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We report on a Monte Carlo study of the three-dimensional bond-diluted 4-state Potts model which, in the 
pure case, undergoes a strong first-order phase transition. Subject to quenched, random disorder one expects 
a softening to a continuous transition from a certain disorder strength on. Employing a combination of cluster 
algorithms, multicanonical methods and reweighting techniques, we obtain strong numerical evidence for the 
existence of a tricritical point separating the first- and second-order regimes and give an estimate of its location. 

1. I N T R O D U C T I O N  

The influence of quenched, random disorder 
on phase transitions is of great importance in 
a large variety of fields, ranging from experi- 
ments with absorbed monolayers [1] in condensed 
mat ter  physics to conceptual questions in non- 
perturbative quantum gravity [2]. For pure sys- 
tems exhibiting a continuous phase transition, 
Harris [3] derived the criterion that  random dis- 
order is a relevant perturbat ion when the critical 
exponent of the specific heat of the pure system is 
positive, • > 0. In this case one expects that  the 
system falls into a new "disordered" universality 
class. 

If a pure system with a first-order transition 
is subject to disorder, the transition is softened 
and may even turn into a continuous one [4]. 
This is always the case in two dimensions (2D) 
[5] (for numerical verifications see [6]). In higher 
dimensions, a tricritical point may appear at a 
finite concentration of impurities [7], separating 
"non-softened" first-order and "softened" second- 
order regimes. Numerically such a scenario has 
recently been observed for the 3D site-diluted 3- 
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state Potts  model [8]. Since here the first-order 
transition in the pure model is very weak [9], how- 
ever, the characterization of the tricritical point 
is difficult. We, therefore, focussed in our study 
on the much stronger first-order transition of the 
3D 4-state Potts  model [10]. Moreover, we chose 
bond-dilution in order to facilitate comparison 
with recent high-temperature series expansions 
[11] for this model. 

2. M O D E L  A N D  S I M U L A T I O N  S E T U P  

The model is defined by the Hamiltonian 

- ~ H  = ~ KijS«,«j; ai = 1 , . . , 4 ,  (1) 
<i J) 

where the sum extends over all pairs of neighbour- 
ing sites on a cubic lattice (with periodic bound- 
ary conditions) and the couplings Kij are dis- 
t r ibuted according to the distribution p(Kij) = 
p~(Kij - K) + (1 - p )  6(Kij), where K - J /kBT.  
The parameter  p is thus the concentration of 
bonds in the system, i.e., p -- 1 corresponds to 
the pure case with its strong first-order phase 
transition at Kt = 0.62863(2) (and correlation 
length ~(Kt) ~- 3) [10]. Below the percolation 
threshold Pc ~- 0.2488 one does not expect any 
finite-temperature phase transition since without 
any percolating cluster in the system long-range 
order is impossible. 
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Figure 1. Phase diagra.m of the 3D bond-diluted 
4-state Potts model. 

Figure 2. Autocorrelation time r« of the energy 
at Tt(p) versus lattice size L (p in steps of 0.04). 

The system was studied [12] by means of 
large-scale Monte Carlo (MC) simulations using 
the Swendsen-Wang cluster algorithm [13] in the 
regime of second-order transitions, and multi- 
canonical simulations [14] in the regime of weak 
dilution where the first-order transition of the 
pure model persists. Thermodynamic quantities 
were averaged over a large number of disorder re- 
alisations, ranging between 2 000 and 5 000. 

3. R E S U L T S  

In order to map out the phase diagram of the 
model we considered all concentrations p in the 
interval [0:28, 1] in steps of 0.04. As an estimate 
for the transition temperature T~ (p) we took the 
location of the maximum of the magnetic sus- 
ceptibility for a given lattice size L. The result- 
ing phase diagram is depicted in Fig. 1, where 
we show for comparison also a simple mean-field 
prediction [12], T~(p) = pTt(1), and the effective- 
medium approximation [15], 

[(1 - pc)e K'(1) - (1 - -  p)] 
Kt(p)  log ~ : ~ ~ 5  ~ , (2) 

t .  

where in addition to the pure system limit (p = 
1) also the percolation threshold Pc is built in, 
resulting in an extremely good approximation for 
all dilutions. 

In a second step, the order of the phase transi- 
tions was investigated. A first indication is given 

by the finite-size scaling (FSS) behaviour of the 
autocorrelation time Te at Tt (p). A glance on the 
log-log plot of Fig. 2 shows a qualitative change 
of the power-law behaviour for small p around 
p = 0.80. For weak disorder (p ~ 1), a clear expo- 
nential behaviour is observed, as one expects for 
a first-order transition where r« o(exp(2aodL2), 
with the (reduced) interface tension tod param- 
eterizing the free-energy barrier which separates 
the coexisting ordered and disordered phases. 

Here we performed multicanonical simulations 
and estimated the interface tension from 

1 Pmax 
aod = ~-ff log Pmin' (3) 

where Pmax is the maximum of the probability 
density reweighted to the temperature where the 
two peaks are of equal height, and Pmin is the 
minimum in between, see Fig. 3. The linear ex- 
trapolations of aod in 1 / L  in the lower part of 
Fig. 3 imply non-vanishing interface tensions only 
for p = 0.84 and above. For p < 0.76, aod seems 
to vanish in the infinite-volume limit, being in- 
dicative of the expected softening to a second- 
order phase transition. The tricritical point 
would thus be loeated around p = 0.76 - 0.84. 

To eonfirm the softening for p < 0.76 we have 
performed a detailed FSS study at p = 0.56 with 
lattice sizes ranging up to L = 96 [12]. A log-log 
plot for ~ m a x  shows that  corrections to asymp- 
totic FSS seem to become quite small above L -- 
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Figure 3. Probability density of the energy 
reweighted to equal peak height for p = 0.56 (top 
left) and p = 0.84 (top right). Interface tension 
versus inverse lattice size (bottom). 

30, and linear fits of the form axL "r/~' starting 
at Lmin > 30 yield 7 / v  = 1.50(2). Similarly, 
the FSS of the quantity (C3K ln rh)K~ù.~ o¢ L z/" 
gives an estimate of the exponent 1/v = 1.33(3), 
in agreement with the stability condition of the 
random fixed point (1/v  <_ D/2  = 1.5). The 
same procedure was applied to the magnetization 

(x L - z / ' ,  but here the associated critical expo- 
nent turned out to be not yet stable. We there- 
fore also considered the FSS behaviour of higher 
(thermal) moments of the magnetization, (#n), 
which should scale with an exponent nil~v. The 
results for the first moments exhibit, however, 
again much stronger corrections to scaling than 

we observed for 2 or OK In th, leading to quite a 
conservative final estimate of/~/v = 0.65(5). We 
nevertheless note that our results do not fit sat- 
isfactorily the scaling law 2/~/v = d - 7 /v .  

4. C O N C L U S I O N S  

From a large-scale Monte Carlo study of the 3D 
bond-diluted 4-stare Potts model we obtain clear 
evidence for softening to a continuous transition 
at strong disorder, with estimates for the criti- 
cal exponents of v = 0.752(14), 7 = 1.13(4), and 
fl = 0.49(5) at p = 0.56. The analysis of both 
the autocorrelation time and the interface ten- 
sion leads to the conclusion of a tricritical point 
around p = 0.80. 
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