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Abstract

Large-scale Monte Carlo simulations of the bond-diluted three-dimensional 4-state Potts model
are performed. The phase diagram and the physical properties at the phase transitions are studied us-
ing finite-size scaling techniques. Evidences are given for the existence of a tricritical point dividing
the phase diagram into a regime where the transitions remain of first order and a second regime where
the transitions are softened to continuous ones by the influence of disorder. In the former regime, the
nature of the transition is essentially clarified through an analysis of the energy probability distribu-
tion. In the latter regime critical exponents are estimated. Rare and typical events are identified and
their role is qualitatively discussed in both regimes.
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1. Introduction

The influence of disorder is of great interest in physics, since pure systems are rare in na-
ture. It has been known for more than thirty years that the universality class associated with
a continuous phase transition can be changed by the presence of quenched injplrities
According to the Harris criteriof2], uncorrelated randomness coupled to the energy den-
sity can only affect the critical behaviour of a system if the critical exponestéscribing
the divergence of the specific heat in the pure system is positive. This has been established
in the case of the-state Potts model in dimensidd = 2 for example. For % ¢ < 4,
the pure system undergoes a continuous transition with a positive critical expangat
predicted by the Harris criterion, new universality classes have been observed both per-
turbatively and numerically3] (for a review, see Ref4]). The special casg = 2, the
Ising model, is particularly interesting since in the pure system, the specific heat displays
a logarithmic divergencex(= 0) making the Harris criterion inconclusiyg]. Based on
perturbative and numerical studies, it is now generally believed that the critical behaviour
remains unchanged apart from logarithmic corrections when introducing randomness in
the systenj6]. In three dimensions (3D), the disordered Ising model was subject of really
extensive studies (see, e.g., H&l.for an exhaustive list of references).

Less attention has been paid to first-order phase transitions. It is known that ran-
domness coupled to the energy density softens any temperature-driven first-order phase
transition[8]. Moreover, it has been rigorously provg®] that in dimensionD < 2 an
infinitesimal amount of disorder is sufficient tarn any first-order transition into a con-
tinuous oneThe first observation of such a change of the order of the transition was made
in the 2D 8-state Potts mod@l0] where a new universality class was identifigd,12] For
higher dimensions, the first-order nature of the transition may persist up to a finite amount
of disorder. A tricritical point at finite disorder between two regimes of respectively first-
order and continuous transitions is expecfetl,13] The existence of such a tricritical
point for the site-diluted 3D 3-state Potts model could only be suspected by simulations
because the pure model already undergoes a very weak first-order phase trfiition
the other hand, the first-order phase transition of the pure 5-state Potts model is very strong
and would hence make it rather difficult to study the role of disorder. As a consequence,
we have turned our attention to the 3D 4-state Potts model and have shown that there exists
a second-order transition regime for this mofd&]. Our choice of bond dilution is moti-
vated by the fact that for this model only high-temperature expansions results are available
up to now which to our knowledge cannot be done for site-dilution or are at least more
difficult [16].

In Section2 we define the model and the observables, and remind the reader of how
these quantities behave at first- and second-order phase transitions. Seastievoted
to the numerical procedure, first the description of and then the comparison between the
algorithms which are used at low and high impurity concentrations, followed by a first
discussion of the qualitative properties of the disorder average. A short characterisation
of the nature of the phase transition—at a qualitative level—is reported in Sdcfidre
motivation of this section is to first convince ourselves that the transition does indeed un-
dergo a qualitative change when the strength of disorder is varied. Then, we describe how
the phase diagram is obtained and concentrate on the first-order regime in Sedtion
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Section6, we discuss the critical behaviour in the second-order induced regime. Finally,
the main features of the paper are summarised in Seétion

2. Model and observables

We study the disordered 4-state Potts model on a cubic lattidéhe model is defined
by the Hamiltonian

Hlo. J1==_ Jijbo;.0;- @)
(O¥)]

where the spins;, located on the verticasof the latticeA, are allowed to take one of the
g =4 valueso; =1,...,q. The boundaries are chosen periodic in the three space direc-
tions. The notatiorH[o, J] specifies that the Hamiltonian is defined for any configuration
of spins and of couplings. The sum runs over the couples of nearest-neighbouring sites
and the exchange couplings; are independent quenched, random variables, distributed
according to the normalised binary distributioh£ 0)

