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Abstract

The dynamically triangulated random surface (DTRS) approach to Euclidean quantum gravity in
two dimensions is considered for the case of the elemental building blocks being quadrangles instead
of the usually used triangles. The well-known algorithmic tools for treating dynamical triangulations
in a Monte Carlo simulation are adapted to the problem of tigs@amical quadrangulation§ he
thus defined ensemble of 4-valent graphs is appropriate for coupling to it the 6- and 8-vertex models
of statistical mechanics. Using a series of extensive Monte Carlo simulations and accompanying
finite-size scaling analyses, we investigate the critical behaviour of the 6-vemexdel coupled to
the ensemble of dynamical quadrangulations and determine the matter related as well as the graph
related critical exponents of the model.
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1. Introduction

Einstein gravity being perturbatively non-renormalizable as a field theory, constructive
approaches towards a quantization of gravity have been an ever more active field of re-
search in the past decaddg. The dynamical triangulations model in its Euclidean and
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Lorentzian versions has proved a successful ansatz for the formulation of such a consis-
tent theory of quantum gravity?,3]. Compared to the more fancy methods, such as string
theory[4] and non-commutative geometf¥], it is rather more minimalistic in trying to
directly model the quantum fluctuations of space—time by a probabilistic sum over an en-
semble of discrete, simplicial manifold8]. For the Euclidean case in two dimensions,
this ensemble can be defined as the set of all gluings of equilateral triangles to a regu-
lar, usually closed surface of fixed topology, while counting each of the possible gluings
with equal weight. The resulting random-surface model and its simplicial generalisation
to higher dimensions are numerically tractable, for instance, by Monte Carlo simulations.
Furthermore, for the case of two dimensions the use of matrix models and generating-
function techniques led to exact solutions for the cases of pure Euclidean dra8jtgnd

the coupling of certain kinds of matter, such as the Ising mf@iel1], to the surfaces.
These two-dimensional theories generically exhibit continuous phase transitions on tun-
ing the relevant coupling parameters accordingly and thus allow for taking the intended
continuum limit. In the case of matter variables coupled to two-dimensional dynamical tri-
angulations, the critical exponents governing the transitions are conjectured exactly from
conformal field theory as functions of the exponents on regular lattices via the so-called
KPZ/DDK formula[12]

V1-C+24A—-1-C
V25— C—-4/1-C

whereA is the original scaling weight) the scaling weight after coupling to gravity and
C the central charge. The field-theory ansatz leading to(Egbreaks down for central
chargesC > 1, an effect which has been termed the= 1 “barrier”, whereas the discrete
model of C > 1 matter coupled to dynamical triangulations stays well defined. This mis-
match of descriptions and its driving mechanism is still one of the rather poorly understood
aspects of the dynamical triangulations mg@el 3,14]

Ice-type or vertex models oregular lattices form one of the most general classes of
models of statistical mechanics with discrete symmetry (for reviews see, e.g.[Refs.
16]). Special cases of this class of models can be mapped onto more well-known prob-
lems such as Ising and Potts models or graph colouring proll&éisFor the case of
two-dimensional lattices, several of these vertex models can be solved exactly, yielding a
very rich and interesting phase diagram including various transition lines as well as critical
and multi-critical pointd16]. Thus, for two-dimensional vertex models one has the rare
combination of a rich structure of phases and an exceptional completeness of the available
analytical results. Hence, coupling this class of models to a fluctuating geometry of the
dynamical triangulations type is of obvious interest, both as a prototypic model of statis-
tical mechanics subject to annealed connectivity disorder and as a paradigmatic type of
matter coupled to two-dimensional Euclidean quantum gravity. Recently, the use of matrix
model methods led to a solution of the thermodynamic limit of a special 6-vertex model,
the F model, coupled to plana graphq17]. It was found to correspond to@= 1 con-
formal field theory, i.e., it lies on the boundary to the reg®s- 1, where the KPZ/DDK
solution[12] breaks down. Also, a special slice of the 8-vertex model could be analysed via
transformation to a matrix modgl8]. A generalisation of this result to the general parame-
ter space of the 8-vertex model is currently being attemfite®0] However, owed to the
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method of matrix integrals, these studies neither reveal the behaviour of the matter related
observables and the details of the occurring phase transitions nor the fractal properties of
the graphs such as, e.qg., their Hausdorff dimension. Especially, for the case of the 6-vertex
model, which turns out to exhibit a phase transition of the Berezinskii—Kosterlitz—Thouless
(BKT) type, quantities related to the staggered, anti-ferroelectric order parameter cannot be
easily constructed, such that a detailed numerical analysis of the problem seems valuable.
Numerically it is found here that, due to the combined effect of the presence of logarith-
mic corrections to scaling expected folCa= 1 theory and the comparative smallness of

the effective linear extent of the accessible graph sizes, the leading scaling behaviour is
obscured by extremely strong finite-size corrections. Thus, a very careful scaling analysis
incorporating the various correction terms has to be performed in order to disentangle the
corrections from the asymptotic scaling form.

Since the 6- and 8-vertex models of statistical mechanics are defined on a lattice with
four-valent vertices, instead of considering dynamical triangulations or the dual planar,
“fat” (i.e., orientable)¢® graphs, one has to use an ensemble of dynargisadirangula-
tions or the dualp* Feynman diagrams as the geometry to model the coupling of vertex
models to quantum gravity. This can be rather easily done within the framework of matrix
model method$7,21]. For Monte Carlo studies, however, it turns out that the well estab-
lished simulation techniques for dynamical triangulatif$)22,23]are quite cumbersome
to adapt to the case of four-valent graphs which, therefore, only very scarcely have been
considered in the literatuf@4,25] Especially, ergodicity for the selected set of moves has
to be ensured and a method of coping with the observed severe critical slowing down of
the dynamics, such as an adaption of the “baby-universe surgery” mg@B@b], has to
be devised. The details of these modifications to the simulation scheme will be presented
in a separate publicatid27].

The rest of this paper is organised as follows. In SeQioe first review the basic prop-
erties of vertex models on regular lattices. We shortly discuss the matrix-model solution of
the 6-vertex model and elaborate on the necessary conceptual and simulational modifica-
tions for considering vertex models on random graphs. Se8tismlevoted to an in-depth
investigation of the BKT phase transition of the 6-verfexnodel coupled to planar, “fat”
¢* graphs by means of an extensive series of Monte Carlo simulations. In Séatien
present our numerical results for the geometrical properties of the coupled system, such as
the string susceptibility exponent and the internal Hausdorff dimension. Finally, Séction
contains our conclusions.

2. Vertex models on random graphs
2.1. Vertex models on regular lattices

An ice-typeor vertexmodel was first proposed by Paulif28] as a model for (type 1)
ice. In this model, the two possible positions of the hydrogen atoms on the bonds of the
crystal formed by the oxygens, if symbolised by arrows, lead to six different allowed con-
figurations around a vertex provided that the experimentally obséreadileis satisfied,
stating that each vertex has two incoming and two outgoing arrows, see, e.g.16lef.
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While for the original ice model all vertex configurations were counted with equal proba-
bility, for the general 6-vertex model vertex energiesire introduced, resulting in Boltz-
mann factorsy; = exp(—e;/kpT), whereT denotes temperature akg is the Boltzmann
constant. Some symmetry relations are commonly assumed between the weights
particular, given the interpretation of the arrows as electrical dipoles, in the absence of an
external electric field the partition function should be invariant under a simultaneous rever-
sal of all arrows, leading to the identities= w1 = w2, b = w3 = w4 andc = ws = wg. An
especially symmetric version of the model assumes ¢, =1,¢, =00ra=>b,c=1.

This so-calledF model[29] turns out to exhibit amanti-ferroelectrically ordered ground
state. The square-lattice, zero-field 6-vertex model has been solved exactly in the thermo-
dynamic limit by means of a transfer matrix technique (Bethe ansatz) by[B@&band
Sutherland31]. The analytic structure of the free energy is most conveniently parame-
terised in terms of the variab]&6]

a2+ b2 — 2 X
= )

The free energy takes a different analytic form depending on whether—1, —1 <

A <1orA> 1. Thus, phase transitions occur, whengvifr= 1. The caseA > 1 corre-
sponds to two symmetry-related ferroelectrically ordered phases termed | ahek 141
denotes an anti-ferroelectrically ordered phase IV afid< A < 1 is attained in the disor-
dered phase lll. The latter phase has the peculiarity of having an infinite correlation length
throughout, which can be traced back to the fact that it corresponds to a critical surface
of the more general 8-vertex modéb]. From Eq.(2) it is obvious that theF model ex-

hibits a phase transition on cooling down from the infinite-temperature pei =c =1
contained in the disordered phase lll to somewhere in the anti-ferroelectrically ordered
phase IV. The transitions-+> Ill and Il — IlI are first-order phase transitiof$6]. The
transition lll — 1V of the F model, on the other hand, exhibits an essential singularity of
the free energy known as the BKT phase transifg#j.

While the ferroelectrically ordered phases exhibit an overall polarisation which can be
used as an order parameter for the corresponding transition, the anti-ferroelectric order of
phase IV is accompanied bystaggeredoolarisation with respect to a sub-lattice decom-
position of the square lattice. That is, when decomposing the square lattice into two new
square lattices tilted by /4 against the original one, the anti-ferroelectric ground states
correspond to &erroelectricordering of the vertices of the sub-lattices with opposite signs
of the overall polarisation of the sub-lattices. An order parameter for the corresponding
transition can be defined by introducing overlap variablefor each vertex of the lattice
such thato; = v; * vl.o, wherev; denotes the arrow configuration at verriexv? one of
the two anti-ferroelectric ground-state configurations and the prodtictymbolises the
overlap given by

A

4
v*v’EZAk(v)Ak(v’), (3)

k=1

wherek numbers the four edges around each vertex 4n@) should be+1 or —1 de-
pending on whether the corresponding arrow gfoints out of the vertex or into [tL6].
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Then, thespontaneous aggered polarisationPy = (0;)/2 = (0)/2 vanishes in the dis-
ordered phase and approaches unity in the thermodynamic limit for low temperatures in
phase IV and can thus be used as an order parameter for the anti-ferroelectric transition.
Vertex models on regular lattices are closely linked with different series of integrable
models, which in turn are related to an exhaustive enumeration of certain conformal field
theories. In fact, it turns out that the 6-vertex model, being the critical version of the
8-vertex model, includes in suitable generalisations the critical points of all of the well
known two-dimensional lattice models of statistical mechanics, including the Ising and
Potts models as the most prominent examples. Especially, the restricted solid-on-solid
(RSOS) model$33], which realise each central charge of the unitary series of minimal
modelg34], have been shown to asymptotically map onto the 8-vertex model, such that the
critical RSOS models correspond to 6-vertex models. Furthermore, an impressive series of
models in two dimensions can be mapped onto the Coulom[B§hsin these mappings,
an intermediate step is always given by models of the solid-on-solid (SOS) type, which
again can be related to vertex modg6]. Combining these methods, the 6-vertex model
can be described as the common element among critical systems in two dimég&gjons

2.2. Vertex models on random lattices

Putting a vertex model ontorandomfour-valent graph such as the quantum grayity
graphs imposes an additional restriction on the class of vertex weights that can be sensibly
considered. The ferroelectrically ordered phases | and Il of the 6-vertex model and the
order parameter describing the corresponding phase transition depend on the existence of
a global notion of direction. On a random graph, this notion is maldefined. The only local
orientational structure available is that of the vertices and faces of the graph. Thus, for
an 8-vertex model coupled to quantum-gravityrandom graphs, one has to assume that
a = b, while the other vertex types can still be distinguished with only a cyclic ordering
of the links around each vertex. For the 6-vertex model this leaves only two fundamentally
different choices of models to be sensibly considered: Fhemodel withe, = ¢, = 1,
€. = 0 and the so-callemverse F(IF) modelwith ¢, = ¢, = —1, €. = 0, which, however,
is not of much interest here due to its lack of an ordered phase.

