

where, for large N, f(q) does not depend on N. 
As is demonstrated by the plot of f(q) in Fig. 2 
our data clearly support the prediction (4). Also 
shown is the scaling form f(q) c( qdYj2fi with 
pj, = 1.030. We see excellent convergence to- 
wards an L-independent function, but the scaling 
behavior only holds in the vicinity of q = 0. 
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Figure 2. Resealed overlap probability densities 
p’(g’) = o~,p~(q) versus q’ = q/cl for the 3D 
Ising model at the critical point, and the function 
f(q) extracted from the large-deviation behavior 
(4) for various lattice sizes. Also shown is a FSS 
fit valid for small q. 

4. CONCLUSIONS 

For the 3D EAI spin-glass model we have found 
numerical evidence that the Parisi overlap distri- 
bution at T = 1.14 x T, and T = 1 can be de- 
scribed by (a slight modification of) the Gumbel 
form (1). The detailed relationship between this 
model and extreme order statistics remains to be 
investigated and it is certainly a challenge to ex- 
tend previous work [12] in this direction to more 
involved scenarios. For the 3D Ising model at T,, 
on the other hand, we find support for the stan- 
dard scaling picture derived from large deviation 
theory, instead of the Gumbel form. 
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