PLI1=]lps(ij — ) + A= p)s(Jij)]. 2
@)

The pure system (gi = 1) undergoes a strong first-order phase transition with a correla-
tion lengthé ~ 3 lattice units at the inverse transition temperaigyé = 0.628632) [17]
(we keep the conventional notatigh= (kg 7)1, since in the context there is no risk of
confusion with the critical exponent of the magnetisation). As far as we know, no more in-
formation has been made available on this model. We do not expect any phase transition for
bond concentratiop smaller than the percolation threshgld= 0.24881265) [18] since
the absence of a percolating cluster makes the appearance of long-range order impossible.

In the following, we are thus dealing with quenched dilution. The averaging prescription
is such that the physical quantities of interest in the diluted system (say an obseWable
are obtained afteaveraging first a given sample/] over the Boltzmann distribution,
(Q1s1) 8, and then over the random distribution of the couplidgsoted by Q) s, since
there is no thermal relaxation of the degrees of freedom associated to quenched disorder:

— The thermodynamic average of an observaplat inverse temperaturg@ and for a
given disorder realisatiop/] is denoted
1
— ) 0B, (3
Nwmcs ,\AXC‘;
where Nycs is the number of Monte Carlo iterations (Monte Carlo steps) during the
“production” part after the system has been thermalised. Here we use the following
notation: Qs 71 is the value ofQ for a given spin configuratiofr] and a given disor-
der realisatioriJ1, Q;(B) is a value obtained by Monte Carlo simulation at inverse
temperatureg. Time to time, we will have to specify a particular disorder realisation,
say #, and the value of the observabf for this very sample will be denoted as

Qi (B).

(Qunp = (Z[J](lg))_l/D[a]Q[U_J]e_ﬂH[JJ] ~
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— The average over randomness is then performed,

- 1
(Q[J])ﬁ=/D[J](Q[J]>ﬂP[J]%WZ(Q[/])ﬂ=/dQ 0Ps(Q), (4)
[J]

whereN{J} is the number of independent samples. The probab#lityQ) is deter-
mined empirically from the discrete set of values( 0¥ ;) g. This disorder average is

simply denoted ag (8) for short, i.e.,0(8) = (Q1) -

For a specific disorder realisatigii], the magnetisation per spim, ;1 = L~° M,
of the spin configuratiofio] is defined from the fraction of spingy, j1, that are in the
majority orientation,

-D
Plo,J]1 = r%?XI:L Z(Soi,ﬂo]v
ieA
_gpe—1

m
[0.]] g1

(5)
The order parameter of the diluted system is thus denai@) = (m,;;)s. Thermal and

disorder moment$mf‘”)g and (mm)g, respectively, are also quantities of interest. The
magnetic susceptibility; ;1(8) and the specific hedl; ;1(8) of a sample are defined using
the fluctuation—dissipation theorem, i.e.,

X1 (B) = BLP[mf ) — (mi) ). (6)
Cn(B)/ kg = ﬂzLD[<e[2u>,3 — {e3], (7
where
o)=L PEqn=L"")" Jij80,0, (8)
)

is the negative energy density sinEg, j; = —H[o, J]. Binder cumulant$19] take their
usual definition, for example

<mfl]])ﬁ
Unipy(B) =1— —5—. (©)
. 3<m[2n>;29
Derivatives with respect to the exchange coupling are computed through
d (mf ern)g
L2 Zinfmt ), = 0 e g, (10)
d,B ( [J])/S <m’[1]]>ﬁ [J1/8
All these quantities are then averaged over disorder, yielgimy, C(8), U,.(8), and
85 |n<m'[1j]>'3.