For the square lattice an order parameter for the anti-ferroelectric transition of the
F model could be defined by a suitably calculated overlap between the actual state and one
of the two anti-ferroelectrically ordered ground states. On a random graph, the correspond-
ing ground states are not so easily found and, moreover, vary between different realisations
of the connectivity of the graph. Hence, to define an anti-ferroelectric order parameter for
the random graph case, a different and more suitable representation of the vertex model
has to be sought. Above, the anti-ferroelectrically ordered state has been described as mu-
tually opposite ferroelectric order on two complementary sub-lattices. A decomposition
of the square lattice of this kind corresponds toiartition or two-colouringof its sites.
Unfortunately, the considered randapfi graphs are not bipartite in general, preventing
an immediate application of this prescription. When interpreting the vertex-model arrows
as a discrete vector field on the lattice, the ice rule for the 6-vertex model translates to a
zero-divergence condition for this field. We thus transform the vertex model from its in-
terpretation as a field on the links of the original lattice to a representation of the curl of
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Fig. 1. Transformation of the square-lattice 6-vertex model to a “spin” model on the dual lattice. The four links
of each plaquette of the lattice are traversed counter-clockwise. The “spin” values written in the centres of the
plaquettes are oriented sumsbt around the plaquettes. Thus, the occurring “spin” values at@0+4.

this field on the faces of the lattice or, equivalently, the sites of the dual lattice. Following
Stokes’ theorem, this is done by integrating the vertex model arrows around the elemen-
tary plaquettes. By convention, plaquettes are traversed counter-clockwise, addiag
each arrow pointing in the direction of motion and otherwise. On the square lattice the
resulting “spins” (or “heights”) on the plaquettes can assume the valug2,6t4. This
is demonstrated ifrig. 1L In this way, the 6-vertex model can be transformed to a sort of
“spin model” on the dual of the original lattice. Note, however, that one has rather involved
restrictions for the “spin” values allowed between neighbouring plaquettes, which would
lead to quite cumbersome interaction terms when trying to write down a Hamiltonian.

In the new representation, the anti-ferroelectrically ordered state of the model again has
a sub-lattice structure. However, in contrast to the sub-lattice decomposition of the original
representation, now thdual lattice is broken down into “black” and “white” sub-lattices,
such that no two plaquettes of the same colour share a link. Then, an order parameter for
the anti-ferroelectric transition can be defined as the thermal average of the sum of the pla-
guette “spins”, e.g., on the “black” plaquettes. Reflecting the construction of the plaquette
“spins” in Fig. 1it is obvious that this definition of the order parameggactlycoincides
with the original definition of Sectio@.1on the level of configurations. The difference is,
however, that the new definition can be easily generalised to the case of arbitrary lattices,
as long as theidualsare bipartite. This is the case for the planar randghgraphs we
are considering since any planar quadrangulation is bipartite. Thus, we can introduce a
two-colouring of the faces of the graphs. While for the square lattice the numbers of black
and white plaquettes are always the same, the black and white faces ¢t theadom
graphs not necessarily occur at equal proportions. Thus, one should take the “spins” of
both types of faces into account, however “weighted” with the colour of the faces. There-
fore, the configurational value of the staggered polarisation oftheodel on a planap®
random graphg can be defined ag = %Zuev(g*) C,S,, whereG* denotes the dual of
the graph, i.e., the quadrangulatidnG*) the set of vertices of*, C, = +1 the “colour”
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of the plaquette o corresponding to the vertaxof G* and S, the plaquette “spin” ab.
Recalling the construction of the plaquette “spins”, this can also be written in terms of the
¢* graphg as

p:% Z ZcfA(lf), (4)

feF@)lsef

where F(G) denotes the set of faces Gf [ the links of facef, C = +1 the “colour”
of f andA(ly) = £1 the direction of the vertex-model arrow on lihk with respect to
the prescribed anti-clockwise traversal of the faces. The thermal avéPage is now
taken as the order parameter of a possibly occurring anti-ferroelectric phase transition of
the F model coupled to planas* random graphs. Note, however, that due to the overall
arrow reversal symmetry of the vertex model the expectation vafjewill vanish at
any temperature for a finite graph. Thus, for finite graphs we consider the magBlys
instead, analogous to the usual treatment of the magnetisation of the Ising model.

As mentioned above in the introduction, a matrix model related t@'theodel coupled
to planarg® random graphs could be solved exactly in the thermodynamic ]t The
solution is related to a transformation of tlifemodel to a model of close-packed loops
by using “breakups” of the vertices, i.e., prescriptions for connecting incoming and out-
going arrows. The original weights of the 6-vertex model translate into weights for the
oriented loops by assigning a phase factor(gxp/2) to each left turn and a phase factor
exp(—iumr/2) to each right turn of an oriented lo§p6,38]. Here, the coupling: is related
to the weights of the" model a$

b -
4 - = [2 Coin,u)] ' (5)
c c

On the square lattice the phase factors around each loop always multiply up to a total of
exp(xiu2r) due to the absence of curvature. On a random graph, however, & Inop
general receives a non-trivial weight éxpI" (/)] with I"(/) denoting the integral of the
geodesic curvature along the cudvée.,

ra = %(# left turns— # right turns. (6)

This loop expansion is related to the well-known loop representation of thg régdel

of Ref.[39]. There, on a regular lattice, due to the absence of curvature all loops receive
the same constant fugacity= 2 exp(+i u27), leading to the critical G{) model. On the
considered random graphs this picture only remains valid for the limiting gase0,
where the curvature dependence cancels. Thug; th® point of theF model on random
planar¢* graphs is equivalent to the critical O(2) loop modi&¥,40,41]and thus, by
universality, the criticalX ¥ model? Note that this corresponds to the same critical point

2 Note that, in terms of the parametarof Eq. (2), this choice of weights covers only the rangé < A < 1,
which corresponds to the disordered phase of the square-|atticedel.

3 Note that the loops occurring in the expansion of the)dfodel are not in general close packed on the
lattice as are the loops of the presented loop expansion df tmedel. However, the critical O(2) model lies at
the boundary of the dense phase of the)®(odel, where loops are close packéd].
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a/c =b/c =1/2 as on the regular square lattice, which is natural since the symmetry
breaking is induced by the choice of the vertex weights. By means of the mentioned matrix
model techniques it is found that th'e model coupled to planar, “fatp* graphs has a
critical point for each value of the coupling (corresponding to the disordered phase 1),

in agreement with the behaviour on the square lattice. Exploring the vicinity of this critical
point, it is found that the string susceptibility exponeft= 0 for all «, leading to only
logarithmic divergences of the free enelfdy]. This behaviour is indeed expected from
the C — 1 limit of the KPZ/DDK prediction Eq(1). Thus, the general phase structure

of the F model coupled to planar randogr graphs in the grand-canonical ensemble of a
varying number of vertices has been found in RET]. The existence of a BKT type phase
transition aty = 0 was obvious beforehand from the equivalence to the O(2) loop model
at this point. Details of the behaviour of matter-related observables close to the critical
point, such as the scaling of the staggered anti-ferroelectric polarisability, however, could
naturally not be extracted from the matrix model ansatz.

3. Theanti-ferroelectric phasetransition

The critical point of theF model on the square lattice provided the first example of an
infinite-order phase transition of the BKT type. By virtue of the loop expansion sketched
above, this behaviour is expected to persist as the model is coupled to a random lattice.
In the vicinity of a phase transition of this type, the usual thermal and finite-size scaling
(FSS) relations are profoundly changed. Using an elaborate set of simulational techniques
specially tailored for simulations of this model, we present a detailed scaling analysis of
its thermal properties. As a guideline for the rather involved analysis we used our newly
performed set of loop-cluster update simulations of the square-l@ttinedel[43], which
is computationally less demanding such that much larger system sizes could be investi-
gated. For a general discussion of scaling and FSS at an infinite-order phase transition of
the BKT type[32], we refer the reader to this study and references found thgl&inDue
to the nature of the occurring singularities the main strengths of FSS are found not to ap-
ply to the BKT phase transition, and the focus of numerical analyses &f Yhand related
models has been dhermalscaling, see, e.g., R¢fi4]. In addition, renormalization group
analyses predidbgarithmic correctiondo the leading scaling behavio[45], as expected
for a C = 1 theory, which have been found exceptionally hard to reproduce numerically
due to the presence of higher order corrections of comparable magiideCompar-
ing the phase transitions in the two-dimensional planar and the six-vErtardels, one
should keep in mind that due to the dual relation of both models, the réles of high- and
low-temperature phases are exchanged in thaftingodel has a critical low-temperature
phase, whereas the high-temperature phase is massless XrYtineodel. In contrast to
the XY model, the low-temperature phase of thenodel exhibits a non-vanishing order
parameter, given by the spontaneous polarisation of8gsuch that, although the criti-
cal points of both models are equivalent, the magnetisation of the planar model does not
correspond to the polarisation of tfiemodel[43].
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3.1. Simulation techniques

For Monte Carlo simulations of two-dimensional combinatorial dynamical triangula-
tions or the dual regulap® graphs, an ergodic set of updates for simulations of a fixed
number of polygons or graph vertices (canonical ensemble) is given by the so-called
Pachner movept7]. An adaption of the link-flip move for canonical simulations of tri-
angulations to the case of quadrangulations has been proposed ij2RgfS] By the
construction of counter-examples it can be shown that the link-flip moves of [Réf25]
do not in general constitute an ergodic dynamics for canonical simulations of dynamical
guadrangulations. Introducing a second type of link-flip moves, we construct an algorithm
for canonical simulations of dynamical quadrangulations, which does not show any signs
of ergodicity breaking27,48,49] A scaling analysis of the thus constructed dynamics re-
veals that its performance—as expected from a local algorithm—is limited by the effect
of critical slowing down. To alleviate this problem, we adapt the non-local “baby-universe
surgery” method proposed in R¢23] for triangulations to the case of quadrangulations
and investigate its dynamical properties by means of a scaling anfdys#9] For the
vertex model part, we also employ a non-local, cluster algorithm known as “loop-cluster
algorithm”, which is known to drastically reduce autocorrelation times for vertex models
on the square latticgs0]. For the application of this simulation scheme to random-lattice
models, certain modifications are necessary. The mentioned algorithmic developments for
the graph and the vertex model part as well as the technical details of the necessary simu-
lational set-up will be discussed in a separate publicd&@h

For the FSS study to be presented below, we simulated a series of sphérigalphs
of sizes ranging froniV, = 256 up toN> = 65536 verticeé. The simulations where per-
formed at several computing facilities using about 100 000 hours of CPU time in total.

