
model
udied us-
viding
e where
me, the
stribu-
ed and
Nuclear Physics B 719 [FS] (2005) 275–311

Monte Carlo study of phase transitions
in the bond-diluted 3D 4-state Potts model

Christophe Chatelaina, Bertrand Berchea, Wolfhard Jankeb,
Pierre-Emmanuel Berchec

a Laboratoire de Physique des Matériaux, UMR CNRS 7556, Université Henri Poincaré,
Nancy 1, F-54506 Vandœuvre les Nancy Cedex, France

b Institut für Theoretische Physik, Universität Leipzig, D-04109 Leipzig, Germany
c Groupe de Physique des Matériaux, UMR CNRS 6634, Université de Rouen,

F-76801 Saint Etienne du Rouvray Cedex, France

Received 7 January 2005; received in revised form 14 April 2005; accepted 3 May 2005

Available online 26 May 2005

Abstract
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1. Introduction

The influence of disorder is of great interest in physics, since pure systems are rar
ture. It has been known for more than thirty years that the universality class associate
a continuous phase transition can be changed by the presence of quenched impur[1].
According to the Harris criterion[2], uncorrelated randomness coupled to the energy
sity can only affect the critical behaviour of a system if the critical exponentα describing
the divergence of the specific heat in the pure system is positive. This has been esta
in the case of theq-state Potts model in dimensionD = 2 for example. For 2< q � 4,
the pure system undergoes a continuous transition with a positive critical exponentα. As
predicted by the Harris criterion, new universality classes have been observed bo
turbatively and numerically[3] (for a review, see Ref.[4]). The special caseq = 2, the
Ising model, is particularly interesting since in the pure system, the specific heat di
a logarithmic divergence (α = 0) making the Harris criterion inconclusive[5]. Based on
perturbative and numerical studies, it is now generally believed that the critical beha
remains unchanged apart from logarithmic corrections when introducing randomn
the system[6]. In three dimensions (3D), the disordered Ising model was subject of r
extensive studies (see, e.g., Ref.[7] for an exhaustive list of references).

Less attention has been paid to first-order phase transitions. It is known tha
domness coupled to the energy density softens any temperature-driven first-orde
transition[8]. Moreover, it has been rigorously proved[9] that in dimensionD � 2 an
infinitesimal amount of disorder is sufficient toturn any first-order transition into a con
tinuous one. The first observation of such a change of the order of the transition was
in the 2D 8-state Potts model[10] where a new universality class was identified[11,12]. For
higher dimensions, the first-order nature of the transition may persist up to a finite a
of disorder. A tricritical point at finite disorder between two regimes of respectively
order and continuous transitions is expected[11,13]. The existence of such a tricritic
point for the site-diluted 3D 3-state Potts model could only be suspected by simul
because the pure model already undergoes a very weak first-order phase transition[14]. On
the other hand, the first-order phase transition of the pure 5-state Potts model is very
and would hence make it rather difficult to study the role of disorder. As a consequ
we have turned our attention to the 3D 4-state Potts model and have shown that ther
a second-order transition regime for this model[15]. Our choice of bond dilution is moti
vated by the fact that for this model only high-temperature expansions results are av
up to now which to our knowledge cannot be done for site-dilution or are at least
difficult [16].

In Section2 we define the model and the observables, and remind the reader o
these quantities behave at first- and second-order phase transitions. Section3 is devoted
to the numerical procedure, first the description of and then the comparison betwe
algorithms which are used at low and high impurity concentrations, followed by a
discussion of the qualitative properties of the disorder average. A short character
of the nature of the phase transition—at a qualitative level—is reported in Section4. The
motivation of this section is to first convince ourselves that the transition does indee
dergo a qualitative change when the strength of disorder is varied. Then, we describ

the phase diagram is obtained and concentrate on the first-order regime in Section5. In
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Section6, we discuss the critical behaviour in the second-order induced regime. Fi
the main features of the paper are summarised in Section7.

2. Model and observables

We study the disordered 4-state Potts model on a cubic latticeΛ. The model is defined
by the Hamiltonian

(1)H[σ,J ] = −
∑
(i,j)

Jij δσi ,σj
,

where the spinsσi , located on the verticesi of the latticeΛ, are allowed to take one of th
q = 4 valuesσi = 1, . . . , q. The boundaries are chosen periodic in the three space d
tions. The notationH[σ,J ] specifies that the Hamiltonian is defined for any configura
of spins and of couplings. The sum runs over the couples of nearest-neighbourin
and the exchange couplingsJij are independent quenched, random variables, distrib
according to the normalised binary distribution (J > 0)

(2)P [Jij ] =
∏
(i,j)

[
pδ(Jij − J ) + (1− p)δ(Jij )

]
.

The pure system (atp = 1) undergoes a strong first-order phase transition with a cor
tion lengthξ ∼ 3 lattice units at the inverse transition temperatureβcJ = 0.62863(2) [17]
(we keep the conventional notationβ = (kBT )−1, since in the context there is no risk
confusion with the critical exponent of the magnetisation). As far as we know, no mo
formation has been made available on this model. We do not expect any phase trans
bond concentrationp smaller than the percolation thresholdpc = 0.2488126(5) [18] since
the absence of a percolating cluster makes the appearance of long-range order imp

In the following, we are thus dealing with quenched dilution. The averaging prescr
is such that the physical quantities of interest in the diluted system (say an observaQ)
are obtained afteraveraging first a given sample[J ] over the Boltzmann distribution
〈Q[J ]〉β , and then over the random distribution of the couplingsdenoted by〈Q[J ]〉β , since
there is no thermal relaxation of the degrees of freedom associated to quenched dis

– The thermodynamic average of an observableQ at inverse temperatureβ and for a
given disorder realisation[J ] is denoted

(3)〈Q[J ]〉β = (
Z[J ](β)

)−1
∫

D[σ ]Q[σ,J ]e−βH[σ,J ] ≈ 1

NMCS

∑
MCS

Q[J ](β),

whereNMCS is the number of Monte Carlo iterations (Monte Carlo steps) during
“production” part after the system has been thermalised. Here we use the foll
notation:Q[σ,J ] is the value ofQ for a given spin configuration[σ ] and a given disor
der realisation[J ], Q[J ](β) is a value obtained by Monte Carlo simulation at inve
temperatureβ. Time to time, we will have to specify a particular disorder realisat
say #n, and the value of the observableQ for this very sample will be denoted a

Q#n(β).
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(4)〈Q[J ]〉β =
∫

D[J ] 〈Q[J ]〉βP [J ] ≈ 1

N{J }
∑
[J ]

〈Q[J ]〉β =
∫

dQQPβ(Q),

whereN{J } is the number of independent samples. The probabilityPβ(Q) is deter-
mined empirically from the discrete set of values of〈Q[J ]〉β . This disorder average
simply denoted asQ(β) for short, i.e.,Q(β) ≡ 〈Q[J ]〉β .

For a specific disorder realisation[J ], the magnetisation per spinm[σ,J ] = L−DM[σ,J ]
of the spin configuration[σ ] is defined from the fraction of spins,ρ[σ,J ], that are in the
majority orientation,

ρ[σ,J ] = max
σ0

[
L−D

∑
i∈Λ

δσi,σ0

]
,

(5)m[σ,J ] = qρ[σ,J ] − 1

q − 1
.

The order parameter of the diluted system is thus denotedm(β) = 〈m[J ]〉β . Thermal and
disorder moments〈mn

[J ]〉β and 〈m[J ]〉nβ , respectively, are also quantities of interest. T
magnetic susceptibilityχ[J ](β) and the specific heatC[J ](β) of a sample are defined usin
the fluctuation–dissipation theorem, i.e.,

(6)χ[J ](β) = βLD
[〈
m2[J ]

〉
β

− 〈m[J ]〉2
β

]
,

(7)C[J ](β)/kB = β2LD
[〈
e2[J ]

〉
β

− 〈e[J ]〉2
β

]
,

where

(8)e[σ,J ] = L−DE[σ,J ] = L−D
∑
(i,j)

Jij δσi ,σj

is the negative energy density sinceE[σ,J ] = −H[σ,J ]. Binder cumulants[19] take their
usual definition, for example

(9)Um[J ](β) = 1− 〈m4[J ]〉β
3〈m2[J ]〉2

β

.

Derivatives with respect to the exchange coupling are computed through

(10)L−D d

dβ
ln

〈
mn

[J ]
〉
β

= 〈mn
[J ]e[J ]〉β

〈mn
[J ]〉β

− 〈e[J ]〉β.

