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The two-dimensional Ising model with Brascamp-Kunz boundary conditions has a partition function more 
amenable to analysis than its counterpart on a torus. This fact is exploited to exactly determine the full finite-size 
scaling behaviour of the Fisher zeroes of the model. Moreover, exact results are also determined for the scaling 
of the specific heat at criticality, for the specific-heat peak and for the pseudocritical points. All corrections to 
scaling are found to be analytic and the shift exponent A does not coincide with the inverse of the correlation 
length exponent l/t,. 

1. I N T R O D U C T I O N  

Finite-size scaling (FSS) is a well established 
technique for the extraction of critical exponents 
from finite volume analyses [1]. Such exponents 
characterise critical phenomena at a second-order 
phase transition. The simplest model exhibiting 
such a transition is the Ising model in two dimen- 
sions, which, despite a long history and extensive 
study, still offers new results and insights. Here, 
we study the model under the special boundary  
conditions of Brascamp and Kunz [2] to extract  
new information and to help resolve some hith- 
erto puzzling features of FSS. 

Let CL (/3) be the specific heat at inverse tem- 
perature fl for a system of linear extent L. FSS of 
the specific heat is characterized by the location 
of its peak, /3L, its height CL(/3L) and its value 
at the infinite-volume critical point CL(~~). The 
peak position,/3L, is a pseudocritical point which 
typically approaches/3~ as L ~ c~ as 

I/3L --/3~ I "~ L -h,  (1) 

where )~ is the shift exponent. In two dimensions, 
the Ising specific heat scales as In L. Of further 
interest is the FSS of the complex Fisher zeroes of 
the parti t ion function [3]. The leading behaviour 
of the imaginary part  of a Fisher zero is [4] 

Imzj(L)  ,~ L -I/u, (2) 
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where z stands generically for an appropriate 
function of temperature,  the subscript j labels 
the zeroes, and u is the correlation length critical 
exponent. The real part  of the lowest zero may 
be viewed as another effective critical or pseudo- 
critical point, scaling as 

[Rezl(L) - zc[ ,-~ L -x  .... , (3) 

where z = zc at fl = fit. Usually the shift expo- 
nents, A and Azero, coincide with l / v ,  but  this is 
not a consequence of FSS and is not always true. 

The following results have been obtained for 
FSS in the two-dimensional Ising model. 
E x a c t  A n a l y t i e a l  R e s u l t s :  For toroidal lat- 
tices the specific-heat FSS has been determined 
exactly to order L -3 at the infinite-volume crit- 
ical point in [5-7]. Only integer powers of L -x 
occur, with no logarithmic modifications (except 
for the leading term), i.e., 

fi" CL(~~) =CoolnL+Co+ -Lg. (4) 
k = l  

For these periodic boundary conditions the shift 
exponent for the specific heat is A = 1 = l / u ,  
except for special values of the ratio of the lengths 
of the lattice edges, in which case pseudocritical 
specific-heat scaling was found to be of the form 
L -2 In L [5]. 
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N u m e r i c a l  R e s u l t s :  For spherical lattices the 
shift exponent of the specific heat was found to be 
significantly away from 1 / v  = 1, with ~ ranging 
from approximately 1.75 to 2 (with the possibility 
of logarithmic corrections) [8]. Therefore the FSS 
of the specific-heat pseudocritical point does not 
appeax to match the correlation length scaling. 

In another s tudy [9], FSS of Fisher zeroes for 
square periodic lattices yielded a value of v which 
appeared to approach the exact value (unity) as 
the thermodynamic limit is approached. Small 
lattices appeared to yield an effective correction- 
to-scaling exponent w ~ 1.8 while closer to the 
thermodynamic limit, these corrections tended to 
be analytic with w = 1. A certain formal limit of 
conformal field theory suggests a correction ex- 
ponent w = 4/3 [10]. However, the validity of 
this limit has long been unclear [11] and the ques- 
tion of the absence of a subleading operator corre- 
sponding to w = 4/3 in the standard Ising model 
in two dimensions was recently addressed in depth 
in [12] (see also [13]). 

In the light of these analyses, we present ex- 
act results which help clarify the situation. To 
this end, we have selected the Ising model with 
Brascamp-Kunz boundary conditions [2]. 

2. F I S H E R  ZEROES 

The Brascamp-Kunz lattice has M sites in the 
x direction and 2N sites in the y direction. The 
boundary conditions are periodic in the y direc- 
tion and the 2N spins along the left and right bor- 
ders are fixed t o . . . + + + . . ,  a n d . . . + - + - + - . . . ,  
respectively. The partition function is [2] 

N M 

Z c< H H [1 + z 2 - z(cos0~ + cos ¢j)] ,  
/=1 j = l  

(5) 

where z --- sinh 2/~, 0i = (2i - 1)~r/2N and Cj = 
j~ r / (M+I ) .  One notes that  the partition function 
(5) is given as a double product. Determination 
of the Fisher zeroes of (5) is thus straightforward, 
as is the calculation of thermodynamic functions. 
For toroidal boundary conditions, on the other 
hand, the partition function is a sum of four such 
products [14]. There it is non-trivial to determine 
the zeroes or the thermodynamic functions. 