3.2. Scaling analysis

We assume a parameterisation of themodel coupling parameters which involves a
temperature variable and thus sticks more closely to the language of statistical mechanics
than to that of field theory. It hence differs from the parameterisgbdnsed in the con-
text of the matrix model solution, which only covers the critical disordered phase of the
F model. Choosing the vertex energiesgas= ¢, = 1, we haver = b = ¢, c = 1, where
B =1/kpT, such that the BKT point occurs fg¢. = In 2, both for the square-lattice model
and, conjectured by the matrix model solution discussed in Se2t®rior the F model
coupled to planag®* random graphs.

3.2.1. The specific heat
The specific hea€, of the F model coupled to planap* random graphs exhibits a
broad peak aroun@, ~ 0.45, shifted away from the critical point into the low-temperature

4 The use of the variabl&/, for this number has its origin in the general notation for simplicial manifolds,
whereN; denotes the number @fsimplices of the simplicial complex, see, e.g., R&f.
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phasé to a centre of8 ~ 1.0. The peak does not depend on the lattice size up to very
small finite-size corrections, i.e., no FSS is observed. The expected essential, non-divergent
singularity[15,43]cannot in general be resolved, since itis covered by the presence of hon-
singular background terms. This non-scaling behaviour of the specific heat is commonly
considered as a first good indicator for the presence of an infinite-order phase transition
[51].

3.2.2. Location of the critical point

The critical coupling can be determined from the scaling of the shifts of suitably defined
pseudo-critical couplings on finite graphs, see R43]. Here, we use the locationf, of
the maxima of the staggered anti-ferroelectric polarisability, defined from the generalised
polarisation of Eq(4). In terms of the inverse temperatifeo first order one has at a BKT
transition[43],

By (N2) = Be 4+ Ag(In Np) =%, @)

whereN; is the size of the graphs and= 1/2 for the regulatXY and F models[16,51]

For the determination of the peak positions we make use of the temperature-reweighting
technique[52]. Note that the quoted errors do not cover the potential bias induced by
the reweighting procedure. We performed simulations for graph sizes betgeer?56

and N, = 25000 sites, taking some 4@neasurements after the systems had been equi-
librated. Measurements were taken after every tenth sweep of the combined link-flip and
“baby-universe” surgery dynamics, using “regular” graphs without self-energy and tadpole
insertions[27]. All statistical errors were determined by a combined binning/jackknife
technique, cf. Ref[53].

Comparing the estimated peak locations to the corresponding results for the square-
lattice mode[43] one notes that the accessible part of the scaling regime is strongly shifted
towards lower temperatures, being rather far away from the conjectured critical coupling
B =1In2~0.693, cf. the “regular ensemble” data Big. 2 below. We start with fits of
the simple form Eq(7) without including any correction terms. Additionally, we assume
p = 1/2 here as in the square-lattice case, which has to be justified a posteriori by the
thermal scaling analysis. Within this scheme, the influence of correction terms is taken
into account by successively omitting lattice sizes from the smalkide. Due to the
strong corrections present, however, no fits with satisfactory fit quality can be found in
this way such that it appears mandatory to include correction terms. Since the exact form
of the present scaling corrections is not known, an effective description has to be employed.
One possible ansatz is to relax the constraiat1/2, introducings # p as an additional fit
parameter. Even for this type of fit, acceptable fit qualities can only be attained by dropping
many of the smaller graph sizes, thus strongly increasing the uncertainty in the estimated
parameters. Additionally, we find that the fit results for small minimum included graph
sizesN2 min partly depend on the choice of the starting values for the fit parameters, i.e.,
that the fit routine gets stuck in local minima of the distribution. FOrN2 min = 4096

5 Note that the specific heat of the 20¥ model exhibits a peak in tHegh-temperaturghase, as expected
from duality.
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Table 1
Parameter results of linear fits of the for(8) to the simulation data for the peak locations of the staggered
polarisability. Values of parameters held fixed are indicated by square brackets

N2 min Be Ap Bg Cg 0
256 Q899971 17.4(11) —69.4(47) [0] 0.02
512 Q876(13) 21.9(22) —92.0(108 [0] 0.08

1024 081724 33.7(46) —1553(243 [0] 0.72
256 Q77939 55.4(122) —424.9(1140 918(294) 0.32
512 Q693(75) 87.0(263 —7481(2647 1838741 0.39

we arrive at an estimatg. = 0.83(58), Ag = 1.7(62), and /o = 1.0(31) with a quality
of 0 = 0.69. Statistically, this is in agreement with the expected vglue: In2~ 0.693
for the critical coupling, but due to the large statistical error the estimate is of limited
significance. The result for the exponghttannot be taken as a serious estimatedor
since it incorporates corrections effectively.

For the square-lattice case, from the exact solution the leading corrections to the form
(7) with p = 1/2 could be expressed as a power serieg/iim &, [43],

By (N2) = Be 4+ Ap(IN N2) "2 + B (In N2) =3 + Cp(In Np) 4, ®)

hence we consider this form for the random graph data here as well. As can be seen from
the collection of fit parameters ifable 1 this form provides a good description of the data,
although some of the statistical errors of the fit parameters become very large. Neglecting
the second correction first, i.e., holdigg = O fixed, the results are stable on successively
omitting data points from the smalN> side, and the resulting estimates for the transi-
tion temperature are slowly drifting towards the asymptotic vgue- In2 = 0.693....
Nevertheless, the result for, e.No min = 1024, 8, = 0.817(24) is still far from being
compatible with the asymptotic result in terms of the statistical error. Including the fourth-
order term of(8), on the other hand, further reduces the estimategfdo the extent of

being compatible witt8. = In 2, however at the price of largely increased statistical errors.
For N2 min > 512, the fits get very unstable, such that we quote as our final result from
this approactg. = 0.693(75) for N2 min = 512. If we finallyfix 8. at its asymptotic value,

for Cg = 0 we reach a fit quality o€ = 0.01 only atN> min = 2048, while with variable

Cg, O =0.52 is reached already af min = 512. This clearly shows th&ioth correction

terms are necessary for resolving the scaling corrections, but the accuracy of the present
data is only marginally sufficient to do so. It should be noted that also the other types of
fits presented here still yield good quality-of-fits when fixing the paranmgtet In 2. For
example, a fit of the forni7) with variable exponenj to the data withV, min = 2048 gives

Ap =1.071(81), 1/5 = 0.541(35), andQ = 0.84.

3.2.3. Universality of the critical coupling

One might be tempted to suspect that the observed rather large deviations of the finite-
size positions of the polarisability maxima from the expected vglue In2 ~ 0.693 are
due to the fact that we use graphs of thgular ensembile, i.e., those without self-energy
and tadpole insertions, whereas the matrix model calculations of Régfnaturally con-
cern graphs of the unrestrictathgular ensemble. Indeed, quite generally one does
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expect the critical coupling of a model to beiversal In particular, for the Ising model
coupled to dynamical polygonifications or the dual graphs, the location of the observed
transition does depend on whether one considers spins located on the vertices of trian-
gulations, quadrangulations? or ¢ graphs[10,24,25] Additionally, depending on the
considered ensemble of graphs with respect to the inclusion or exclusion of certain types of
singular contributions, one arrives at different values for the critical coufling 1,54,55]
However, the situation is quite different for the case of fheodel coupled to random lat-
tices. As has been mentioned above in SecZi@in the matrix model description of the
problem, the matrix potential becomes equivalent to that of the O(2) model in the limit
u = 0[17], which corresponds to the choiegc = b/c =1/2 or 8. =In2. Thus, renor-
malizing the matrix model to remove some or all of the singular graph contributions does
not change the location of the BKT point.

We have not performed extensive simulations of graphs of the “singular” ensemble in-
cluding self-energy and tadpole insertions to demonstrate this behaviour numerically. This
is due to the fact that simulations for graphs of the singular ensemble are by orders of
magnitude less efficient for the considered graph sizes than simulations of the other graph
ensembles due to details of the implementation of the simulation scheme, cf2Ref.
Nevertheless, we carried out some simulations for smaller graph sizes and analysed the
FSS of the peak locations of the staggered polarisability just as for the case of “regu-
lar” graphs. The corresponding FSS data are shoviign2 together with the results for
regular graphs. Using E¢8) with Cg = 0, a fit to the data including all five points from
N =128 toN, = 2048 yields the estimafg; = 1.01(11), Q = 0.92, lettingCp vary gives
B =0.83(69), 0 =0.76, which is in principle in agreement wifh = In 2, although very
inaccurate. Note that frorRig. 2 the finite-size corrections for the singular graph case are
much larger than those for the regular graph model. This is in contrast to previous observa-
tions for the case of the Potts model coupled to random trianguld&6ihand the resulting

o singular ensemble
« regular ensemble

1.0 —\‘\’ﬁ'\'\_\l _
1 L 1 L 1 L 1 L 1 L 1
0 5000 10000 15000 20000 25000
N
2

Fig. 2. Finite-size approach of the peak locations of the staggered polarisability 5f edel ong* random
graphs with (“singular ensemble”) and without (“regular ensemble”) tadpole and self-energy insertions. The solid
lines show fits of the functional forif8) to the data.
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common belief that the inclusion of singular graph contributions generically reduces FSS
corrections.

