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We report on a new method to extract thermodynamic propelties from the density of partition function zeroes 
on finite lattices. This allows direct determination of the order and strength of phase transitions numerically. 
Furthermore, it enables efficient distinguishing between first- and second-order transitions, elucidates crossover 
between them and illuminates the origins of finite-size scaling. The power of the method is illustrated in typical 
applications for both Fisher and Lee-Yang zeroes. 

1. I N T R O D U C T I O N  

The characterisation of phase transitions, in 
particular of their  order and strength, is among 
the hard numerical problems tha t  are common 
to lattice field theory and spin model physics. 
Frequently applied techniques focus either on the 
finite-size scaling (FSS) behaviour of thermody-  
namic functions such as the specific heat, suscep- 
tibility or Binder parameter ,  or somewhat  more 
"microscopically" on the limiting shape of the 
underlying probabil i ty densities of energy and 
magnet izat ion as the thermodynamic  limit is ap- 
proached. A related and increasingly popular  al- 
ternative approach are FSS analyses of zeroes of 
the part i t ion function [1]. 

If t = T /Te  - 1 denotes the reduced temper-  
ature and h the external field, then the FSS of 
the jth complex part i t ion function zero for a d- 
dimensional system of linear extent L is given by 

t j (L)  ,~ ( j / L  d) llvd , (1) 

hj (L)  ,~ ( j / L  d)(d+2-°)/2d , (2) 

where u and ~ ~re the s tandard critical exponents.  
In (1) we assume h = 0 and t j (L)  are called Fisher 
zeroes. Conversely, in (2), t = 0 is assumed and 
hj (L)  are the Lee-Yang zeroes. The s tandard ap- 
proach to FSS of zeroes is to fix the index to j = 1 
and extract  an est imate for the critical exponents 
from a range of lattice sizes. 

In recent years, however, there have also been 
some a t t empts  [2] to extract  the density of zeroes 
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(a continuous function) from their (discrete) dis- 
tr ibution for a finite and numerically accessible 
lattice. In view of the increasing importance at- 
tached to this approach,  we recently suggested an 
appropr ia te  way this should be done [3]. 

2. D E N S I T Y  O F  Z E R O E S  

The parti t ion function for finite L is ZL(Z) oc 
I-Ij (z -- z j (L)) ,  where z is an appropr ia te  func- 
tion of tempera ture  or field. We assume the 
zeroes, zj, are on a line impacting on to the 
real axis at the critical point,  z«. Parameteris-  
ing zeroes on this line by zj -- Zc + rj  exp (i~o) 
we may define the density of zeroes as 9L(r) -- 
L -d Y']~j 6(r - r j (L) ) .  The cumulative distribu- 

tion function of zeroes is then GL (r) = fö  gL (s)ds 
which is j / L  d if r E (rj ,  r j+ l ) .  At a zero one may 
assume the cumulative density is given by the av- 
erage GL (rj) = (2j -- 1) /2L  d. 

For a first-order phase transit ion this inte- 
grated density of zeroes is, in the thermodynamic  
limit, given by 

G ~ ( r )  =9oo(0) r  , (3) 

so that  the density is non-vanishing at the real 
axis [4]. The slope at the origin in (3) is related 
to the latent heat (magnetization) in the Fisher 
(Lee-Yang) case via [4] g ~  (0) oc Ae. 

For a second-order transit ion the corresponding 
expressions for Fisher and Lee-Yang zeroes are [5] 

G ~ ( r )  oc r 2-« and Goo(r) oc r 2d/(d+2-°) . (4) 
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Traditional FSS emerges quite naturally from 
this density approach. Equating GL(r#) to (4) in 
the second-order Fisher case, gives the usual FSS 
formula for fixed index zeroes, r j (L )  , ,  L - i p ' ,  
where rj may be taken to be the imaginary 
part  of the j t h  z e r o .  Similarly, in the Lee-Yang 
case, one recovers the fixed index FSS formula 
h#(L) . ,  L -(d+2-'D/2. Moreover, considering (3) 
gives rj (L) , .  L -d ,  explaining also the usual iden- 
tification of v with l i d  for a first-order tempera- 
ture driven phase transition. 

A plot of GL(r j )  against r j (L )  should thus (i) 
go through the origin, (ii) display L- and j -  col- 
lapse and (iii) reveal the order and strength of 
the phase transition by its slope near the origin. 