All these quantities are then averaged over disorder, yieldingχ(β), C(β), Um(β), and
∂β ln〈mn

[J ]〉β .
At a second-order transition, these quantities are expected to exhibit singulariti

scribed in terms of power laws from the deviation to the critical point. These power
define the critical exponents. In the following, the properties will be investigated u

finite-size scaling analyses, i.e., according to the following size dependence at the critical
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(11)m
(
βc,L

−1) ∼ BcL
−β/ν,

(12)χ
(
βc,L

−1) ∼ ΓcL
γ/ν,

(13)C
(
βc,L

−1) ∼ AcL
α/ν,

(14)L−D
d ln〈mn

[J ]〉β
dβ

∣∣∣∣
βc

∼ Nn,cL
1/ν.

At a first-order transition, the order parameter has a discontinuity at the transition
perature, suggesting thatβ/ν formally becomes zero. Heuristic (and for pureq-state Potts
models with sufficiently largeq even rigorous) arguments also suggest thatγ /ν, α/ν, and
1/ν should then coincide with the space dimensionD [20], restoring the ordinary exten
sivity of the system in Eqs.(12)–(14).

When the transition temperature is not known exactly, the problem of the value of t
verse critical temperatureβc in the expressions above can be a source of further difficu
Usually, one follows a flow of finite-size estimates given by the location of the maxim
of a diverging quantity (for example the susceptibility,χmax(L

−1) ≡ maxβ [χ(β,L−1)]).
From the scaling assumption, supposed to apply at the random fixed point,

(15)χ
(
β,L−1) = Lγ/νfχ

(
L1/ν t

)
,

with t = |βc − β|, the inverse temperatureβmax where the maximum ofχ occurs,

(16)χ
(
βmax,L

−1) = χmax
(
L−1),

scales according to

(17)βmax∼ βc + aL−1/ν.

Notice that the scaling functionfχ(x) takes its maximum valuefχ(a) = χmaxL
−γ /ν at

x = a.
At that very temperature where the finite-size susceptibility has its maximum, we

have similar power law expressions,

(18)m
(
βmax,L

−1) ∼ fm(a)L−β/ν,

(19)χ
(
βmax,L

−1) ∼ fχ(a)Lγ/ν,

(20)C
(
βmax,L

−1) ∼ fC(a)Lα/ν,

(21)L−D
d ln〈mn

[J ]〉β
dβ

∣∣∣∣
βmax

∼ fm,n(a)L1/ν .

These equations are similar to Eqs.(11)–(14)where the amplitudes take the valuesBc =
fm(0), Γc = fχ(0), Ac = fC(0), andNc = fm,n(0).

From this discussion, we are led to give a more precise definition ofχmax(L
−1). One

reasonable alternative definition of this quantity could be the disorder average
individual maximacorresponding to the different samples. Each of them has its own

ceptibility curve,χ[J ](β,L−1) which displays a maximumχ[J ],max(L

−1) at a given value
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of the inverse temperatureβmax
[J ] (L−1). These valuesχ[J ],max(L

−1) may then be average
but this is in general different from the definition that we gave for the average ove
domness in Eq.(4). Here we keep as a physical quantity the expectation valueχ(β,L−1)

which is then plotted againstβ, andβmax(L
−1) in Eq. (16) is the inverse temperatur

where the disorder averaged susceptibility displays its maximum which is thus iden
with χmax(L

−1). In the following, this is the physical content that we understand w
discussingχmax(L

−1).

3. Numerical procedures

We conducted a long-term and extensive study of the bond-diluted 3D 4-state
model, and it is the purpose of this paper to report results for moderately large s
sizes in the first-order regime, and an extended analysis based on really large-scale
tations in the second-order regime. Cross-over effects between different regimes a
discussed. The simulations were performed on the significant scale of several years.
organisation was thus required, and we proceeded as follows: as an output of the r
the data were stored in a binary format. For each sample (with a given disorder real
and lattice size) and each simulated temperature, the time series of the energy an
netisation were stored. A code was written in order to extract from all the available
the histogram reweightings of thermodynamic quantities of interest, entering as an
the chosen dilution, lattice size, temperature,. . . . It is also possible to adjust the number
thermalisation iterations, the length of the production runs where the thermodynam
erages are performed, the number of samples for the disorder average, or to pick a
disorder realisation, and so on. In some sense,the time series correspond to the simulati
of the system, and we can then measure physical quantities on it, and virtually produce a
many results as we want. Of course, this isnot what we intend to do in the following, w
rather shall try to concentrate only on the most important results.

3.1. Choice of update algorithms

We studied this system by really large-scale Monte Carlo simulations. A prelim
study, needed in order to schedule such large-scale Monte Carlo simulations, show
the transitions at small and high concentrations of non-vanishing bondsp were (as ex-
pected) qualitatively different:

– Close to the pure system,p � 1, the susceptibility peaks develop as the size incre
to become quite sharp (seeFig. 1), in agreement with what is expected at a first-or
phase transition[21].

– At larger dilutions (small values ofp) on the other hand, the peaks are softened
are compatible, at least at first sight, with a second-order phase transition (seeFig. 1).

As will be demonstrated below, the tricritical dilution dividing these two regime
roughly located atpTCP ≈ 0.68–0.84. In the regime of randomness-induced continu

transitions (or weak first-order transitions, that is at low non-zero bond concentrationp),



C. Chatelain et al. / Nuclear Physics B 719 [FS] (2005) 275–311 281

al

of the
ich the
pdate

osen
n tem-

rtheless
elling
st-order
had to
Fig. 1. Evolution of the susceptibility as the size of the system increases (up toL = 10) in the two different
regimes: pure systemp = 1.00 on the left plot and high dilutionp = 0.48 on the right plot.

the Swendsen–Wang cluster algorithm[22] was preferred in order to reduce the critic
slowing-down. As already pointed out by Ballesteros et al.[14,23], a typical spin config-
uration at low bond concentration is composed of disconnected clusters for most
disorder realisations. It is thus safer to use the Swendsen–Wang algorithm, for wh
whole lattice is swept at each Monte Carlo iteration, instead of a single-cluster Wolff u
procedure. In the strong first-order regime (high bond concentrationp), the multi-bondic
algorithm[24], a multi-canonical version of the Swendsen–Wang algorithm, was ch
in order to enhance tunnellings between the phases in coexistence at the transitio
perature. The Swendsen–Wang algorithm, being less time-consuming, was neve
preferred even in this regime of long thermal relaxation as long as at least ten tunn
events between the ordered and disordered phases could be observed. As the fir
regime is approached, more and more sweeps are needed to fulfil this condition. We
use up to

– 200 000 Monte Carlo steps (MCS) atp = 0.76 forL = 16 for example,

while in the second-order regime for much larger systems, we needed

– 100 000 MCS atp = 0.68 forL = 50,
– 30 000 MCS atp = 0.56 forL = 96, and

– 15 000 MCS atp = 0.44 forL = 128.
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This is the essential reason for the size limitation in the first-order regime.1 A compari-
son between the two algorithms is illustrated in the case of the pure system for a mo
size (L = 6) in Fig. 2(a). The insert shows a zoom of the peak in the susceptibility
reveals as expected that in this first-order regime, the multi-bondic algorithm prov
better description of the maximum which, since being higher is probably closer t
truth.

In both regimes, the procedure of histogram reweighting enables us to extra
thermodynamic quantities to neighbouring temperatures. It leads to a better estim
the transition temperature and of the maximum of the susceptibility, refining the fi
size estimate at each new size considered, since the maximum is progressively r
(Fig. 2(b) and (c)). The reweighting has to be done for each sample, then the ave
obtained as in Eq.(4). For a particular sample, the probability to measure at a given
verse temperatureβ a microstate[σ ] with total magnetisationM[σ,J ] = M and energy
E[σ,J ] = E, is Pβ(M,E) = (Z[J ](β))−1Ω(M,E)eβE whereΩ(M,E) is the degenerac
of the macrostate. Note that we definedE as minus the energy in order to deal with
positive quantity. We thus get at a different inverse temperatureβ ′

(22)Pβ ′(M,E) = (
Z[J ](β)/Z[J ](β ′)

)
Pβ(M,E)e(β ′−β)E,

where the prefactor(Z[J ](β)/Z[J ](β ′)) only depends on the two temperatures. For
quantityQ depending only onM[σ,J ] andE[σ,J ] the thermal average at the new pointβ ′
hence follows from

(23)〈Q[J ]〉β ′ =
∑

M,E Q(M,E)Pβ(M,E)e(β ′−β)E∑
M,E Pβ(M,E)e(β ′−β)E

.