As has been mentioned in the introduction, the reason for the observed very slow ap-
proach to the expected asymptotic behaviour lies in the double effect of the presence of
logarithmic corrections to scaling and the small effective linear extent of the highly fractal
lattices. In principle it should be possible to resolve the resulting scaling corrections by in-
cluding higher-order correction terms in the fit ansatze. However, it must be admitted that,
refraining from any artificial “good-will” tinkering with the fit parameters, the accuracy of
the present data is not sufficient for reliable many-parameter, possibly non-linear fits. The
strength of this combined effect is nicely demonstrated numerically by the fact that the
fits to the FSS of the polarisability peak locations withfixed to its true valugg, = In2
come as close g%, (N2) = 0.7 to the critical value only for graph sizé® ~ 1019 for the
form (8) with variableCg or evenN, ~ 10°°% for the form(7) with variable exponeng.
Instead of figuring out more elaborate fits, we try to disentangle the two correction ef-
fects by a comparison to the square-lattice model, where only the logarithmic corrections
are present, but the considered lattices are not frg¢8l For this purpose, we plot in
Fig. 3the polarisability peak locations as a function of the root mean square extent of the
considered lattices defined as

(2 - | ZasrOn)
N Y G(r)

which is the relevant measure for the linear extent of the graphs. Here, we take the geo-
metrical two-point functionG11(r) as the number of graph vertices with a geodesic link
distancer from a randomly chosen reference pojpyg. The root mean square extents
(r2)Y/2 are related to the number of graph vertices according-# ~ N5/“, which
defines the internal Hausdorff dimensidp. Due to the fractal structure of the random

graphs, largely differing values of the root mean square exi&pt/? are found for them

1/2

(9)
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N2

T T T T T T T T T T 1
1.06 ® —10.780
S : |
§ —10.778
1.051 3 4
I i —10.776
B, 104 | 3
ﬁ —10.774
1.03
! —10.772
o random graphs (left scale) 1
Loz= 1, square lattice (right scale) i{ —0.770
PR IR NN U N N R S
4 6 8 10 12 14 16 18 20

2 12
<r >

Fig. 3. Collapse of the FSS approach of the scaling of the peak locations of the staggered anti-ferroelectric
polarisability of theF model on randonp? graphs (left scale) and on the square lattice (right scale). The data for
the square-lattice model are taken from a set of simulations presented {d&ef.
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in comparison to square lattices with the same number of verNge&or the latter data
(which are basically exact) this scaling ansatz without inclusion of any correction terms
yieldsd;, = 2.000(20), where the error reflects discretisation effects for small lattices. For
the case of* random graphs the fit yields, = 3.336(11). Note, however, that the result

for dj, is slowly increasing as more and more of the snlllattices are excluded and we
expect the true value of the Hausdorff dimension to be somewhat larger, se6Ref2]

and Sectior below. Hence, in order to obtain results for thenodel at comparable linear
extents of the square and random lattices, one has to consider rather small volumes for
the square-lattice case. For the comparison welugel square lattices, where the edge
lengthsL were chosen such that the resulting root mean square extent comes as close as
possible to thér2)1/2 values for the correspondirg random graphs. The volumes of the

¢* random graphs were chosen betweén= 256 andN, = 8192, increasing in powers

of two.

In Fig. 3we present a comparison of the FSS approach of the peak locations of the
polarisability for thep* graph and square-latti¢é3] models plotted as a function of the
linear extent(r2)1/2 of the lattices. Here, the abscissae of the plot have been scaled such
as to account for the difference in the overall correction amplitudeadsuming the same

valueln 2 for the offsetFrom the two simulation points ne(emz)l/2 ~ 10 we find the ratio
of the correction amplitudes %s

BH(N2=1024 —In2
P BN, =324 —In2

4.23, (10)

whereﬁ)r(I denotes the peak position for the randgfhgraph model aanf(' the value for

the square lattice. The thus achieved collapse of the FSS data is obviousi¢roBnCon-
sequently, we come to the clear conclusion that the larger deviations of the peak locations
for random graphs are simply due to an about four times larger overall amplitude of the
correction terms as compared to the square-lattice model, the details of the FSS approach
being otherwise surprisingly similar between the two considered lattice types. Especially,
the fact that for they* graph case the asymptotic valge= In 2 cannot be clearly resolved

by the considered fits to the data is an obvious consequence of the comparative smallness of
the accessible lattice sizes in terms of their effective linear extefits2. To underline this
finding, we performed fits of the simple for{w) to the data for both types of lattices (there

are not enough data points for fits with correction terms), including sizes starting from the
points nearr2)/2 ~ 10, which result in estimate$. = 0.755418) for the square lattice

and g, = 0.941689) for the random graphs. In terms of the quoted statistical errors these
are obviously both far away from the asymptotic result. The deviation ffpm In 2 is,
however, just about four times larger for the random graph case than for the square-lattice
model, in agreement with the previous discussion of the scaling collagdg.&.

6 These two simulation points have been chosen since there the differepéeliff between the square and
random lattices is minimal within the set of considered lattice sizes.
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3.2.4. Critical energy and specific heat

As an aside, we note that for the larggst random graphs we have simulated, i.e.,
for N» = 65536, at8 = 8. = In2 we find the following values of the internal energy and
specific heat per site,

U(B=In2)=0.33335511), C,(8=In2)=0213712). (11)

Comparing these results to the values found analytically for the square-lattinedel

[15], U (B.) = 1/3, C,(Be) = 28(In2)2/45~ 0.2989, we see thdf (8 = In2) is very close

to the value found for the square lattice, wher€a&3 = In 2) is far away from the square-
lattice result. On the basis of these findings, we conjecture that the critical value of the
internal energy of the&" model is not affected by the coupling to random graphs, while
the critical specific heat is. Thus, as one would expect, the critical distribution of vertex
energies naturally changes its shape on moving from the square-lattice to the random graph
model, but, curiously, its mean is not shifted by this procedure. Interestingly, this situation
seems to be specific to the critical pofiit=In2 common to both models, where the two
curves cross. For other inverse temperatures the square-lattice and random graph energies
diverge, sed-ig. 4. This probably indicates the presence of an additional symmetry at
criticality.

3.2.5. FSS of the polarisability

On coupling the vertex model to quantum gravity we expect a renormalization of the
critical exponents as prescribed by the KPZ/DDK form(la In Ref.[12] KPZ/DDK
focus on conformal minimal models wili < 1 coupled to the Liouville field, but their
work should also marginally apply to the limiting cae= 1 of the model considered
here. The KPZ/DDK formula prescribes a dressing of the conformal weights on coupling a
matter system to the fluctuating background. To find the usual critical exponents from the

0.6F T T T T T T T H

- e—orandom graphs
05 ™Se »— square lattice —

00.2 0.4 0.6 0.8 1 12 14

Fig. 4. Temperature dependence of the internal engrgy the square-lattice and randapft graph F models.
Simulations have been performed foNa = 46% = 2116 square lattice and random graphs wiith= 2048 sites.



M. Weigel, W. Janke / Nuclear Physics B 719 [FS] (2005) 312—-346 327

weights, one assumes that the well-known scaling relations stay valid and thus arrives at

_1-24, _ Ap _1-24p
YTUA “1-a VYT a
dyy=—=——"\  2—p=(1—2Ap)d, 12
kY n={( p)dp (12)

Here, A denotes the weight of the energy operator ahg symbolises the weight of

the scaling operator corresponding to the spontaneous staggered polarfatimich

here takes on the role of the magnetisation operatof magnetic models. For the special
case of the infinite-order phase transition considered here, the usual exponents written
above are not well-defined in the sense of describing power-law singularities. However,
the corresponding FSS exponents, i&.d,v = Ap andy /dyv =1 — 2Ap, still have a
well-defined meaning. From the exponghtd,v = 1/4 for the square-latticé" model

(with d, = d = 2) [43], we find Ap = 1/4. Note that this weight is different from the
weightA, = 1/16 found for the magnetisation of the critical’ model in two dimensions,

see, e.g., Ref60]. For central charg€ = 1 from Eq.(1) one arrives atAp = 1/2 and

the dressed critical exponents becopyel,v = Ap = 1/2 andy /dyv =1 — 2Ap =0,
implying a merely logarithmic singularity of the staggered polarisability for dynamical
graphs.

For a numerical check of these conjectured exponents, there are the two principal pos-
sibilities of considering the FSS of the staggered polarisability at its maxima for the finite
graphsor at the fixed asymptotic transition couplify = In2. While in the asymptotic
regime both approaches are expected to lead to identical results, this is not at all obvious in
the presence of large, not completely controlled correction effects for the accessible graph
sizes. In both cases, by analogy to the situation on the square [d8icee start from an
FSS form including a leading effective correction term, namely,

X(N2) = A, NJ/" (In Np)®x, (13)

where x (N) is taken to be either the peak value as a functionsabr the value at
B = B. =In2. We consider the peak value case first, taking the simulation results for the
graph sizesV, = 256, ..., 25000. Omitting the correction term, i.e., forcing = 0, and
trying to control the effect of corrections to scaling by successively omitting data points
from the small&; side, results in quite poor fits with an exponent estimaté,v ~ 0.7
steadily decreasing with increasing lower cut-o% min. Allowing the effective correc-
tion exponent, to vary, the resulting leading exponent estimgyel, v is considerably
reduced, still showing a tendency to declineMsmin is increased, cfTable Za). How-
ever, the fit quality is still not very good and the resulting exponent estimate for, e.qg.,
N2,min = 2048,y /dyv = 0.301(79) is not consistent in terms of the statistical error with the
purely logarithmic singularity expected from the KPZ/DDK prediction. These results, in
principle, might be improved by including corrections of the forndldA N2)*, n =1, 2, ...
as in the square-lattice cagk3], but the present data are not precise enough to reliably fit
these terms.

For the data at fixed coupling. = In2, simulations up to slightly larger graph sizes
could be performed since no reweighting analysis is necessary there. Hence, results are
available for graph sizes betweah = 256 andN, = 32768 sites, increasing by powers
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of two. For the constrained fits of the functional foft8) with «», = 0 we do not find
a quality-of-fit of at least 107 for N2.min up to 4096 and thus do not consider this form
further. The parameters of fits including the logarithmic term are collect@alte Zb),
revealing that the functional form including a logarithmic correction fits the data rather well
already for quite small values &> min, leading to exponent estimatggd, v compatible
with the conjecturey /d,v = 0 in terms of the quoted statistical errors. In fact, ifagsume
a purely logarithmic increase ¢f(N2), i.e., if we fix y/d,v = 0, the data yield good-
quality fits for N2, min 2 512; for N2 min = 2048 the parameters of this purely logarithmic
fitare A, =0.396096), w, =2.29511), with Q = 0.39.

