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We study an Ising spin system coupled to a fluctuating four-dimensional Z2-Regge lattice and compare with 
the results of the four-dimensional Ising model on a regular lattice. Particular emphasis is placed on the phase 
transition of the spin system and the associated critical exponents. We present results from finite-size scaling 
analyses of extensive Monte Carlo simulations which are consistent with mean-field predictions. 

1. I N T R O D U C T I O N  

Spin systems coupled to fluctuating manifolds 
are studied as a simple example for mat ter  fields 
coupled to Euclidean quantum gravity. To de- 
scribe the gravity sector we used the Discrete 
Regge Model [1] which is both structurally and 
computationally much simpler than the Stan- 
dard Regge Calculus with continuous link lengths. 
Hefe numerical simulations can be done more efli- 
ciently by implementing look-up tables and using 
the heat-bath algorithm. In the actual computa- 
tions we took the squared link lengths as qij - 
ql = bz(1 + eat) with at = ±1 and e = 0.0875. 
Becanse a four-dimensional Regge skeleton with 
equilateral simplices cannot be embedded in flat 
space, bt takes different values depending on the 
type of the edge I. In particular bi = 1, 2, 3, 4 for 
edges, face diagonals, body diagonals, and the hy- 
perbody diagonal of a hypercube. 

2. M O D E L  A N D  O B S E R V A B L E S  

We investigated the parti t ion function 

= ~_~ f D[q] exp[ - I (q )  - g E ( q ,  s)], (1) Z 
J {s) 

where I(q) is the gravitational action, 

i(q) = -z« ~ A,5, + ~ ~ V,. (2) 
t i 
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The first sum runs over all products of trian- 
gle areas At times corresponding deficit angles 5t 
weighted by the gravitational coupling fig. The 
second sum extends over the volumes V~ of the 4- 
simplices of the lattice and allows together with 
the cosmological constant A to set an overall scale 
in the action. The energy of Ising spins si E Zz, 

I Z A,j ('' - '~)~ (3) E(q,  s) = 2 (ij) qo ' 

is defined as in two dimensions [2], with the 
barycentric area Aij associated with a link lo,  
Aij  = ~-~t 9 l~j ~At.  We chose the simple uniform 
measure as in the pure gravity simulations [1], 
D[q] = 1-It dqt3r(qt) • The function ~" ensures that  
only Euclidean link configurations are taken into 
account. 

For every Monte Carlo simulation tun we 
recorded the time series of the energy density 
e = E/No and the magnetization density m = 
~~ si/No, with the lattice size No = L 4. To ob- 
tain results for the various observables 0 at val- 
ues of the spin coupling K in an interval around 
the simulation point K0, we applied standard 
reweighting techniques [3]. 

With the help of the time series we compute 
the specific heat, C ( K )  = K2No((e  2) - (e)2), the 
(finite lattice) susceptibility, x ( K )  = No((m 2) - 
(Irn[)2), the Binder parameter,  UL(K)  = 1 - 
(m4)/3{m2) 2, and various derivatives of the 
magnetization, d ( I m l ) / d K  , d ln( Im[) /dK , and 
d ln (m2) /dK.  All these quantities exhibit in the 
infinite-volume limit singularities at K« which are 
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shifted and rounded in finite systems. 

3. S I M U L A T I O N  R E S U L T S  

extract  the critical exponent v from (linear) least- 
square fits of the FSS ansatz with logarithmic cor- 
rections (6), 

In four dimensions it is generally accepted that  
the critical properties of the Ising model on a 
static lattice are given by mean-field theory, with 
logarithmic corrections. The finite-size formulas 
can be written as [4] 

(x L(log L)¼, (4) 

X oc (L(logL)¼) 7/~, (5) 

K~(oo)-Kc(L)  oc (L(logL)~) -t/~, (6) 

where the critical exponents of mean-field theory 
a r e a  = 0, fl = 1/2, 7 = 1, and v = 1/2. 

The gravitational degrees of freedom of the par- 
tition function (1) were updated with the heat- 
bath algorithm. For the Ising spins we employed 
the single-cluster algorithm [5]. Between mea- 
surements we performed n = 10 Monte Carlo 
steps consisting of one lattice sweep to update  the 
squared link lengths qij followed by two single- 
cluster flips to update the spins si. 

The simulations were done for cosmological 
constant )~ = 0 and gravitational coupling Eg = 
-4.665.  This f~9-value corresponds to a phase 
transition of the pure Discrete Regge Model [1]. 
The lattice topology is given by triangulated tori 
of size No = L a with L = 3 up to 10. From short 
test runs we estimated the location of the phase 
transition of the spin model and set the spin cou- 
pling Ko = 0.024 ~ Kc in the long runs. 

After an initial equilibration time we took 
about  100 000 measurements for each lattice size. 
Analyzing the time series we found integrated au- 
tocorrelation times for the energy and the magne- 
tization in the fange of unity for all lattice sizes. 
The statistical errors were obtained by the stan- 
dard Jack-knife method using 50 blocks. 