The zeroes of (5) are on the unit circle in the 
complex-z plane (so the critical point is zc -- 1) 
[2]. These are zij = exp (ic, j) ,  where 

~~j = c o s  - 1  (6) (cos0, +cosCj). 

One may expand (6) in M to determine the FSS 
of any zero to any desired order. Indeed, in terms 
of the shape parameter (7 = 2 N / M ,  the first zero 
is given by 

_2~r2 ( 1 )  
R e z n = l - M  -~- l + ä ~  + O ( M - a ) ,  (7) 

and 

ImZll -- 
-v~ [ (1 + «2)a 

a(1 + a2) 5/2 LM-1 2 

_ M _ 2 a 2 ( 1  + Œ2)2] 
2 + (9 ( M - a ) .  (8) 

Higher order terms are straightforward to deter- 
mine [15]. From the leading term in (s) and from 
(2), the correlation length critical exponent is in- 
deed v = 1. Note, however, from (7) that  the 
leading FSS behaviour of the pseudocritical point 
in the form of the real part  of the lowest zero is 

zc  - Rezu  = 1 - Rezu  ~ M -2, (9) 

giving a shift exponent Äz«ro = 2 ~ 1 / V .  Note 
further that  all corrections are powers of M -1 
and thus analytic. 

3. S P E C I F I C  H E A T  

Since the partition function (5) is multiplica- 
tive, the free energy and hence the specific heat 
consists of two summations. These can be per- 
formed exactly (we refer the reader to [15] for 
details) and orte finds the following results. 
Speci f ic  H e a t  a t  t h e  Cr i t i ca l  Po in t :  At the 
critical temperature the specific heat is, from (5), 

In M 1 + + ~zk" /-1sing. 
~M'2Nk~'J = 7r 

k=O 

(10)  

The coefficients ck can easily be determined ex- 
actly and those up to c3 are explicitly given 
in [15]. So for the critical specific heat on 
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a Brascamp-Kunz lattice, apart from a trivial 
In M/M term (which could be removed by a re- 
definition of M [15]), the FSS is qualitatively the 
same as (but quantitatively different to) that of 
the torus topology in (4). 
Speciflc  H e a t  near t h e  Crit ical  Point :  The 

pseudo pseudocritical point of the specific heat, ZM,2N , 
can be determined as the point where the deriva- 
tive of CM,2N(Z) vanishes. This gives [15] 

pseudo In M b2 
ZM,2N = 1 + a 2 ~  + M2 

l nM bz /r(lnM)2~ 
- ~ a 3 " ~ - { - ~ - - ~ - } - O ~ ,  M 4 / ' (11) 

higher terms being of the form ln M/M 4 and 
1/M 4. This implies )~ = 2 ¢ 1/v (up to loga- 
rithmic corrections). For the specifie-heat peak 
FSS we find [15] 

tosing" ( pseud°'t l nM ( I + M )  -- 
VM'2N~ZM'2N / = 7r 

c~ ., (lnM) 2 { l n M ~  (12) 
+ c ö + ~ + a 2  ~-~ + O \  M2 ] ,  

with c ö = co and c~ = Cl. Higher order terms are 
of the form 1/M 2, (lnM)2/M 3, lnM/M a and 
1/M 3. Notice that, up to O(1/M), (12) is quanti- 
tatively the same as the critical specific-heat scal- 
ing (10). The higher order terms of (12) differ 
qualitatively from those in (10) in that there are 
logarithmic modifications of the form (ln M)k/M ~ 
(with integer k and l). Again, the values of the 
coefficients are given in [15]. 

4. C O N C L U S I O N S  

For the two-dimensional Ising model with 
Brascamp-Kunz boundary conditions, we have 
derived exact expressions for the FSS of the 
Fisher zeroes to all orders. We have also deter- 
mined the FSS of the critical specific heat, its 
pseudocriticai point and its peak. The advantage 
of Brascamp-Kunz boundary conditions (over pe- 
riodic ones) is that the partition function is a 
product and meliorates determination of higher 
order corrections. 

The following are the main features we have 
found: All corrections to scaling are analytic (ex- 
cept for logarithms). The shift exponent ;~ does 

not coincide with l/u. The FSS of the specific- 
heat pseudocritical point and peak have logarith- 
mic corrections. Apart from the leading term, 
this feature is absent in the critical specific heat. 
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