The simulation data a8 = In 2 together with this last fit are shown ffig. 5. Note that
for the peak-height data discussed before, such a purely logarithmiaditp@ssible with
acceptable values @. To enable a somewhat better judgement of the observed discrep-
ancy between the scaling at the peak maxima arfd atln 2, we considered the same two
lines for thesquare-latticemodel[43], using a range of lattice sizes comparable to that of
the random graph case in terms of the effective linear extents as it has been discussed in

Table 2
Results of fits of the functional forif13) to the simulation data for the staggered polarisability. (a) Fits to the data
at the polarisability peak locations. (b) Fits to the data at the asymptotic critical coypng. =In2

N2, min Ay y/dpv Wy 0
(a) 256 0197597) 0.474981) 1.698(55) 0.00
512 Q116(14) 0.406(16) 2.22(12) 0.00
1024 003912 0.28137) 3.24(30) 0.24
2048 0047(37) 0.301(79) 3.07(68) 0.16
(b) 256 0491(19) 0.019455) 2.117(40) 0.66
512 Q54342 0.030491) 2.026(72) 0.91
1024 056975) 0.03514) 1.98(12) 0.85
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Fig. 5. Finite-size simulation data of the polarisability of themodel on randong® graphs at the asymptotic
critical couplingB. = In2. The solid curve shows a fit of the forth3) to the data, wherg /d;v = 0 was kept
fixed.
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Section3.2.3 Fitting the functional forn{13) with variablew, to these two square-lattice

data sets, we fing /d;,v = 0.47546) for the scaling aB = In 2 also considered above, but

an estimate of /d,v = 0.598(36) from the scaling of the peak values pf Thus, also for

the square-lattice model, the scaling of the peak values yields an exponent estimate lying
off the expected result(/d,v = 1/2 in this case), while fits at the critical coupling are in
good agreement with the expectations. This is in agreement with the general observation of
enhanced correction amplitudes of the random graph model compared to the square-lattice
case reported in Sectidh2.3

3.2.6. FSS of the spontaneous polarisation

For the scaling of the spontaneous polarisation the situation is found to be quite similar
to the above discussed case of the polarisability. We assume the same leading FSS form as
in the square-lattice ca$43], i.e.,

Po(N2) = A p, Ny P/ (In Np) o, (14)

where, againPo(N») is taken to be either the value at the peak position of the polarisability
or, alternatively, the result at the asymptotic critical coupppg= In 2. Fits without the log-
arithmic correction termdp, = 0) show unacceptable quality throughout the whole region
of choices of the cut-oftV2 min and for both FSS series. For the polarisation at the peak lo-
cations of the polarisability, even fits including the logarithmic correction term of ).
show very poor fit quality and estimates f6fd,v which are clearly too small compared
to the KPZ/DDK prediction8/d,v = 1/2 in terms of their statistical errors. We attribute
this to the generally more pronounced corrections for the values at the polarisability peak
locations already noted above. In addition, however, the non-divergent behaviour of the
polarisation makes it even harder to resolve the correction terms properly, and the possible
presence of systematic reweighting errors (bias) has much more severe effects here due to
the higher statistical accuracy of the polarisation estimate. Again, the analogous analysis of
the FSS of the square-lattice model reveals a similar behaviour for comparable graph sizes
in terms of the linear extent, however with the size of the deviations from the expected
result being much smaller.

Table 3shows the parameters resulting from least-squares fits oflBjjto the sim-
ulation data at the fixed coupling = 8. = In2. The overall quality of the fits is much
better than for the data at the polarisability peak locations discussed before. This is at least
partially due to the fact that for the results at fixed coupling no bias effects induced by a
reweighting procedure are present. We do not observe a clear overall drift of the exponent

Table 3
Parameters resulting from fits of the fo4) to the finite-graph spontaneous polarisation at the infinite-volume
critical coupling8. =In2

N2 min APO B/dpv @ py 0
256 158335 0.463330) 0.72622) 074
512 1658(68) 0.4581(50 0.684(39) 0.91

1024 158(11) 0.463379) 0.728(64) 0.98

2048 148(23) 0.46915) 0.779134 1.00
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estimates/dy v resulting from the fits as a function of the cut-&¢ min and the quality-

of-fit is found to be exceptionally high already for small values\ofmin. The result for

N2 min = 2048 is consistent with the KPZ/DDK conjectuéd, v = 1/2 within about two

times the quoted standard deviation. We note that the estimated correction expgpents
andw, are found to be clearly different from each other. In fact, from the exact solution of
the square-lattice model, both exponents are found to be different even asymptptighlly

In addition, both exponents effectively capture the presence of sub-leading corrections for
the two observables, leading to the occurrence of further differences.

3.2.7. Thermal scaling

In order to extract information about the critical expongrdand possibly to find addi-
tional evidence for the location of the critical point, we tried to perform a thermal scaling
analysis and considered the dependence of the staggered anti-ferroelectric polarisability on
the inverse temperaturg in the vicinity of the critical point. Since the high-temperature
phase of the” model coupled tap* random graphs is expected to be critical as for the
case of the square-lattide model, such a scaling analysis has to be performed on the low-
temperature side of the polarisability peak. As for the square-lattice nid8lwe find
scaling throughout the high-temperature phase. Due to an exponential slowing down of the
link-flip and “baby-universe surgery” dynamics of té graphs aboves, [27], simula-
tions cannot proceed arbitrarily deep into the ordered phase. Up to the attainable inverse
temperatures of abogt= 1.4, we still observe strong finite-size effects and no asymptotic
collapse of the curves for different graph sizes, which is again attributed to the large fractal
dimension of the graphs.

The requirements of a proper thermal scaling analysis of the polarisability resulting
from these observations are almost impossible to fulfil: one has to keep enough distance
from the critical point for the linear extent of the graph to be large compared to the corre-
lation length of the matter part to keep finite-size effects under control and, on the other
hand, one should not proceed too deep into the ordered phase such as not to leave the ther-
mal scaling region in the vicinity of the critical point. Thus, one would have to go to huge
graph sizes to get rid of these constraints to a practically acceptable extent. Nevertheless,
we attempt a thermal scaling analysis of the polarisability from simulations of graphs of
size N2 = 30000 with inverse temperatures ranging frgm= 0.9 up to 8 = 1.6 taking
about 800000 measurements at egcli-rom the square-lattice results one expects the
scaling form[43],

Inx(B)~ Ay + By(B—Bc)"", (15)

which should hold for8 — B} as N» — oo and where logarithmic corrections have al-
ready been omitted. We find it impossible to reliably fit all four of the parameters involved
in Eq. (15) to the available data. Varying the starting values we find a multitude of local
minima of thex 2 distribution, such that virtually any result can be “found” f&rand p

in this way. Fixing one or the other of the two parameters at the expected yalaem 2

or p = 1/2, the fits become more stable. The dependency on the range of included val-
ues of 8 is found to be rather small and fgt > 1.25 we arrive at the fit parameters

A, =—101(4662, B, = 1064662, p = 0.02(103), andQ = 0.03, for 8. fixed at In2 or

atthe parameters, = —86(1083, B, = 3245744, . = —11(147), andQ = 0.04, with
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Fig. 6. Thermal scaling of the polarisability of the random gr@pmodel for graphs wittivo = 30 000 sites. The
curve shows a fit of the functiofl5) to the data, wherg. =In2 andp = 1/2 have been kept fixed.

p fixed at /2. Obviously both fits are not very useful, such that we are finally forced to fix
both parameterg. andp, at their expected values to find, = 0.91(41), B, = 4.20(33),

and Q = 0.03. This fit is shown irFig. 6together with the simulation data. Thus, the best
we can conclude about the thermal scaling behaviour of the polarisability is that there is no
obvious contradiction with the expectations concerning the parangtarslo. However,

in view of the fact that already for the regular lattice model thermal scaling fits were not at
all easily possibl¢43], this finding is probably not too astonishing.

4. Geometrical properties

The annealed nature of disorder applied to the vertex model via its placement onto
dynamical¢® random graphs induces a back-reaction of the matter variables onto the
underlying geometry and thus a possible change in the (local and global) geometrical prop-
erties of the graphs. Since the general mechanism of matter back-reaction onto the graphs
is the tendency to minimise interfaces between pure-phase regions of the matter variables,
a strong coupling between matter and graph variables is generically only expected if the
combined system of spin model and underlying geometry is critical. Thus, the universal
graph properties such as the graph-related critical exponents should remain at the values
of pure Euclidean quantum gravity, unless the coupled matter system has a divergent cor-
relation length{61]. As indicators for changes of the geometry of the coupled system, we
consider the co-ordination number distribution as a typical local property, as well as the
string susceptibility exponent and the Hausdorff dimension as global geometrical features.

4.1. The co-ordination number distribution

The distribution of co-ordination numbers of the quadrangulations, which has been ex-
tensively considered for the case of pyregraphs[49], could be possibly altered by the
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Fig. 7. Fractiomm, of faces of length two of planajs4 “regular” random graphs with a coupldd model as a
function of the inverse temperatuge The drawn error bars are mostly covered by the size of the symbols. The
solid line shows the value af, for the case of pur¢4 random graphs oV, = 2048 sites.

back-reaction of a coupled matter model. In particular, for the case of the vertex model
considered here, the ice rule forbids certain link-flip update moves and thus changes the
distribution Py, (¢) of co-ordination numbers. The vertex configurations forbidden by the
ice rule effectively carry infinite energy, such that they stay excluded even in the infinite-
temperature limit8 — 0. Thus, in contrast to, e.g., an Ising model a full decoupling of
graph and matter variables for high temperatures does not occur here duestdrdpc
instead of energetic nature of the matter-graph back reaction.

From our numerical simulations we find that on the scale of the whole distribution
Pn,(g) no changes as a function of the inverse simulation tempergtwan be distin-
guished and the distribution looks identical to that of pure pladagraphg49]. However,

Py, (g) can be determined to high precision, and concentrating on a single point of the dis-
tribution, e.g.g = 2, a clear variation with the inverse temperatgrean be resolved, cf.

Fig. 7. Also, in terms of the quoted statistical errors, which are of the order of fd) the
measurements af, = Py, (2), the pure graph result ah = 0.296 36532) for N, = 2048

[49] is very far away from the whole of the shown variation of thenodel case. We find

a peak ofz, aroundp ~ 0.7 with only rather small variations with the size of the consid-
ered graph. A similar peak of the fractidty, (3) of threefaces for different spin models
coupled to dynamicatiangulationshas been observed before, see [G].