3. A P P L I C A T I O N S  

Superimposing the behaviour (3) and (4) at 
first- and second-order transitions, the ansatz for 
the cumulative density can be written as 

G(r) = a l r  a2 + a3 , (5) 

where we also introduced an additional parameter  
au signalising the absence of a phase transition: 
if a3 > 0 the zeroes have already crossed the real 
axis (broken phase scenario) while for au < 0 the 
zeroes have not yet reached the real axis (sym- 
metric phase). For Fisher zeroes, a first-order 
transition is indicated if a2 ~ 1 for small r, in 
which case the latent heat is proportional to the 
slope al.  A value of a2 larger than 1 signals a 
second-order transition whose strength is given 
by ~ = 2 - a2. 
2D 1 0 - S t a t e  P o t t s  M o d e h  This is the 
paradigm for models exhibiting a strong first- 
order transition. Using the first six Fisher ze- 
roes for L = 4-64 as listed in [6] we find the 
distribution of zeroes depicted in Fig. l(a).  The 
excellent data collapse for various L and j indi- 
cates that  the interpolated GL(r j )  is the proper 
choice. Fitting (5) to the L = 16-64, j = 1-4 data  
points gives a2 = 1.10(1) and a3 = 0.00004(1), a 
strong indication of a first-order transition. Fix- 
ing a3 ---- 0 ,  a2 = 1, a single-parameter fit close to 
the origin yields a slope corresponding to latent 
heat Ae = 0.698(2) which compares well with the 
exact value of 0.6961. 
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Figure 1. Distribution of parti t ion function ze- 
roes. (a) 2D 10-state Potts  model and (b) 3D 
Lt -- 4 SU(3) lattice gauge theory. 

3D SU(3)  L a t t i c e  G a u g e  T h e o r y :  Here we 
consider the deconfinement transition for L t L  3 
lattices. The lowest Fisher zeroes for Lt = 4 
and spatial extent L = 4-24 are given in [7]. 
Applying standard FSS analysis to the L _> 14 
data  only yields z~ = 0.35(2), compatible with 
l i d  = 0.33 and thus indicative of a first-order 
transition, while fits for L < 8 suggest a continu- 
ous transition. Figure l(b) shows the distribution 
of zeroes for all lattices, and the insert highlights 
L > 14. The figure, clearly supportive of a non- 
zero slope through the origin, justifies restricting 
the analysis to the largest lattices and thereby 
elucidating the procedure of deciding where FSS 
sets in. This slope is 0.0121(3), implying a latent 
heat of 0.0760(19) in agreement with the estimate 
0.0758(14) using standard methods [7]. 
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Figure 2. 4D Abelian surface gange model. 
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Figure 3. 2D XY model (Lee-Yang case). 

4D Abel ian  Surface Gauge Model:  Being the 
dual of the 4D Ising model one expects for this 
model, up to logarithmic corrections, mean-field 
critical exponents a = 0, v = 1/2. The first two 
Fisher zeroes for lattices of size L = 3-12 are 
listed in [8] where a conventional analysis applied 
to the first index zero yields the best estimate of 
~, = 0.469(17) from the two largest lattices. A 
fit of (5) to the distribution in Fig. 2 yields a2 
incompatible with unity. Using the data near the 
origin gives a 2  = 1.90(9) or a = 0.10(9), compat- 
ible with zero. 
2D XY Model :  Here we demonstrate that the 
density technique is also applicable in the Lee- 
Yang case. Figure 3 depicts the distribution of 
these zeroes for the 2D XY model at the criti- 
cal point, flc -- 1.113, obtained for lattice sizes 
L = 32-256 [9]. Prom (4), and with 7/ -- 1/4, 
one expects G ( r )  ,~ r 16/15. A three-parameter fit 
(5) gives a3 = 0, indicating that criticality has 
indeed been reached. A two-parameter fit now 
yields a 2  ---- 1.063(3), compatible with expectation 
(taking logarithmic corrections into account). 

4. C O N C L U S I O N S  

We have discussed a new method to extract 
the (continuous) density of zeroes from (discrete) 
finite-size data and demonstrated how this can be 
used to distinguish between phase transitions of 
first and second order as well as to measure their 
strengths. The method meets with a high degree 

of success in lattice field theory and statistical 
physics and lends new insights into the origins of 
finite-size scaling. 
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