It is well known that the quality of the reweighting strongly depends on the numb
Monte Carlo iterations, the larger this number the better the sampling of the configu
space and thus of the tails ofPβ . Here we have to face up to the disorder average
and a compromise between a good disorder statistics and a large temperature scal
reweighting of individual samples has to be found, but we are mainly interested in the
neighbourhood of the susceptibility maximum, i.e., in a small temperature window.

3.2. Equilibration of the samples and thermal averages

Before any measurement, each sample has to be in thermal equilibrium at the s
tion temperature. Starting from an arbitrary initial configuration of spins, during the in
steps of the simulation process, the system explores configurations which are still s
correlated to the starting configuration. The typical time scale over which this “me
effect” takes place is measured by the autocorrelation time. The integrated energy a
relation timeτ e (one can define more generally an autocorrelation time for any qua

1 A rough estimate of the time needed by a single simulation is given byL3 × (#MCS) × 1 µs for one sample

and one temperature.
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Fig. 2. (a) Comparison between canonical Swendsen–Wang and multi-bondic algorithms for a pure
(p = 1.0) of sizeL = 6 (histogram reweightings produced from simulations at inverse temperaturesβJ = 0.605
to 0.655 are superimposed). The insert shows a zoom of the peak location. (b) and (c) Histogram rew
of the average susceptibilityχ(β) in a disordered system withp = 0.56 at different sizesL = 25 and 64. The
maximum is progressively obtained after a few iterations (the next simulation is performed at the temper

the maximum of the histogram reweighting of the current simulation).
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(24)τ e
[J ](β) = 1

2σ 2
e

I∑
i=0

1

NMCS − I

NMCS−I∑
j=1

(
e
j
[J ]e

j+i
[J ] − 〈e[J ]〉2

β

)
,

whereσ 2
e = 〈e2[J ]〉β − 〈e[J ]〉2

β is the variance,ej
[J ] is the value of the energy density at ite

ationj for the realisation[J ], andI is a cutoff (as defined, e.g., by Sokal[25]) introduced
in order to avoid to run a double sum up toNMCS, which would render the estimates ve
noisy.

It is worth giving a definition of the errors as computed in this work. There are
different contributions. Assuming the different realisations of disorder as completely
pendent, one has an error due to randomness on any physical quantityQ, defined according
to

(25)∆rdmQ =
(

Q2 − Q2

N{J }
)1/2

.

To the thermal average for each sample is also attached an error which depends
autocorrelation timeτQ, such that the total error on a physical quantity is here defined

(26)∆totQ =
(

∆2
rdmQ + 1

N{J }
2τQ σ 2

Q

NMCS

)1/2

.

For each disorder realisation, the initial configurations have to be discarded an
usually considers that after 20 times the autocorrelation timeτ e, thermal equilibrium is
reached. The measurement process can then start and the thermal average of the
quantities is considered, in the case of a single sample, as satisfying when measu
were done during typically 102 × τ e. For a quantityQ, a satisfactory relative error of th
order of

(27)
∆thermQ√

σ 2
Q

=
√

2τQ

N{J } × NMCS
� 10−2

indeed requires typicallyN{J } × NMCS � 104τQ. Since we also need a large number
disorder realisations in order to minimise∆2

rdmQ, typically N{J } � 102–104, each sample

requires a “production” process duringNMCS � (100–102)τQ. In this paper, we choos
to work at the upper limit withNMCS > 102τ e (since there is a single dynamics in t
algorithm, the time scale is usually measured through the energy autocorrelation tim
N{J } > 103.

Examples of times series of the magnetisation are shown inFig. 3 for particular sam-
ples (those which contribute the most to the average susceptibility) at the three
sizes studied2 at dilutionsp = 0.44, 0.56, and 0.64 in the second-order regime. The sim
lation temperature is extremely close to the transition temperature and tunnelling be
ordered and disordered phases guarantees a reliable thermal average.
2 The main illustrations are shown in the worst cases, i.e., for the largest systems at each dilution.
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Fig. 3. Monte Carlo data of the magnetisation for the disorder realisation that gave the largest value ofχ[J ](βmax)

for p = 0.44 at lattice sizeL = 128,p = 0.56 (L = 96) andp = 0.68 (L = 50).

Another test of thermal equilibration is given by the influence of the number of M
which are taken into account in the evaluation of thermal averages. An example is
in Fig. 4where the histogram reweightings of the susceptibility, as obtained with diff
MCS #’s, are shown for a typical sample (the first sample, #1, is in fact supposed
typical). Although quite different far from the simulation temperature (which is clos
the maximum) the different curves are in a satisfying agreement at the inverse temp
βmax of the maximum of the average susceptibility, shown by a vertical dashed line
criterion #MCS� 250× τ e is safely satisfied for the larger number of iterations.3

3.3. Properties of disorder averages

For different samples, corresponding to distinct disorder realisations, the suscep
χ[J ](β) at thermal equilibrium may have very different values (seeFig. 5 where the run-
ning average over the samples is also shown and remains stable after a few hund
realisations).

We paid attention to average the data over a sufficiently large number of dis
realisations (typically 2000 to 5000) to ensure reliable estimates of non-self-aver
quantities[26]. Averaging over a too small number of random configurations leads to
cal (i.e., most probable) values instead of average ones. Indeed, as can be seen inFig. 6, the

3 We also note that something happened between 5000 and 10 000 MCS, since the shape ofχ#1 at high
temperatures becomes unphysical. This is an illustration of the finite window of confidence of the his

reweighting procedure.
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Fig. 4. Susceptibility for sample #1 forp = 0.44 andL = 128. The different curves show the result of histogr
reweighting of simulations close to the maximum location after 5000, 10 000, 12 000, and 15 000 MCS.
safely consider that the value at the temperature of the maximum of the average susceptibility (vertica
line) is reliable after 15 000 MCS.

Fig. 5. Different values ofχ[J ](βmax) (over the samples) of susceptibility atp = 0.56, L = 96 (the simulation
is performed at the temperature of the maximum of the average susceptibility). The running average
samples is shown by the solid line.

probability distribution ofχ[J ] (plotted at the inverse temperatureβmax where the averag
susceptibility is maximum) presents a long tail of rare events with large values of th

ceptibility. These samples have a large contribution to the average, shifted far from the most
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Fig. 6. Probability distribution of the susceptibilityχ[J ](βmax) for the bond concentrationsp = 0.44, 0.56, and
0.68 for the largest lattice size in each case. The full curve represents the integrated distribution. At each
a full vertical line shows the location of the average susceptibility, a dashed line shows the median and
line shows the average over the events which are smaller than the median.

probable value. The larger the value ofp, the longer the tail. Scanning the regime close
the first-order transition thus requires large numbers of samples to explore efficien
configuration space, so the simulations were limited toL = 50 atp = 0.68 while we made
the calculation up toL = 128 atp = 0.44. In the example ofFig. 3, the thermodynamic
quantities have been averaged over 3500 disorder realisations forp = 0.44 at lattice size
L = 128, 2048 forp = 0.56,L = 96, and 5000 disorder realisations forp = 0.68,L = 50.

Self-averaging properties are quantified through the normalised squared width,
ample in the case of the susceptibility,Rχ = σ 2

χ (L)/χ 2, whereσ 2
χ = χ2 − χ 2. For a

self-averaging quantity, sayQ, the probability distribution, albeit not truly Gaussian, m
be considered so in first approximation close to the peak, andPβ(Q) � (2πσ 2

Q)−1/2 ×
e−(Q−〈Q〉)2/2σ2

Q evolves towards a sharp peak in the thermodynamic limit,Pβ(Q) →L→∞
δ(Q−〈Q〉). The probability of the average event〈Q〉 goes to 1 and the normalised squa
width evolves towards zero in the thermodynamic limit while it keeps a finite value
non-self-averaging quantity, as shown in the case of the susceptibility inFig. 7. The ob-
servation of a longer tail in the probability distribution of theχ values whenp increases
is expressed inFig. 7 by the fact thatχ becomes less and less self-averaging whep

increases.
In contradistinction to the magnetic susceptibility, the energy seems to be weakl
averaging in the range of lattice sizes that we studied as seen inFig. 8. The associated
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Fig. 7. Normalised squared width of the susceptibility,Rχ , plotted against the inverse lattice size for the th
dilutionsp = 0.44, 0.56, and 0.68. The solid lines are polynomial fits used as guides for the eyes. Note thχ is
apparently less and less self-averaging asp increases.