Applying the reweighting technique we first 
determined the maxima of C, X, d(]m])/dK, 
dln(]m])/dK, and dln(m2)/dK. The loca- 
tions of the maxima provide us with five se- 
quences of pseudo-transition points Kmax(L) 
for which the scaling variable x = ( K c -  

1 1 
Kma,:(L))(L(logL)~)-~ should be constant. Us- 
ing this fact we then have several possibilities to 

dUL/dK "" )~)1/~ = (L(log L ]0(x), (7) 

dln(]m]P)/dK ~- (L(logL)~)zP'fp(X), (8) 

to the data  at the various Kma~(L) sequences. 
We also performed fits of a naive power-law FSS 
ansatz. The exponents 1/u resulting from fits us- 
ing the data  for L = 4 - 1 0  are collected in Table 1. 
Q denotes the standard goodness-of-fit parame- 
ter. For our simulations all exponent estimates 
with the logarithmic corrections and consequently 
also their weighted average 1/u = 2.028(7) are 
in agreement with the mean-field value 1/u = 2. 
With the naive power-law ansatz one also gets an 
estimate for 1/v close to the mean-field value, but  
clearly separated from it. 

Assuming therefore u = 0.5 we can obtain es- 
timates for Kc from linear least-square fits to the 
scaling behavior of the various Kmax sequences, 
as shown in Fig. 1. Using the fits with L _> 4, the 
combined estimate from the five sequences leads 
to Kc = 0.02464(4). 

Knowing the critical coupling we may recon- 
firm our estimates of 1/v by evaluating the above 
quantities at Kc. As can be inspected in Table 1, 
the statistical errors of the FSS fits at Kc are sim- 
ilar to those using the Kmax sequences. However, 
hefe we have to take into account the uncertainty 
in our estimate of K«. This error is computed by 
repeating the fits at Kc -4- AK« and indicated in 

Table 1 
Fit results for 1/u in the range L = 4 - 10 with 
a power-law ansatz with logarithmic corrections. 

fit type 1/v Q 

dUI«K at KCm~ 1.980(17) 0.70 
dln(]m])/dK at vl"(Iml) 2.032(10) 0.59 

* * i n f  

~'an<m2> 2.038(10) 0.55 dln(m2)/dK at "'inf 
weighted average 2.028(7) 
dU/dK at K« 1.981(17)[13] 0.70 
dln(]m])/dK at Ke 2.027(9)[2] 0.95 
dln(m2)/dK at Kc 2.034(9)[2] 0.85 
weighted average 2.025(6) 

overall average 2,026(5) 
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Figure 1. FSS extrapolations of pseudo-transition 
points Kmax VS. (L(logL)~) -1/~', assuming v -- 
0.5. The error-weighted average of extrapolations 
to infinite size yields Kc = 0.02464(4). 

Table 1 by the numbers in square brackets. In 
the computat ion of the weighted average we as- 
sume the two types of errors to be independent. 
As a result of this combined analysis we obtain 
strong evidence that  the exponent v agrees with 
the mean-field value of v = 1/2. 

To extract  the critical exponent ratio 7/v we 
use the sealing (5) of the susceptibility X at 
its maximum as weil as at Kc, yielding in the 
fange L = 4 - 10 estimates of 7/v = 2.039(9) 
(Q -- 0.42) and 7/v = 2.036(7)[4] (Q = 0.85), 
respectively. These estimates for 7/v are eonsis- 
tent with the mean-field value of 7/v -- 2. In 
Fig. 2 this is demonstrated graphically by com- 
paring the scaling of Xma~ with a constrained one- 
parameter  fit of the form Xma~ = c(L(logL)¼) 2 
with c = 4.006(10) (Q -- 0.17, L _ 6). 

4. C O N C L U S I O N S  

We have performed a study of the Ising model 
coupled to fluctuating manifolds via Regge Cal- 
culus. Analyzing the Discrete Regge Model with 
two permissible edge lengths it turns out tha t  the 
Ising transition shows the expected logarithmic 
corrections to the mean-field theory. We have 
also studied the pure Ising model on a rigid lat- 
tice without presenting the results in this short 
note. The critical exponents of the phase transi- 

700 

600 

500 

~ 400 

~ 300 

200 

100 

0 t L i i I I 

4 5 6 7 8 9 10 

L 

Figure 2. FSS of the susceptibility maxima Xmax- 
The exponent entering the curve is set to the 
mean-field value 7/v = 2 for regular static lat- 
tices. 

tion of the Ising spins on a static lattice as weil as 
on a discrete Regge skeleton are both consistent 
with the exponents of mean-field theory, a = 0, 
fl ~ 1/2, 7 = 1, and v = 1/2. In summary, from 
out comparative analysis with uniform computer 
codes we conclude that  the phase transition of 
the Ising spin model coupled to a discrete Regge 
skeleton exhibits the same critieal exponents and 
the same logarithmic corrections as on a static 
lattice. 
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