Since a pronounced back-reaction of the matter variables onto the underlying graphs is
only expected at criticality, we interpret the location of the observed pealk(@f) as a
pseudo-critical poing,, which should scale to the asymptotic critical coupljfig= In 2.

As for the thermal scaling analysis of Secti®r, the precise location of the maxima can

be determined from the simulation data via reweighting. This has been done for the data
from simulations of graphs of sizes betwedh = 256 andN, = 4096 sites with time
series of lengths between>810° and 4x 10° measurements. We find only very small
changes of this peak position on variation of the size of the graphs, such that within the
present statistical errog;,, can be considered constant. Thus, we do not perform a finite-
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size scaling fit to the data of the peak locations, but instead quote the result from the largest
considered lattice as an estimate for the asymptotic critical coupling, namely,

B, = 0.689454), (16)

resulting from the simulations fa¥, = 4096. This is in nice agreement with the expected
value of 8, = In2 ~ 0.693 and almost two orders of magnitude more precise than the
results found above from the scaling of the polarisability peak locations.

4.2. The string susceptibility exponent

In the grand-canonical ensemble of the dynamical polygonifications model the string
susceptibility exponeny; governs the leading singularity of the partition function for
spherical graphs vi& (1) ~ (1 — no)?~ " [2], whereu denotes the chemical potential
accounting for the cost of the insertion of a new vertex. Thus, a direct measurement of
ys requires computationally demanding simulations with a varying number of polygons
or graph vertices. Additionally, since a shift f due to the presence of some matter
variables can only be expected at criticality, a numerical setup for the detection of such
a change needs to tune two coupling constants, namelyd 3, to criticality. Due to the
combination of these two problems a reliable estimatiop dfom grand-canonical Monte
Carlo simulations has proved difficult, see, e.g., R&3).

It could be shown, however, that the string susceptibility exponent is related to the
“baby-universe” structure of the dynamical polygonificati¢@4]. This observation can
be turned into a method for the determinatiomnypffrom simulations at a fixed number
of polygons or graph vertices (canonical ensemf@i&). The basic building blocks of this
“baby-universe” structure are taken as so-called “minimal-neck baby universes” (minBUs),
which we define as subgraphs which typically contain a “macroscopic” number of vertices,
but are connected to the main graph body by only four links for the case of dynamical
guadrangulations. A simple decomposition argument of the graphs into “baby universes”
yields the following scaling relation for the distributiémy,(B)) of volumesB contained
in minBUs of the ensemble of graphs of si¥g [61],

(nny(B)) ~ N3 [B(N2 — B)]* 2, (17)

whereB > 1 andN> — B > 1 is assumed. Also, it can be shown that the same relation
should hold for the case @f < 1 conformal matter coupled to the polygonifications or dual
graphs withy, then denoting the corresponding dressed string susceptibility expgédént
For the limiting case& = 1, on the other hand, it is argued in REf4] that the distribution

of minBUs should acquire logarithmic corrections and look like,

(nny(B)) ~ N2 [B(N2 — B)]" "*[In BIn(N2 — B)]", (18)

with « = —2. An estimatei y,(p) for the volume distribution of minBUs can be easily
found numerically from a decomposition of the graphs into “baby universes”. When the
minBU surgery algorithm (cf. Ref$27,49) is applied, such an estimate can even be pro-
duced as a simple by-product of the updating scheme. Then, an estimatedan be
found from a fit of the conjectured functional foih7) or (18)to the estimated distribution
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iiny()y [61]. In order to honour the constraingss> 1 andN> — B >> 1 of Eqs.(17) and (18)
one has to introduce cut-off8min and Bmax, such that only data witBmin < B < Bmax
are included in the fit. Here, the choice of the lower cut#ff, is found to be much more
important for the outcome of the fit than the choiceBafax. We use the following recipe
for the determination of the cut-offs: as a rule of thumb, we chd@gg = N2/8, which
has turned out to be a good initial guess for most situations. Btk fixed, the lower
cut-off Bmin is steadily increased fromBin &= 0, monitoring the effect of those increases
on the resulting fit parameters, especially the estimated string susceptibility expgonent
Finally, with the resulting value aBm, fixed, a second adaption 8faxis attempted, usu-
ally changingBmax by factors of two or one half. Additionally, the quality-of-fit parameter
Q is utilised as an indicator of whether neglected corrections to scaling are important for
the considered window of minBU volumé. As far as corrections to the leading scal-
ing behaviour are concerned, it is speculated in Ff] that a good effective description
of the leading correction term results from the substitutdn—2 — BYs—2[1+ D, /B].
Hence, the actual fits were performed to the functional form

D
INiin,(B) = Ay, + (s — 2)IN[B(N2 — B)] + BV-V , (19)

for C < 1, respectively to the form

INfin,(B) = Ay, + (vs — 2)IN[B(N2 — B)] +«In[In BIn(N2 — B)] + l;”‘ . (20)

for the limiting case ofC = 1. Here, the dependency on the total volunig has been
condensed into the constasy, . Note that both of these fits are linear and the number of
data points is of the order of $@or the lattice sizes we have considered, such that a fit with
four independent parameters is not unrealistic. In(26) we keepk as a free parameter
since the value = —2 is only a conjecture and, additionally, further corrections to scaling
can be covered in an effective way by lettingary.

4.2.1. Results for pure¢® graphs

Matrix model calculations for pure, planar dynamical triangulations yield the exact re-
sult y, = —1/2, cf. Ref.[2]. As a gauge for the method and as a check for the expected
universality ofy, with respect to the change from triangulations to quadrangulations, we
apply the described technique first to the case of gifreandom graphs. We adapt the
lower and upper cut-off8min and Bmax iteratively as described above, taking into account
that the usual error estimates of least-squares fifd @fto the data could be mislead-
ing due to the apparent correlations of the points gf(B) for different sizesB of the
minBUs, which generically lead to an underestimation of variances. We refrain from an
additional extrapolation of the resulting estimateyofowardsBmin — oo suggested by
the authors of Ref61] since we do not see a proper justification for a specific extrapola-
tion ansatz and in general find extrapolations of noisy (and here also strongly correlated)
data questionable.

Statistically reliable error estimates farare found by jackknifing over the whole fitting
procedure: first the upper and lower cut-offdirare determined as described using the full
estimateny,(B). Then, of the order of ten jackknife blocks are built from the time series
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Table 4

Parameters of fits of19) to the simulation data for the distributiof, (B) of minBUs for pure #* random
graphs. The small values of the quality-of-fit parame®efor the two largest graph sizes are a side effect of the
cross-correlations iﬁNz(B)

N2 Bmin Bmax Ay Vs Dy, (0]

1024 60 128 186(49) —0.47440) —2.9(30) 0.79
2048 70 256 2(B4(14) —0.495(10) —-3.8(12 0.56
4096 70 512 2230(90) —0.491563) —3.78(74) 0.05
8192 100 1024 285372 —0.497747) —4.80(87) 0.04

the estimate: , (B) is based on and fits with the same constant cut-offs are performed for
each block to yield jackknife-block estimatesjafand the other fit parameterfable 4
summarises the final results for pupé graphs of sizesV, = 1024 up toN, = 8192,
taking about 18 x N>, minBUs into account for each graph size. Obviously, finite-size
effects are relatively weak here, and we quote as final result the valu€sfer 8192,

ys = —0.497747), which is perfectly compatible with, = —1/2.

4.2.2. Results for th& model case

For the case of th&" model coupled to the* graphs, we expect a variation of the
string susceptibility exponent with the inverse temperatugeof the F model. Since the
whole high-temperature phase is critical with central charge 1, in the thermodynamic
limit y, should vanish for al < 8. =In2, whereas in the non-critical ordered phase the
exponent should stick to the pure quantum gravity valug e —1/2. To get an overview
of the temperature dependence)gfwe measured the distributioiw,(B) of minBUs
over an inverse temperature range & & g < 1.4 for graphs of sizeV, = 2048 and
performed fits of the functional forr(il9) to the data to extracgt; (thus first neglecting
the possibility of additional logarithmic corrections indicated in E2f)). The resulting
estimates fol, presented irrig. 8 show a plateau value of ~ —0.25 within the critical
phaseg < In2 and a slow drop down tp, ~ —0.5 at 8 = 1.4 in the low-temperature
phase. Note that the error bars displayeHBim 8are those resulting from the fit procedure
itself and are thus not representing the full statistical variation due to the above mentioned
cross-correlations between the values 9§ (B). For comparison the correct error bars as
obtained from a more elaborate jackknife analysis are shown for three sefeutddes,
which are discussed in more detail below. As will be shown there, the facttlimtound
to be still considerably smaller than zero in the high-temperature phase is due to a finite-
size effect. We do not employ the corrected(i0) at this point, which is found to be
unstable for the small graph size considered here.

More precise estimates fog are found from a FSS study of three series of simulations,
one at the critical poing. = In 2, one in the critical high-temperature phasg at 0.2 and
one deep in the ordered phasgat 1.4. For the latter case, the exponential slowing down
of the combined link-flip and surgery dynamics of the graphs reported in Raf219]
limited the maximum accessible graph sizé\to= 16 384, while for the simulations at the
critical point and in the high-temperature phase graphs with upte- 65536 sites were
considered. AB = 1.4, this maximal size is anyway sufficient since we find no finite-size
drift in the estimate fory, with increasing graph sizes, all results being compatible with
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Fig. 8. Estimates of the string susceptibility expongntrom fits of (19) to the measured distribution of minBUs

for graphs of sizeV, = 2048 coupled to thé&” model. The displayed error bars do not represent the full statistical
error. The true amount of statistical fluctuations is indicated by the three data points with larger error bars at
couplingsg = 0.2, 8 =In2, andB = 1.4, where the errors have been evaluated by a full jackknife analysis. Note
that the displayed exponent estimates in the high-temperature phasféeatveexponents since there are large
finite-size corrections (see text).

Table 5
Parameters of fits of the for(20) to the distributioni , (B) of minBUs for¢* random graphs coupled to tife
model atB = 8. =1In2

N2 Bmin Bmax Ay, Vs K Dy

16384 100 2048 23(15) 0.05(13) —1.97(89) —10.9(69)
32768 110 4096 208(93) 0.01370) —1.80(50) —12.6(47)
65536 120 4096 2B(14) —0.05(12) —1.27(82) —6.9(71)

the conjectured value gf, = —1/2. Thus, as our final estimate fér= 1.4 we report the
value found forN2> = 16 384,y, = —0.478(17). For the quoted statistical error estimates
the jackknifing procedure described above for pure dynangitajraphs was used, thus
taking full account of the present fluctuations.