Fig. 8. Normalised squared width of the energy,RE plotted on a log–log scale against the inverse lattice size
the three dilutionsp = 0.44, 0.56, and 0.68. Power-law fits have been performed and corresponding exp
printed by the curve. The insert presents the same data plotted on a linear scale.

exponent depends on the concentration of bondsp. This concentration dependence may
effective and due to corrections generated by other fixed points (see below).

In Table 1, the influence of the number of MCS is shown for typical samples, but

for the average susceptibility. Although the variations for a given sample and from sample
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Table 1
Evolution of the susceptibility with the number of Monte Carlo sweeps per spin for different samples,χ[J ] and
the average value (with 2048 samples) atp = 0.56, L = 96. The data are given at the maximum location of
average susceptibility,βmax. The last column gives the number of independent measurements per sample

NMCS χ#1 χ#2 χ#3 χ#4 χ#5 χmax τe(βmax) MEAS/sample

5000 994 404 611 682 1803 617(8) 95.1 � 50
10000 952 390 698 614 1574 634(8) 107.4 � 90
15000 1010 356 680 819 1398 638(8) 111.7 � 130
20000 939 351 689 851 1320 641(7) 114.0 � 175
25000 911 327 675 848 1308 643(8) 115.3 � 200
30000 934 327 733 837 1297 643(8) 116.9 � 250

to sample are important, the average seems stable with our choice of number of ite
(the largest), and also the autocorrelation time (for the average) is stable.

In Fig. 6, a full vertical line points out the location of the average susceptibilityχmax.
In order to give a comparison, the median valueχmed, defined as the value ofχ[J ] where
the integrated probability takes the value 50%, is shown as the dashed line. The m
differs from the average, the more asymmetric is the probability distribution. This is
pronounced whenp increases. We also notice that the maximum of the probability d
bution (the typical samples) corresponds to smaller susceptibilities. For a given num
disorder realisations, this peak is better described than the tail at larger susceptibili
we also define (shown as dotted lines) an average over the samples smaller than the
susceptibility, that we denoteχ50%,

(28)χ50%= 2

χmed∫
0

χ[J ]Pβ(χ[J ]) dχ[J ],
χmed∫
0

Pβ(χ[J ]) dχ[J ] = 1

2
,

where the factor 2 normalises the truncated distribution. In the particular case of the
bility distributions observed here, i.e., with a sharp initial increase, a peak located at
events and a long tail at large values of the variable,4 this definition empirically gives a sen
sitive measure of the typical or most probable value. We shall refer to this quantity
typical behaviour will be concerned.

4. Qualitative description of the transition

Before performing a quantitative analysis of the transition, it is interesting to stu
some detail why the probability distributions have significantly different shapes whp

varies, and which type of sample can be considered as a typical one, or which one
sponds to a rare event with quite a large or very small susceptibility. Here we shall
on the second-order regime and in particular onp = 0.44 for the largest simulated siz
L = 128, for which the probability distribution ofχ[J ] atβmax can be inspected inFig. 6.

Each sample displays its own maximum and due to the fluctuations over disord
inverse temperatureβ[J ],max where it occurs varies from sample to sample. InTable 2, we
4 This shape of probability distribution is very different than in the case of the 3D dilute Ising model[27].
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Table 2
Relative variations of the peak height�χ[J ]/χmax and peak location�β[J ],max/βmax for a few samples, chose
among the rare and the typical samples atp = 0.44,L = 128. For reference, the values of the average are give
βmaxJ = 1.4820,χmax= 1450. The asterisks (*) mark those samples that are discussed in detail inFigs. 12–14

Type Sample # χ[J ],max β[J ],maxJ �χ[J ]/χmax (%) �β[J ],max/βmax (%)

Rare 0035 (*) 5253 1.4823 262.3 0.02
(largeχ) 0438 3862 1.4822 166.3 0.013

1135 3825 1.4821 163.8 0.007
3302 4314 1.4823 197.5 0.02

Typical 0006 1550 1.4831 6.9 0.07
(around peak) 0008 (*) 2792 1.4810 92.5 −0.07

0021 1473 1.4819 1.6 −0.007
0039 2345 1.4817 61.7 −0.02

Rare 0373 946 1.4852 −34.7 0.22
(smallχ) 1492 (*) 286 1.4830 −80.3 0.07

1967 1063 1.4847 −26.7 0.2
2294 769 1.4853 −46.9 0.2

Fig. 9. Examples ofrare events forp = 0.44 andL = 128, with large values ofχ[J ]. The thick lines show the
averages over all realisations.

quote for a few rare and typical samples the values ofχ[J ],max andβ[J ],max, the maximum
of the sample susceptibility and the corresponding inverse temperature (see alsoFigs. 9

to 11). The relative variations of these numbers with respect to their average values at
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Fig. 10. Examples oftypical events for the same parameters as inFig. 9. The thick lines show the averages ov
all realisations.

βmax: �χ[J ]/χmax = [χ[J ],max− χmax]/χmax, and�β[J ]/βmax = [β[J ],max− βmax]/βmax

are also collected inTable 2. It turns out that rare events with large susceptibility do a
display a very small shift of the temperatureβ[J ],max with respect to the average. Oth
events have a smaller susceptibility atβmax both because their maximumχ[J ],max is smaller
but also because of a larger shift of the inverse temperatureβ[J ],max where this maximum
occurs. A few examples ofrare events corresponding tolarge values ofχ[J ] are shown
in Fig. 9. Rareevents corresponding tosmallvalues ofχ[J ] are presented inFig. 11. They
have a very small contribution to the phase transition, so in the following, we will
only to events with large values ofχ[J ] when mentioning rare events. InFig. 10, the same
is done fortypical events, i.e., those for which the values ofχ[J ] are in the peak of the
distribution. The scales of both axis are the same in the three figures in order to fa
the comparison.

In Figs. 12–14, we can follow the fluctuations of the magnetisation during the therm
sation process (after equilibration) for three different samples. Configuration #35 (Fig. 12)
corresponds to a rare event, with the definition given above, while the sample #8 (Fig. 13)
is a typical one. The last sample, #1492 (Fig. 14), is an example of a realisation of disord
which leads to a very small susceptibility peak. These figures also present the mag

tion and energy probability distributions. The rare event (Fig. 12) displays a double-peak
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Fig. 11. Examples ofrare events for the same parameters as inFig. 9 with χ[J ] at the foot of the probability
distribution. The thick lines show the averages over all realisations.

structure in the probability distributions (only a shoulder is visible inPβmax(e[J ])), pre-
sumably a remnant of the first-order type transition of the pure system. In the av
behaviour, it seems that at small values ofp, these types of samples are “lost” in the lar
majority of typical samples which have a “second-order type” of probability distribu
This observation is corroborated by similar “signals” inFigs. 9 to 11concerning the shap
of the susceptibility (narrow peak for rare events with large susceptibilities and broad
others), of the order parameter (sharp increase withβ at the transition for rare events, a
smoother variation for the typical samples), or of the Binder cumulant (deep well a
transition in the case of rare events and less pronounced wells for typical ones).

We may thus argue that a possible mechanism which keeps the pure model’s firs
character of the transition at larger values ofp is connected to the occurrence of a larg
proportion of samples with the “first-order type”, i.e., a very big susceptibility sign
βmax. In Fig. 15, the quite long tail of large susceptibilities in the susceptibility distri
tion confirms this assumption, forp = 0.84 (L = 20), i.e., closer to, or probably inside th
first-order regime. Also the double-peak structure of the energy distribution at this di
(seeFig. 16) is compatible with a first-order like transition for the average behaviou
course one would have to study the evolution of the energy barrier as the size inc

but this makes no sense for a specific disorder realisation for which the notion of thermo-
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Fig. 12. Time series of the magnetisation and the energy density and corresponding probability distribut
a rare event (#35) withlargeχ[J ] (p = 0.44,L = 128, simulation at inverse temperatureβJ = 1.48218).

dynamic limit is meaningless). The possible interpretation is that the rare events of
susceptibilities whenp becomes larger are more comparable to a system displaying a
order transition. This would explain that the susceptibility peak is narrower (and thus
coincide with the temperature of the maximum of the average only in very rare case

5. Phase diagram and strength of the transition

5.1. Transition line

We can now come back to the preliminary phases of this work. The transition te
ature was determined for 19 values of the bond concentration ranging fromp = 0.28 to
p = 1.00 (pure system). We defined an effective inverse transition temperatureβc(L,p) at
a given lattice sizeL as the location of the maximum of the average magnetic suscep
ity χ (seeFig. 17). Any diverging quantity could equally have been chosen but it tur
out that the specific heat was displaying larger statistical errors than the magnetic s
tibility. Moreover, the stability of the random fixed point implies a slowly varying spec
heat with a critical exponentα � 0.5

5 We expect a stable randomness fixed point at large enough dilutions, where the exponentα should be nega

tive hence the singular contribution to the specific heat would not be diverging.
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Fig. 13. Time series of the magnetisation and the energy density and corresponding probability distributio
typical event (#8) withχ[J ] in the vicinity of the most probable value (p = 0.44,L = 128, simulation at inverse
temperatureβJ = 1.48218).