At the critical pointg8. = In2 fits of the form(19) without logarithmic corrections
show considerable finite-size effects, with slowly increasing with the graph size. For
the largest graph size considera®,= 65536, the thus found estimate= —0.207517)
is still far away from the expected resyit= 0. Taking the logarithmic corrections into ac-
count, however, these results can be considerably improved, with the numerical estimates
for y, now being fully consistent with the theoretical prediction. The parameters of fits of
the corresponding functional for(20) are collected infable 5 Including this correction,
no further finite-size dependence of the estimatis visible. The occurring values for the
“correction exponentk are not too far away from and indeed statistically compatible with
the conjectured value of = —2. Since for the case d¥, = 65536 only a much shorter
time series than for the smaller graph sizes was recorded, we present as our final estimate
of the critical value ofy, the result atv, = 32 768,y; = 0.013(70).
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Finally, in the high-temperature phaseft 0.2 the simulation results behave very
similar to the critical point case. When applying fits of the fof18) without logarithmic
corrections, considerable finite-size effects are found, and the approach of the resulting
exponent estimateg, to the expected value gf; = 0 is very slow. On the other hand,
the estimates resulting from fits of the for(20) to the data are compatible with = 0
for the larger of the considered graph sizes. Nar= 32768 we findy; = —0.041(73),

k = —1.38(47), QO = 0.05 with cut-offs Bmin = 100 andBmnax = 2048. To complete the
picture, it should be mentioned that the functional fai20) doesnot fit the data in the
low-temperature phase gt= 1.4 well and does not give estimates)gfcompatible with

ys = 0, in agreement with theoretical expectations.

4.3. The Hausdorff dimension

The internal Hausdorff dimensiaf), of the dynamical polygonifications is one of its
most striking features. Apart from the physical implications, its large value causes a quite
inconvenient obstacle for the numerical analysis of the model, namely, the comparable
smallness of the effective linear extent of the graphs at a given total vaNyras com-
pared to flat lattices. As matter variables are coupled to the dynamical graphs, the strong
coupling between graph and matter variables at criticality could lead to a change of the frac-
tal dimension of the lattices. In a phenomenological scaling picture, such a strong coupling
of matter and geometry should set in as soon as the correlation length of the matter system
becomes comparable to the intrinsic length scale of the graphs or polygonifications. For
conformal minimal matter, there has been quite some debate about;h&tvould depend
on the central charg€ of the coupled matter system, see, e.g., Rf6,58,59,65-67]

For C = 0 the resulid;, = 4 is exac{68]. Furthermore, the branched polymer mofs],
describing theC — oo limit [13], yieldsd, = 2 (see, e.g., Ref69]). For the intermediate
region 0< C < 1 two differing conjectures have been madedprnamely,[70]

V25— C+/49—C c-1
_2 —

dy = 2(1++/2)~4.83, 21
M B+ JI-C ( ) 1)
and[71]
24 N
dy ! (22)

V1-CH1-C++/25-0C)
All numerical investigations up to now, on the other hand, are consistent with a constant
dp =4 for 0< C < 1[26,59,66,72] Naturally, the limiting cas& = 1 considered here
is of special interest for the investigation of the transition to the branched polymer regime
C > 1. Numerically, it has proved exceptionally difficult to extract the Hausdorff dimen-
sions from the statistics of the practically accessible graph $2&83,74] Only more
recently, the development and application of suitable FSS techniques allowed for a more
successful and precise determinatiop{58,59,65]

4.3.1. Scaling and the two-point function
The fractal structure of the polygonifications is encoded in their geometrical two-point
function. Here, different definitions are possible. While in E®). a definition in terms



338 M. Weigel, W. Janke / Nuclear Physics B 719 [FS] (2005) 312—-346

of the vertices of the graphs has been used, here, instead, the number of vertices of the
guadrangulation is counted. Thus, we define the geometrical two-point fur(éﬁf;(r)

as the average number of vertices of the polygonifications at a distainom a marked
vertex, where “distance” denotes the unique minimal number of links one has to traverse to
connect both vertices. Since the intrinsic length of the model scalyé/g’g by definition

of the internal Hausdorff dimensiaf),, from the usual FSS arguments one can make the
following scaling ansatz (see, e.g., R@b]),

GY2(r) ~ NS F(r/Ny/™), (23)

ie., G]lvf(r) is a generalised homogeneous function and one can define a scaling function

F(x) of the single scaling variable = r/Nzl/d" and a critical exponent. Due to the

obvious constrainN, =), Gjlvf(r), the exponent is not independent, but given lay=
1-—1/dy. It turns out that for practical purposes the scaling variable has shifiedto
yield reliable results, see, e.g., Rdts8,67,75] The necessity of such a shift can be most
easily seen by a phenomenological scaling discussion of the mean extent defined by
1 N 1/d
(i = 5~ > rGiir) ~ FoNy ™, (24)

-
with Fp =), F(r). On general grounds, one expects the presence of analytical scaling
corrections,

vy pooa b
1/d;, 1/dy 2/dy
N2 NZ N2

(25)

Combining the terms proportional tqﬂlzl/d" on both sides, the mean extent is found to be

(r+a)n, ~ FoNzl/d” + O(Nz_l/d"). Thus, to incorporate first-order corrections to scaling,

the ansatZ23)is replaced by

GY2(r) ~ NS F[[(r +a)/Ny'"], (26)

i.e., the scaling variable is now defined tobe- (r + a)/Nzl/dh.

4.3.2. Scaling of the maxima
The two-point functionGjlvf(r) exhibits a peak at intermediate distances and declines
exponentially ag- — oo, cf. Fig. 10below. From the scaling ansa26) one infers the

following leading scaling behaviour of the position and height of the maxima,

rmax-+a = AN,
G2 (rmax) = A, N3 Y 4+ B,. @27)

Since the location and height of these maxima can be determined numerically from sim-
ulation data, these relations can be used to estimate the intrinsic Hausdorff diménsion

A technical difficulty is given by the fact that can only take on integer values for the
discrete graphs considered. This problem is circumvented by a smoothing out of the vicin-
ity of the maximum by a fit of a low-order polynomial @jlvf(r) around its maximum.
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For practical purposes, we find a fourth-order polynomial sufficient for this fit. Reliable
error estimates are found by jackknifing over this whole fitting procedure, where the indi-
vidual statistical errors of the data points included in the fits are taken to be equal. Thus,
one arrives at estimates for the peak locatigps and heightﬂllvf(rmax) as a function of

the graph sizeV,, to which then the functional forms of E(R7) are fitted. The effect of
neglected FSS corrections is accounted for by successively dropping data points from the
small-N; side. For simulations of purg* random graphs, in this way we find the value of

dy, to steadily increase on omitting more and more points. For the rakage 4096 up to

N> = 32768 we thus arrive at the estimatgs= 3.803(28), 0 = 0.22 from the scaling of

the peak locations andl, = 3.814(63), Q = 0.44 from the peak heights. Both estimates
are still noticeably away from the asymptotic valdigs= 4, owing to the neglect of higher-
order correction termgb5]. We note that introducing the shift parametesiready largely
improved the estimates, since fixiag= 0 we arrive atd, = 3.431320) from the peak
locations. Further improvement is gained from the inclusion of the next-order correction
term for the scaling of the peak locations,

rmax+a = ANy + BN, "/, (28)
which yields an estimate af, = 3.964(42), Q = 0.24 for the rang&V, =512 ...,32768,
in perfect agreement wit, = 4.

For randomp* graphs coupled to th& model, we find a small dependence of the root
mean square extent on the inverse temperatuethe coupledF model and also a slight
shift of (r2)1/2 as compared to the case of pyre random graphs, cFig. 9. Thus, one
might expect the Hausdorff dimensidp to be temperature dependent, too. We performed
simulations for three inverse temperatures, namiely0.2, 8 = In2 andg = 1.4, covering
the cases of interest. The results farfrom fits of the functional forn{27) to the data are
found to steadily increase on omitting more and more points from the svaadide. In
agreement with the case of pugd graphs, the final estimates fdj, are found to be
significantly smaller thaw), = 4 for all three inverse temperatures due to the presence of
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Fig. 9. Root mean square extet)/2 of regularg? random graphs wittivo = 2048 sites coupled to the
model. The horizontal line indicates the root mean square extent owum]dom graphs of the same size.
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Table 6
Parameters of fits of the for(28) to the peak locations of the two-point functions of the random graphodel.
The maximum graph size waé = 65536 for = 0.2 andg =In2 andN, = 32768 for = 1.4

B N2 min Ay By a dp 0

0.2 2048 234(43) 9.2(39) 5.5(21) 4.13(20) 0.86
In2 2048 196(39) 5.6(43) 3.7(20) 3.93(21) 0.11
1.4 1024 218(49) 6.0(37) 4.4(22) 4.07(26) 0.44

higher-order corrections to scaling. For the peak heights, this analysis yields the estimates
dp, = 3.446(68) for B =0.2,d;, = 3.426(92) for 8 =In2 andd;, = 3.94(23) for g = 1.4,

where the rather different result f6r= 1.4 again indicates the presence of competing local
minima in they ? distribution. The found higher-order scaling corrections are resolved by
using the fit ansat@8) for the peak locations. Here, we do not find a significant sensitivity

of the parameter estimates on the cut®#fmin and for all three inverse temperatures the
resulting values fotl;, are in agreement with the pure gravity valje= 4, cf. the fit data
collected inTable 6

4.3.3. Scaling of the mean extent

As an alternative to the scaling of the maxima of the two-point function, one can also
consider the behaviour ofieanproperties of the distributio(illvl2 (r), especially the scaling
of the mean exter{R4). Taking the next sub-leading analytic correction term into account,
we make the scaling ansatz

(r+a)n, = Ay Ny 4 By Ny (29)

We again consider the case of puté graphs first. When fixings,y = 0 and adapting
the lower cut-off No min, the resulting values of;, are significantly too small in terms
of the statistical errors with an obvious tendency to increase as more and more of the
points from the smallV, side are omitted. On the other hand, including the correction
term of Eq.(29) largely reduces the dependency on the cutAdffnin. FOr N2 min = 256
we findd, = 3.90(15), Q = 0.01, in nice agreement withi, = 4. Here, the fits become
very unstable as less points are included; this explains the use of the ¢t = 256,
although the quality-of-fit is rather poor.