For eachp andL, several Monte Carlo simulations were necessary to get a reaso
estimate ofβc(L,p). As mentioned before, histogram reweighting was used to refin
determination. The procedure was applied up to lattice sizesL = 16. The resulting phas
diagram for two different lattice sizes is plotted inFig. 18. The data appear to be in
remarkable accordance.

The numerical data presented inFig. 18are furthermore in agreement with the mea
field predictionTc(p) = pTc (p = 1) for large bond concentration, close to the pure sys
(p � 1). At smaller concentrationp, the topological properties of the bond configurat
become important and the mean-field prediction fails to reproduce the observed beh
The effective-medium approximation introduced in this context in the eighties by
ban[28] reproduces quite accurately the numerical data. Limiting the approximation
single bond, the following estimate for the inverse transition temperature is obtained

(29)βc(p) = J−1 ln

[
(1− pc)eβ

pure
c J − (1− p)

(p − pc)

]
,

whereβ
pure
c J = 0.62863(2) for the pure system. This expression is exact (as exact

might be with numerical factors introduced) in the limits of the pure system (p = 1) and

the percolation threshold (pc = 0.2488126(5)).
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Fig. 14. Time series of the magnetisation and the energy density and corresponding probability distribut
a rare event (#1492) with verysmallχ[J ], which looks similar to typical events (p = 0.44,L = 128, simulation
at inverse temperatureβJ = 1.48218).

Fig. 15. Probability distribution of the susceptibility for a system of sizeL = 20 atp = 0.84 andβJ = 0.74704,

in the seemingly first-order regime. The simulation was performed with the multi-bondic algorithm.
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Fig. 16. Probability distributionsP and P[J ] of the energye for the average behaviour and for a rare ev
(large susceptibility), respectively, atp = 0.84 (L = 13). The double-peak structure suggests a behaviour for
specific sample which is similar to the one observed at a first-order transition. The simulation is perfor
inverse temperatureβJ = 0.746356.

Fig. 17. Average susceptibility and its histogram reweighting for systems of sizes 103 and 163 for dilutions (from

left to right)p = 0.32, 0.40, 0.48, 0.56, 0.64, 0.72, 0.80, 0.88, and 0.96.
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Fig. 18. Transition temperatureskBTc(p)/J with respect to the bond concentrationp for two lattice sizesL = 10
andL = 16. Mean-field and effective-medium approximations are also indicated by the dashed and soli
respectively.

5.2. Order of the transition

Distinguishing a weak first-order phase transition from a continuous one is a ver
ficult task. The autocorrelation time of the energyτ e at the transition temperature ma
be useful, since it displays a behaviour which depends on the order of the tran
When using a canonical Monte Carlo simulation for the study of a first-order trans
the time-scale of the dynamics is dominated by the tunnelling events between t
dered and disordered phases in coexistence at the transition temperature. Such a tu
event implies the creation and the growth of an interface whose energy cost beha
β�F = 2σo.d.L

D−1 whereσo.d. is the reduced interface tension. As a consequence
autocorrelation time grows exponentially as

(30)τ e(L) ∼ e2σo.d.L
D−1

.

For a continuous phase transition, this interface tension vanishes and the autocor
time scales as a power-law of the lattice size,

(31)τ e(L) ∼ Lz,

wherez is the dynamical critical exponent.
The numerical estimates of the autocorrelation timeτ e are plotted inFig. 19 for sev-

eral dilutions. They show a growth of the autocorrelation time with the lattice size w
becomes dramatic as the bond concentration increases and a behaviour compati
a power law of the system size whenp decreases, as expected since the dilution sof
the transition and thus reduces the dynamical exponentz. Nevertheless, it is not possib
to distinguish precisely the two regimes on a plot of the autocorrelation time versu

lattice size. Here, we may locate approximately the boundary between the two regimes
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Fig. 19. Autocorrelation time of the energyτe with respect to the lattice size at the (pseudo-)transition tem
ature. The curves correspond to different bond concentrationsp (from bottomp = 0.28 to the topp = 1.00 in
steps of 0.04). The results shown here all follow from MC simulations using the Swendsen–Wang algorith

around—slightly abovep = 0.68. Indeed, the autocorrelation time atp = 0.68 is very well
fitted with a power-law for all lattice sizes smaller thanL = 30. Above, the data display
downward bending that can be explained by a correction to the power-law behavio
not by an exponential prefactor (the bending would be upward). On the other han
p = 0.84 it is not possible to find any set of three consecutive points that could be
by a power-law: the autocorrelation time clearly grows faster than a power-law. Usin
successive lattice sizesL1 andL2 > L1, we defined an effective dynamical exponent

(32)zeff(L1,L2) = ln τ e(L2) − ln τ e(L1)

lnL2 − lnL1

which is expected to reach a finite value for continuous transitions and to diverge fo
order ones. The data, plotted inFig. 20, again do not lead to any sound estimate of
location of the tricritical point. Nevertheless, the transition again definitely remains
tinuous up to the bond concentrationp = 0.68. For higher concentrations, the data sh
an increase of the dynamical exponent with lattice size, but it is not possible to sta
ambiguously whether they develop a divergence or not. We also notice that the nec
finite number of iterations leads to an underestimate ofτ e and thus ofz for bond con-
centrations close top = 1 at large lattice sizes (this is particularly clear inFig. 20for the
sizeL = 13–16). Multi-bondic simulations were thus needed in this case to improv
measurement of thermodynamic quantities whenp is close to 1.

Another approach is provided by the behaviour of the order–disorder interface te
Numerically, the interface tension can be estimated from the probability distribution

energyP(e). One has
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Fig. 20. Effective dynamical exponent (SW algorithm) with respect to the smaller lattice size at the tra
temperature. The curves correspond to different bond concentrationsp (from bottomp = 0.28 to the topp = 1.00
in steps of 0.04).

(33)
Pmin

Pmax
∝ e−β�F = e−2σo.d.L

D−1
.

Indeed, the free-energy barrier can be related to the ratio of the (equally high) proba
of the ordered and disordered phases (corresponding to the two peaks) and of the
phase regime involving two interfaces6 and which corresponds to the bottom of the gap
tween the two peaks. We started from the effective transition temperatures estimate
the maxima of the magnetic susceptibility. At this temperature, the statistical weight
ordered and disordered phases are comparable so the height of the peaks is very d
In order to define the interface tension, we reweighted the time series of the simulat
the (close) temperature for which the two peaks have equal heights. The order–diso
terface tension is plotted against the inverse of the lattice size at the transition temp
in the upper part ofFig. 21. It shows undoubtedly a vanishing of the interface tension
p = 0.56, and presumably forp = 0.76 (not shown here) also, being a clear indication
a disorder induced second-order transition. On the other hand, forp = 0.84 the interface
tension seems to converge towards a finite (but very small?) value in the thermody
limit, which can be taken as a signal for the persistence of the first-order nature
transition in the pure case atp = 1 down to this dilution.

As a consequence, we are led to the conclusion that the tricritical point is presu
located betweenp = 0.68 andp = 0.84, the upper bound corresponding to the observa
of an exponential growth of the autocorrelation time and the lower to a constant dyna
exponent and the vanishing of the latent heat (both values ofp are indicated in the previou

6 Due to the employed periodic boundary conditions only an even number of interfaces can occur for to

ical reasons.
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Fig. 21. Probability distribution of the energy at the temperature for which the two peaks have equal heigh
two plots correspond to two different bond concentrations:p = 0.56 on the left (SW algorithm, increasing siz
L = 25, 30, 35, 40, 50, 64, and 96) andp = 0.84 on the right (multi-bondic simulations, sizesL = 16, 20, and
25). The order–disorder interface tensionσo.d. = ln(Pmax/Pmin)/(2LD−1) is plotted againstL−1 in the upper
part of the figure.

Figs. 19 and 20). However, one cannot unambiguously prove by numerical simulation
finite systems that what we identified as a second-order phase transition is not a wea
order phase transition with a correlation length larger thanL = 128, or that the fast growt
of the autocorrelation time forp � 0.84 is not a cross-over to a power-law regime at lar
system sizes.

6. Critical behaviour

6.1. Leading behaviour and critical exponents

We now concentrate on the second-order regime only, i.e., onp � 0.68 where we per
formed an investigation of the universality class at the disorder fixed point. The c
exponents are computed using the finite-size scaling behaviour of the physical qua
(Eqs.(11)–(14)) at the effective inverse transition temperatureβc(L,p). In the usual renor
malisation group scheme for disordered systems, the renormalisation flow is subjec
influence of three fixed points describing respectively the pure system, the rando
tem and the percolation transition. The scaling behaviour is thus expected to displa

corrections resulting in a cross-over to a unique universal behaviour at large lattice sizes.
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Fig. 22. Evolution of the size-dependent (pseudo-)critical coupling with the inverse system size for re
small sizes on the left plots. The same on the right plot for the three main dilutions, where the data
anticipation fitted to a linear relationβmax(L,p) = βc(p) + aL−1/ν + · · · , where our estimate forν (≈ 0.75)
will be discussed later. The slope coefficient is slightly positive forp = 0.44, slightly negative forp = 0.68 and
virtually zero atp = 0.56, where the corrections-to-scaling (at least for this quantity) appear to be the sma

According to this scheme, the exponents which are measured are expected to be
ently) concentration dependent. In the previous sections (see, e.g.,Fig. 17), the corrections
to scaling for the transition temperature have been observed to be weaker for th
concentrationp = 0.56. This behaviour is illustrated, e.g., inFig. 22 where the cross
over effect reflects in the bending of the curvesβmax(L,p)J vs. L−1 for three dilutions
p = 0.32,p = 0.56, andp = 0.80. The curve atp = 0.56, on the other hand, is almostflat.
The corresponding data for the three main dilutions in the second-order regime,p = 0.44,
p = 0.56, andp = 0.68, are then plotted againstL−1/ν on the right part. Although th
value ofν is not yet known, we anticipate here the later result, using already the “t
determined-exponent”. Again, the curve atp = 0.56 has an almost vanishing slope.
a consequence, we decided to make further large-scale Monte Carlo simulations
concentrationp = 0.56 up to the lattice sizeL = 96. To monitor the effects of the com
peting fixed points, we also made additional large-scale simulations for the concent
p = 0.44 (towards the percolation transition) andp = 0.68 (towards the regime of firs
order transitions) up to the lattice sizesL = 128 andL = 50, respectively (size limitation
at these concentrations are linked to the discussion of Section3).

In Fig. 23, the finite-size scaling behaviour of the maximum susceptibility,χmax, the
magnetisation atβmax and the derivative of lnm with respect to the inverse temperatu
evaluated atβmax are plotted versus the system size on a log–log scale. These curves
give access to the exponentsγ /ν, β/ν, and 1/ν, respectively. The three main dilutions a
represented. One clearly observes a crossover between two regimes. For small lattic

the system is strongly influenced by the proximity of a perturbing fixed point while a dif-
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Fig. 23. Finite-size scaling behaviour of the susceptibility, the magnetisation and ofβL−D d lnm/dβ atβmax (the
quantities have been shifted in the vertical direction for the sake of clarity). The behaviour at small lattice
presumably governed by the percolation fixed point (shown as dashed lines and characterised by expon
γ /ν � 2.05 andβ/ν � 0.475). Above a crossover length scale a new (random) fixed point is reached (sho
the solid lines, with exponent ratiosγ /ν � 1.535, 1/ν � 1.34, andβ/ν � 0.73, discussed in detail below).

ferent, unique fixed point, is apparently reached at large sizes, as revealed by the
which are at first sight independent of the dilution when the linear extent of the l
reaches values of aboutL � 30. The most probable susceptibilityχ50% is shown inFig. 24
and can also lead to estimates forγ /ν. According to the discussion given in Section3, we
expect that the most probable susceptibility is better described than the average sus
ity, for which there exists a significant contribution of rare events, and these rare dis
realisations might be poorly scanned if a too small number of samples is considere
difficulty might be circumvented through the study of what we defined asχ50% in Eq.(28).
In the presence of multi-fractality, the universal behaviour ofχ50% should differ from that
of χ . Since such a peculiar behaviour does not occur in the case of a global quantit[26],
like χ , we expect compatible values ofγ /ν as deduced fromχ50% or χ . Observing the
data plotted inFig. 24, in fact, confirms our previous analysis. It seems thatχ50% is less
influenced by the crossover effects than the averageχmax. In order to support this state
ment, we will present the results of fits of the susceptibility in two different tables fo
two regimes and for the three main dilutions:

– At small lattice sizes, the behaviour ofχmax andmβmax is in all three cases compat
ble with the percolation exponents(γ /ν)perco� 2.05 and(β/ν)perco� 0.475 shown in
Fig. 23by the dashed lines. This seems to be true (particularly in the case of the s

tibility) over a wider range of sizes forp = 0.44 than forp = 0.56 orp = 0.68. This
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Fig. 24. Log–log plot of the average susceptibility (open symbols) and the typical susceptibility (filled sym
as defined in Eq.(28) by χ50% for the three principal dilutions studied, indicating that the asymptotic sca
regime sets in earlier for the latter quantity.

observation is compatible with a stronger influence of the percolation fixed point
p = 0.44, which is closer to the percolation threshold than the two other dilutions.
prisingly, the assumption of a percolation influence is absolutely not confirmed7 by the
behaviour at small sizes of the third quantity of interest,L−D(d lnm/dβ)βmax. Due to
the involved differentiation with respect to inverse temperature, the identification
percolation quantities becomes less obvious, but we do not have any explanat
this strange result. InTable 3, we try to point out theinfluence of the percolation fixe
point. This is achieved by power-law fits between a fixed minimum sizeLmin = 4 up
to an increasing maximum sizeLmax below the valueL = 30 which apparently mark
the modification in the behaviour of the physical quantities under interest. We fir
serve thatβ/ν starts from a value very close to the percolation value, and second
χ50% has always a lower exponent (i.e., more distinct from the percolation value

– At large sizes, for each quantity considered here, the curves corresponding to th
dilutions in Figs. 23 and 24evolve, after a crossover regime whose exact loca
depends on the value ofp, towards a presumably unique power-law behaviour wh
seems to remain stable then (solid lines inFig. 23). We thus believe that we hav
reached large enough sizes in order to get reliable estimates of therandom fixed poin
exponents. This is only a visual impression, since in fact the effective exponent
still subject to significant variations, especially for the extreme dilutionsp = 0.44 and
p = 0.68. Effective exponentsγ /ν, β/ν, and 1/ν may be defined from power-law
fits of χmax, mβmax, andL−D d lnm/dβ between an increasing minimum size,Lmin,

7 The expected percolation exponent would be 1/ν � 1.124 while the slope at small sizes is larger than in

random regime where it takes a value close to 1/ν � 1.35.
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Table 3
Exponents deduced from the finite-size scaling behaviour ofχmax andχ50% in the vicinity of the percolation
fixed point (small sizes). Recall the percolation value(γ /ν)perco� 2.05 for comparison

Lmin Lmax p = 0.44,γ /ν deduced from p = 0.56,γ /ν deduced from p = 0.68,γ /ν deduced from

χmax χ50% χmax χ50% χmax χ50%

4 8 2.015 1.902 2.098 1.916 2.211 1.91
4 13 1.984 1.866 2.034 1.818 2.132 1.72
4 20 1.954 1.833 1.973 1.748 2.051 1.57
4 30 1.924 1.808 1.913 1.691 1.974 1.50

Table 4
Exponents deduced from the finite-size scaling behaviour ofχmax andχ50% in the vicinity of the random fixed
point (large sizes). The largest size taken into account in the fits isLmax = 128 forp = 0.44, 96 forp = 0.56,
and 50 forp = 0.68

Lmin p = 0.44,γ /ν deduced from p = 0.56,γ /ν deduced from p = 0.68,γ /ν deduced from

χmax χ50% χmax χ50% χmax χ50%

20 1.724 1.672 1.571 1.579 1.541 1.4
25 1.711 1.664 1.543 1.587 1.479 1.4
30 1.706 1.669 1.518 1.596 1.438 1.5
35 – – 1.500 1.581 1.447 1.64
40 1.703 1.679 1.502 1.587 1.464 1.6
50 1.695 1.657 1.506 1.593
64 1.680 1.659

and a maximum one,Lmax. The valueLmax is kept to the maximum available valu
L = 128, 96, and 50 forp = 0.44, 0.56, and 0.68, respectively, and the results for
susceptibility are presented inTable 4. We see there thatχ50% is again better behave
(more stable) than the average susceptibility.