The authors of Ref[58] have proposed a different and less conventional method to
extracta andd;, from data of the mean extent, which they claim to be especially well
suited for obtaining high-precision results. They consider the combin&ion, (d,) =

(r+ a)NZNz_l/d’“, and evaluate it for a series of simulations for different graph sies
Then, for a giveru and for each paitN5, NJ) they defined,’ (a) such thatRa’Né @) =

gl
Ra‘Né (d;), e,

InNj —1In N{
IN({r)y; +a) = In({r) ; +a)°

d (@) = (30)
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By a binning technique, an error estimated;;j) is evaluated and the estimaté,é(a) are
averaged over all pair§Vs, N3) of volumes d, (a) = s dy’ (a)/N, whereN denotes

the number of pairSNé, N-z’). Then, the optimal choiceopt of the shift is found by min-
imising
[d} (@) = dp(@)]?

Xz(a) = Z th—] (31)
i<j o [dh ()]
being accompanied by an optimal estimé};e;aopt). The authors of Refl58] suggest to
estimate the statistical error of this final estimate by considering the variatien &f) in
an interval ofa aroundaep: defined byx2(a) < min[1, 2x?(aop]. We implemented this
procedure to compare with the results of the fits to @§) with B, = 0 for the case of
pure¢* graphs. We find thad hocassumption for the estimation of the errors(@fd},)
not adequate. Instead, we apply a second-order jackknifing technique (cf4BRfto
be able to give error estimates fd};’ (a) as well as the final estimaie, dj,) which are
found to be largely differing from those resulting from the rufa) < min[1, 2 (acpo],
ranging from four times smaller to ten times larger error estimates. The estimaigs of
itself are found to be indeed slightly increased as compared to the fit method (which yielded
estimates clearly smaller thaf) = 4). This, however, can be traced back to the fact that
the individual estimated;,’ (a) all receive the same weight in the averafjgéa) above,
irrespective of their precision, giving an extra weight to the results for larger graphs, which
cannot be justified on statistical grounds. If, instead, we use a variance-weighted average

Dicj 4/ (a)/o?(d}] (@)]
Yo, 1/ody (@)

the resulting estimates faf;, anda are statistically equivalent to those found from the

fits to (29). For a cut-offN2 min = 2048, for instance, we find, = 3.97(12) compared to

dyp = 3.99(12) from a simple fit of the forn(29) with B, = 0. Thus, we do not find any

special benefits of this computationally rather demanding method as compared to a plain

fit to (29) with By =0 and hence do not present further detailed results for this method.
For the case of th& model coupled to the* random graphs we proceeded as before,

again using simulation data f@gr= 0.2, 8 =In2 andB = 1.4. The results from fits of the

mean extentr) y, to the form(29) with B,y = 0 show very much the same behaviour as

the results from the scaling of the maxima of the two-point function, with estimatgés of

clearly belowd;, = 4 and slowly increasing as more and more points from the small-

side are omitted from the fits. The outcomes of the method of [B8f.described above,

with the averag¢32) and they2(a) rule replaced by a jackknife error estimate, are again

very close to the fit results. Including the correction term(28), i.e., relaxing the con-

straintB ) = 0, on the other hand, yields estimates consistent &tk 4 for § = 0.2 and

B = 1.4, however with rather large statistical errors, cf. the parameters collectatlia 7

Note that, as mentioned before, the resultssfer 1.4 are in general less precise than those

for the other two inverse temperatures, which is due to the exponential slowing down of

dn(a) = (32)



342 M. Weigel, W. Janke / Nuclear Physics B 719 [FS] (2005) 312—-346

Table 7
Parameters of fits of the forif9) including the correction term to the mean extent of dynamitf’agraphs
coupled to theF model at different inverse temperatuggs

B N2.min A Byr) a dn 0
0.2 512 258(48) 11.4(33) 7.0(22) 4.08(21) 0.10
In2 512 137(22) 0.4(29) 1.1(12 3.4514) 0.41
1.4 512 26(10) 9.1(58 6.2(42) 4.15(47) 0.29
0.8 | |
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Fig. 10. Scaling collapse of the two-point functioG%’l2 (r) of ¢* graphs coupled to th& model atg = 0.2,
re-scaled according to E(R6) with d;, = 3.57 anda = 1.60.

the combined link-flip and surgery dynamics in the low-temperature phase, ci2REf.
The fit for 8 = In 2 settles down at a completely different minimum of ftedistribution,
yielding an almost unchangelj compared to the outcome of the corresponding fit with-
out correction term. This underlines the fact that the complexity of the chosen fit is at least
at the verge of being too high for the available data. Nevertheless, combining the data for
dy, from the presented methods and including the comparison to the pure gravity case, we
find no reason to assume that differs fromd;, = 4 for the case of thé&" model coupled
to ¢* random graphs. At any rate, the valugs~ 4.83 andd;, = co resulting from the
analytical conjectures E21) and(22) for C = 1, respectively are clearly incompatible
with the results found here.

Finally, we note that the parametersindd;, determined from the fits discussed above
lead to a nice scaling collapse of the two-point functidﬁ(r) when re-scaled according
to the scaling ansatz of E(26). Fig. 10shows this collapse of distributions for the case
of g =0.2 and the choice of parameters found from a fit to the f¢28) with By =0,
i.e.,d, =3.57(12) anda = 1.60(74). The visible deviations around the peaks of the distri-
butions indicate the presence of higher-order corrections not incorporated into the scaling
ansatz26).
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5. Conclusions

The six-vertexr” model represents an example of the limiting case of a critical theory at
the “barrier” of central charg€ = 1, where the Liouville approach to Euclidean quantum
gravity in two dimensions breaks dowh2] and the ensemble of planar random graphs
coupled to such matter is at the verge of a presumable collapse towards a phase of min-
imally connected, tree-like surfaces termed “branched polynj&&j’ At the same time,
the family of ice-type vertex models of statistical mechanics includes as sub-classes a va-
riety of well-known lattice spin models and combinatorial counting problems and hence
the analysis of its coupling to two-dimensional Euclidean quantum gravity is that of a pro-
totype model of statistical mechanics subject to annealed, correlated connectivity disorder
from random graphs (see also Rg%6]).

For studying the effect of a coupled six-vertéx model, we generalised the well-
established methods of simulating dynamical triangulations to the case of planar quadran-
gulations and the dual “fat»* random graphs; the details of this simulational machinery
will be presented in a forthcoming publicati¢a7]. We have analysed the critical and
off-critical behaviour of this model using a series of extensive Monte Carlo simulations
and subsequent finite-size and thermal scaling analyses. On the square lattice, this model
undergoes an infinite-order phase transition of the Kosterlitz—Thouless type to an anti-
ferroelectric phase of staggered order. Expecting similar ordering behaviour to occur for
the model on a random quadrangulation, we generalised the corresponding staggered po-
larisation (the order parameter) to the random graph case by a duality transformation of the
vertex model.

The scaling analysis of the simulation data is hampered by the presence of extraordinar-
ily strong corrections, which can be traced back to the combined effect of the comparable
smallness of the effective linear extents of the considered (two-dimensional) lattices due
to their large fractal dimension close to four and the presence of logarithmic corrections
generically expected for@ = 1 critical point. Additionally, the form of the critical singu-
larities for a Kosterlitz—Thouless phase transition severely limits the effectivity of the usual
finite-size scaling techniques. General symmetry considerations imply th@tthe crit-
ical point of the random-graph model should occur at the couping: In2, which is
quite remarkably identical to the critical coupling of the square-lattice model. Addition-
ally, this is in agreement with a matrix model treatment of the sy$ieh20] Due to the
aforementioned strength of scaling corrections, a precise determination of the critical cou-
pling from the scaling of the polarisation alone is found to be hard. A comparison of the
peak positions re-scaled according to the mean linear extents of the lattices between the
random graph and square-lattice moddR3], however, shows that the finite-size scaling
approaches of both models are indeed very similar, but with larger correction amplitudes
for the random graph model. Subsequently, however, a precise and consistent estimate of
the transition point could be extracted from the scaling of the co-ordination number dis-
tribution of the graphs. A cursory comparison of the scaling behaviour of the model for
different ensembles regarding the inclusion of singular contributions in the graphs reveals
that corrections to scalingcreaseas more and more singular contributions are included.
This contrasts with the findings for pure gravity and Potts models coupled to the polygoni-
fications mode[49,56] As far as the critical exponents related to the order parameter are
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concerned, a finite-size scaling analysis of the spontaneous polarisation and the polaris-
ability at the asymptotic critical coupling yields critical exponents in good agreement with
the predictions from the KPZ/DDK formula. An attemptiétrmalscaling analysis of the
polarisability around its peak remains inconclusive due to the extraordinary magnitude of
finite-size corrections. As a curiosity, we report the finding of a critical internal energy of
the model,U (8;) = 1/3, which is identical between the square-lattice and random graph
cases.

Several aspects of the back-reaction of the matter variables onto the properties of
the * random graphs are analysed as a function of temperature. The distribution of
co-ordination numbers of the quadrangulations can be determined very accurately. The
fraction of quadrangulation sites of co-ordination number two is found to be peaked around
the asymptotic critical coupling, thus defining a pseudo-critical point which determines the
infinite-volume critical coupling very accurately. A scaling analysis of the distribution of
“baby universes” of the graphs in the spirit of Refi81,64] allows to extract the string
susceptibility exponents of the model. It is found to coincide with the vaue 0 ex-
pected for aC = 1 theory throughout the critical high-temperature phase. The pure-gravity
valuey; = —1/2 is found in the non-critical low-temperature phase. Exploiting finite-size
scaling relations, we finally analyse the geometrical two-point function of the graphs and
extract the fractal Hausdorff dimension. We find it to be consistent with the pure gravity
value d, = 4 for all temperatures of the coupled vertex model. The analogous analyses
for the case of pure* random graphs convincingly demonstrate the universality of these
graph-related critical exponents with respect to a change from triangulations to quadran-
gulations.

In summary, despite of the presence of scaling corrections of extraordinary size, a care-
ful analysis of our simulation data allows for an independent confirmation of the location
of the critical point and the behaviour of the string susceptibility exponent predicted by the
matrix model treatmerjiL 7,20] In addition, the behaviour and critical exponents related to
the order parameter, energy-related observables, as well as further geometrical properties
such as the Hausdorff dimension can be reliably determined. An even richer behaviour can
be expected for the 8-vertex model coupled to dynamical quadrangulations, such that its
analysis by a series of simulations similar to the one presented here would be a promising
future enterprise.
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