Since we are mainly interested in the randomness fixed point, we now concentr
fits at large system sizes. An exhaustive summary (i.e., for all three dilutions under
est) of the results of the fits performed at dilutionsp = 0.44, p = 0.56, andp = 0.68 is
presented inTable 5. The corresponding effective exponents are also plotted againstL−1

min
in Fig. 25. These results show that the data analysis is much more complicated th
previous preliminary determination of exponents inTable 4. Again, the crossover betwee
percolation and random fixed point behaviours is visible through the variation of effe
exponents and the data present large corrections-to-scaling.

A precise determination of the magnetic exponents is quite difficult. Indeed, a
be seen inFig. 25, the effective critical exponents(γ /ν)eff and(β/ν)eff do not converge
towardsp-independent limits whenLmin → Lmax. The cross-over effects on the therm
quantities are much smaller. Indeed, the effective critical exponentνeff is converging to a
roughlyp-independent limit whenLmin → Lmax. We can give the following estimates f
γ /ν and 1/ν:
(34)p = 0.44: (γ /ν)eff � 1.68(2), (1/ν)eff � 1.36(2),
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Table 5
Linear fits forχmax, mβmax, andL−D d lnm/dβ atβmax, leading to finite-size estimates of the combinations
critical exponentsγ /ν, β/ν and 1/ν. These results correspond to the three main dilutions, and they are ext
from the finite-size scaling behaviour of the quantities at the temperature where the maximum of the
susceptibility is found by histogram reweighting. The results for dilutionsp = 0.44 andp = 0.68 are less stabl
than forp = 0.56, reflecting the role of the crossover

p Lmin Lmax γ /ν Error β/ν Error 1/ν Error γ /ν + 2β/ν

0.44 30 128 1.706 0.006 0.544 0.005 1.395 0.006 2.794(1
– 40 – 1.703 0.008 0.552 0.007 1.381 0.008 2.807(22
– 50 – 1.695 0.010 0.540 0.009 1.358 0.010 2.775(28
– 64 – 1.680 0.016 0.534 0.014 1.357 0.016 2.748(44

0.56 30 96 1.518 0.011 0.588 0.010 1.389 0.011 2.694(3
– 35 – 1.500 0.014 0.592 0.012 1.362 0.013 2.684(38
– 40 – 1.502 0.016 0.608 0.015 1.353 0.016 2.718(46
– 50 – 1.506 0.026 0.645 0.024 1.330 0.025 2.796(74

0.68 25 50 1.479 0.021 0.343 0.015 1.505 0.021 2.165(5
– 30 – 1.438 0.031 0.344 0.022 1.453 0.030 2.126(75
– 35 – 1.447 0.047 0.342 0.033 1.437 0.046 2.13(11)
– 40 – 1.464 0.075 0.547 0.051 1.379 0.075 2.56(18)

Fig. 25. Effective critical exponentsγ /ν andβ/ν, as computed from a power-law fit betweenLmin andLmax,
with Lmax fixed to the maximum available valueL = 128, 96, and 50 forp = 0.44, 0.56, and 0.68, respectivel
They are plotted againstL−1

min. The thin solid line shows the percolation values and the shadow stripe corres
to our estimate for the random fixed point values. In the case of the dilutionp = 0.56, the value ofγ /ν + 2β/ν

is also shown.

(35)p = 0.56: (γ /ν)eff � 1.51(3), (1/ν)eff � 1.33(3),
(36)p = 0.68: (γ /ν)eff � 1.46(8), (1/ν)eff � 1.38(8),
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Fig. 26. Effective critical exponentsγ /ν, β/ν, and 1/ν for the dilutionp = 0.56 obtained from fits betweenLmin
andLmax = 96 and extrapolated toLmin → ∞. In this limit, the scaling relationγ /ν + 2β/ν = D is nicely
satisfied.

simply corresponding to the last line ofTable 5, i.e., to the largest studied value ofLmin, for
each dilution. The value ofβ/ν on the other hand is definitely not stable and more subje
the competing influence of fixed points. Forp = 0.44 for example, the estimate of(β/ν)eff

is relatively stable against variations ofLmin, with fitted values slightly above 0.5, close to
the expected value for the percolation transition (0.475). This is a quantitative indicatio
that the system is probably still subject to cross-over caused by the percolation fixed
In the case ofp = 0.68, the estimate of(β/ν)eff is very small, then suddenly increasi
for Lmin = 40. These remarks are consistent with the renormalisation scheme des
above. In order to help us to decide between the different effective values measure
three dilutions, we use the scaling relationγ /ν + 2β/ν = D = 3 which is almost satisfie
for the bond concentrationp = 0.56 only (shown inFig. 25) when taking into accoun
the lattice sizesL � 50. For the bond concentrationsp = 0.44 andp = 0.68, this scaling
relation is not satisfied for any of the accessible values. One is thus led to conclud
the critical regime has not yet been reached for these concentrations, in spite of our
to go up to very large sizes. Remember also that the corrections-to-scaling were fo
be the smallest atp = 0.56, so the asymptotic regime in neighbouring dilutions sho
be more difficult to reach.Fig. 25 thus suggests to rely only on the values measure
dilution p = 0.56,extrapolated toLmin → ∞, as shown inFig. 26, where a dashed strip
emphasises such an extrapolation of the effective exponents measured at the large
The values of(γ /ν)eff and(1/ν)eff are indeed stable in the regimeL � 35. We may thus
havereliable estimatesof the asymptotic values for these exponents, and areasonable
estimatefor β/ν, ratifying the scaling relation.

Using this extrapolation procedure, our final estimates of the critical exponents

disorder induced random fixed point of the three-dimensional bond-diluted 4-state Potts
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model are the following values:

(37)γ /ν = 1.535(30),

(38)β/ν = 0.732(24),

(39)1/ν = 1.339(25),

resulting from a linear extrapolation of the data points forLmin = 25, 30, 35, 40, 50, an
64 atp = 0.56. Note that since the data are correlated, we have kept the error of th
point.

6.2. Corrections to scaling

For the 3D disordered Ising model it is well known that the corrections-to-scaling
to the random fixed point are strong (with a corrections-to-scaling exponent arounω =
0.4). Let us assume here also the existence of an irrelevant scaling fieldg with scaling
dimensionyg = −ω < 0. The scaling expression for the susceptibility

(40)χ
(
L−1, β − βc, g

) = Lγ/νfχ

(
L|β − βc|ν,L−ωg

)
,

expanded atβc (on a finite system the susceptibility is always finite) around the fi
point valueg = 0, leads to the standard expressionΓcL

γ/ν[1 + bχL−ω + O(L−2ω)]. In
order to investigate this question for the 3D 4-state Potts model, we tried to fit the ph
quantities forp = 0.56 as

(41)χmax(L) = ΓcL
γ/ν

(
1+ bχL−ω

)
,

and similar expressions formβmax, in the rangeL � 25 where the leading term was alrea
fitted in the previous section, and the subleading correction is due to the first irre
scaling field.

Since four-parameter non-linear fits are not stable, we preferred linear fits whe
exponents are taken as fixed parameters but the amplitudes are free. InFig. 27, we show a
3D plot of the cumulated square deviation of the least-square linear fit,χ2, as a function of
γ /ν andω. There is a clear valley which confirms thatγ /ν is close to 1.5, but the valle
is so flat in theω-direction that there is no clear minimum to give a reliable estima
of the corrections-to-scaling exponent. The same procedure forβ/ν is illustrated in the
next figure (Fig. 28). Again, there is no way to get a compatible corrections-to-sca
exponent from the three fits, but the leading exponents are indeed close toβ/ν � 0.7 (and
1/ν � 1.35). Of course the minima ofχ2 do not exactly coincide with the data presen
in the table which should correspond toω → ∞.

7. Conclusion

We studied the three-dimensional bond-diluted 4-state Potts model by large-scale
Carlo simulations. The pure system undergoes a strong first-order phase transition.
merical estimates of the dynamical exponentz and of the interface tension give evidenc

for the existence of a disorder-induced tricritical point for bond dilutions betweenp = 0.68



308 C. Chatelain et al. / Nuclear Physics B 719 [FS] (2005) 275–311

gives the

to

sover
d
s

Fig. 27. Plot of theχ2 deduced from linear fits ofχmax(L) = ΓcL
γ/ν(1 + bχL−ω) in the range 25� L � 96

for p = 0.56. The exponents are treated as fixed parameters and the amplitudes are free. The base plane
ranges of variation of the exponents: 1.25� γ /ν � 1.75 and 0� ω � 5. The absolute minimum is atγ /ν = 1.49,
ω = 3.88, but the valley is extremely flat in theω-direction. A cutoff atχ2 = 50 has been introduced in order
improve clarity of the figure.

Fig. 28. Plot of theχ2 deduced from linear fits ofm (the exponent is thus negative) in the range 25� L � 96 for
p = 0.56. In the base plane, the range of variation of the exponents is−1 � −β/ν � −0.5 and 0� ω � 5, and
the minimum is atβ/ν = 0.85,ω = 0.135.

andp = 0.84 below which the transition is softened to second order. Very strong cros
corrections are observed up to lattice sizeL � 30–40. The regime of the random fixe
point is best observed for the bond concentrationp = 0.56. From the values of the ratio
of exponents measured at that concentration,
(42)γ /ν = 1.535(30),
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(43)β/ν = 0.732(24),

(44)1/ν = 1.339(25),

the following estimates of the critical exponents are derived:

(45)γ = 1.146(44),

(46)β = 0.547(28),

(47)ν = 0.747(14).

Let us mention that these exponents are in reasonably good agreement with rece
graph high-temperature expansions[16] of this model which giveγ = 1.00(3). The value
of ν is eventually safe with respect to the boundν � 2/D = 0.6666. . . of the stability
of the random fixed point. In the random fixed point regime, we are unable to e
from the numerical data any reliable correction-to-scaling exponent (linked to the po
appearance of irrelevant scaling fields), even though it is clear that such corrections
be ignored.

In some sense, the outcome of this time-consuming work is disappointing, sin
were not able to reach the asymptotic regime where exponents in the second-order
of the phase diagram become dilution-independent, since the corrections to scal
too strong, and since the tricritical point was not located with precision. We believe
this is due to the extreme difficulty of the problem and not to an unadapted app
Perhaps we were too ambitious, but we have the feeling that the final values giv
the critical exponents are reliable enough and should not be contradicted in the fut
similar studies.
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[1] D.E. Khmel’nitskĭı, Sov. Phys. JETP 41 (1974) 981.
[2] A.B. Harris, J. Phys. C 7 (1974) 1671.
[3] A.W.W. Ludwig, J.L. Cardy, Nucl. Phys. B 285 (1987) 687;

Vl.S. Dotsenko, M. Picco, P. Pujol, Nucl. Phys. B 455 (1995) 701;
J.L. Jacobsen, J.L. Cardy, Nucl. Phys. B 515 (1998) 701;

T. Olson, A.P. Young, Phys. Rev. B 60 (1999) 3428;



310 C. Chatelain et al. / Nuclear Physics B 719 [FS] (2005) 275–311

pore,

Phys.

r Sim-
ulgaria,

luwer,

Phys.

eWitt-
of the
hysics,
ours de
C. Chatelain, B. Berche, Nucl. Phys. B 572 (2000) 626;
C. Chatelain, B. Berche, L.N. Shchur, J. Phys. A 34 (2001) 9593.

[4] B. Berche, C. Chatelain, in: Y. Holovatch (Ed.), Order, Disorder and Criticality, World Scientific, Singa
2004, p. 147, cond-mat/0207421.

[5] Vik.S. Dotsenko, Vl.S. Dotsenko, Adv. Phys. 32 (1983) 129.
[6] B.N. Shalaev, Sov. Phys. Solid State 26 (1984) 1811;

R. Shankar, Phys. Rev. Lett. 58 (1987) 2466;
A.W.W. Ludwig, Nucl. Phys. B 285 (1987) 97;
A.W.W. Ludwig, Phys. Rev. Lett. 61 (1988) 2388;
R. Shankar, Phys. Rev. Lett. 61 (1988) 2390;
B.N. Shalaev, Phys. Rep. 237 (1994) 129;
A. Roder, J. Adler, W. Janke, Phys. Rev. Lett. 80 (1998) 4697;
A. Roder, J. Adler, W. Janke, Physica A 265 (1999) 28;
B. Berche, L.N. Shchur, JETP Lett. 79 (2004) 213.

[7] R. Folk, Yu. Holovatch, T. Yavors’kii, Usp. Fiz. Nauk 173 (2003) 175, cond-mat/0106468.
[8] Y. Imry, M. Wortis, Phys. Rev. B 19 (1979) 3580.
[9] M. Aizenman, J. Wehr, Phys. Rev. Lett. 62 (1989) 2503;

K. Hui, A.N. Berker, Phys. Rev. Lett. 62 (1989) 2507.
[10] S. Chen, A.M. Ferrenberg, D.P. Landau, Phys. Rev. Lett. 69 (1992) 1213;

S. Chen, A.M. Ferrenberg, D.P. Landau, Phys. Rev. E 52 (1995) 1377.
[11] J.L. Cardy, J.L. Jacobsen, Phys. Rev. Lett. 79 (1997) 4063.
[12] C. Chatelain, B. Berche, Phys. Rev. Lett. 80 (1998) 1670;

C. Chatelain, B. Berche, Phys. Rev. E 58 (1998) R6899;
C. Chatelain, B. Berche, Phys. Rev. E 60 (1999) 3853.

[13] J. Cardy, Physica A 263 (1999) 215.
[14] H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, J.J. Ruiz-Lorenzo,

Rev. B 61 (2000) 3215.
[15] C. Chatelain, B. Berche, W. Janke, P.-E. Berche, Phys. Rev. E 64 (2001) 036120.
[16] M. Hellmund, W. Janke, Nucl. Phys. B (Proc. Suppl.) 106–107 (2002) 923;

M. Hellmund, W. Janke, Phys. Rev. E 67 (2003) 026118.
[17] W. Janke, S. Kappler, unpublished, 1996.
[18] C.D. Lorenz, R.M. Ziff, Phys. Rev. E 57 (1998) 230.
[19] K. Binder, Z. Phys. B 43 (1981) 119.
[20] C. Borgs, J. Imbrie, Commun. Math. Phys. 123 (1989) 305;

C. Borgs, R. Kotecký, J. Stat. Phys. 61 (1990) 79;
G.G. Cabrera, Int. J. Mod. Phys. B 4 (1990) 1671;
C. Borgs, W. Janke, Phys. Rev. Lett. 68 (1992) 1738;
W. Janke, Phys. Rev. B 47 (1993) 14757.

[21] H. Meyer-Ortmanns, T. Reisz, J. Math. Phys. 39 (1998) 5316;
W. Janke, First-order phase transitions, in: B. Dünweg, D.P. Landau, A.I. Milchev (Eds.), Compute
ulations of Surfaces and Interfaces, Proceedings of the NATO Advanced Study Institute, Albena, B
9–20 September, 2002, in: NATO Science Series II Mathematics, Physics and Chemistry, vol. 114, K
Dordrecht, 2003, pp. 111–135.

[22] R.H. Swendsen, J.S. Wang, Phys. Rev. Lett. 58 (1987) 86.
[23] H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, J.J. Ruiz-Lorenzo,

Rev. B 58 (1998) 2740.
[24] W. Janke, S. Kappler, Phys. Rev. Lett. 74 (1995) 212.
[25] A.D. Sokal, Monte Carlo methods in statistical mechanics: foundations and new algorithms, in: C. D

Morette, P. Cartier, A. Folacci (Eds.), Functional Integration: Basics and Applications, Proceedings
NATO Advanced Study Institute, Cargèse, France, 1–14 September, 1996, in: NATO ASI Series B: P
vol. 361, Plenum Press, New York, 1997, pp. 131–192 (updated version of the lectures given at the C
Troisième Cycle de la Physique en Suisse Romande, Lausanne, Switzerland, 1989, unpublished).

[26] B. Derrida, Phys. Rep. 103 (1984) 29;

A. Aharony, A.B. Harris, Phys. Rev. Lett. 77 (1996) 3700;



C. Chatelain et al. / Nuclear Physics B 719 [FS] (2005) 275–311 311
S. Wiseman, E. Domany, Phys. Rev. Lett. 81 (1998) 22.
[27] P.E. Berche, C. Chatelain, B. Berche, W. Janke, Eur. Phys. J. B 38 (2004) 463.
[28] L. Turban, Phys. Lett. A 75 (1980) 307;
L. Turban, J. Phys. C 13 (1980) L13.


	Monte Carlo study of phase transitions  in the bond-diluted 3D 4-state Potts model
	Introduction
	Model and observables
	Numerical procedures
	Choice of update algorithms
	Equilibration of the samples and thermal averages
	Properties of disorder averages

	Qualitative description of the transition
	Phase diagram and strength of the transition
	Transition line
	Order of the transition

	Critical behaviour
	Leading behaviour and critical exponents
	Corrections to scaling

	Conclusion
	Acknowledgements
	References