At a second-order transition, these quantities are expected to exhibit singularities de-
scribed in terms of power laws from the deviation to the critical point. These power laws
define the critical exponents. In the following, the properties will be investigated using
finite-size scaling analyses, i.e., according to the following size dependence at the critical
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temperature,
in(Be, L) ~ B.L7PIY, (11)
X(Be, L7Y) ~ 1LY, (12)
C(Be, L) ~ ALY, (13)
_pdInimi;)p NI (14)
dp g

At a first-order transition, the order parameter has a discontinuity at the transition tem-
perature, suggesting thafv formally becomes zero. Heuristic (and for pyretate Potts
models with sufficiently large even rigorous) arguments also suggest that, « /v, and
1/v should then coincide with the space dimensi®ii20], restoring the ordinary exten-
sivity of the system in Eqg12)—(14)

When the transition temperature is not known exactly, the problem of the value of the in-
verse critical temperatugg. in the expressions above can be a source of further difficulties.
Usually, one follows a flow of finite-size estimates given by the location of the maximum
of a diverging quantity (for example the susceptibiliynax(L 1) = maxg[x (B, L™H).

From the scaling assumption, supposed to apply at the random fixed point,

X(B, L7H) =LV fy (L), (15)
with t = |8, — B|, the inverse temperatupax Where the maximum of occurs,
X (Bmax L) = Xmax(L ™), (16)

scales according to

Bmax~ B + aL™Y. (17)

Notice that the scaling functioif, (x) takes its maximum valug, (a) = HmaxL~Y/V at
X =d.

At that very temperature where the finite-size susceptibility has its maximum, we then
have similar power law expressions,

i (Bmax L) ~ fu(@)L™P/Y, (18)
T (Bmax, LY ~ fr@L?, (19)
C(Bmax L) ~ fe(@)L®, (20)
dIn(m? )/3
-D [J] ~ 1/v
L d o Smn(@L7". (21)

These equations are similar to Eqt1)—(14)where the amplitudes take the valugs=
fm(o)a I.= fx(o)v A= fC(O)v andN, = fmn(o)

From this discussion, we are led to give a more precise definitign.af(L~1). One
reasonable alternative definition of this quantity could be the disorder average of the
individual maximacorresponding to the different samples. Each of them has its own sus-
ceptibility curve,x (8, L~1) which displays a maximum[,],maX(L—l) at a given value
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of the inverse temperatu;&f}?x(Lfl). These valueg| ;. max(L 1) may then be averaged,

but this is in general different from the definition that we gave for the average over ran-
domness in Eq(4). Here we keep as a physical quantity the expectation valge L 1)

which is then plotted againgt, and Smax(L 1) in Eq. (16) is the inverse temperature
where the disorder averaged susceptibility displays its maximum which is thus identified
with ¥max(L~1). In the following, this is the physical content that we understand when
discussinggmax(L 1.

3. Numerical procedures

We conducted a long-term and extensive study of the bond-diluted 3D 4-state Potts
model, and it is the purpose of this paper to report results for moderately large system
sizes in the first-order regime, and an extended analysis based on really large-scale compu-
tations in the second-order regime. Cross-over effects between different regimes are also
discussed. The simulations were performed on the significant scale of several years. A strict
organisation was thus required, and we proceeded as follows: as an output of the runs, all
the data were stored in a binary format. For each sample (with a given disorder realisation
and lattice size) and each simulated temperature, the time series of the energy and mag-
netisation were stored. A code was written in order to extract from all the available files
the histogram reweightings of thermodynamic quantities of interest, entering as an input
the chosen dilution, lattice size, temperatute, It is also possible to adjust the number of
thermalisation iterations, the length of the production runs where the thermodynamic av-
erages are performed, the number of samples for the disorder average, or to pick a specific
disorder realisation, and so on. In some setigetime series correspond to the simulation
of the system, and we can then measure physical quantitiesamditvirtually produce as
many results as we want. Of course, thisiad what we intend to do in the following, we
rather shall try to concentrate only on the most important results.

3.1. Choice of update algorithms

We studied this system by really large-scale Monte Carlo simulations. A preliminary
study, needed in order to schedule such large-scale Monte Carlo simulations, showed that
the transitions at small and high concentrations of non-vanishing bpnesre (as ex-
pected) qualitatively different:

— Close to the pure system,~ 1, the susceptibility peaks develop as the size increases
to become quite sharp (s€@. 1), in agreement with what is expected at a first-order
phase transitiof21].

— At larger dilutions (small values gf) on the other hand, the peaks are softened and
are compatible, at least at first sight, with a second-order phase transitidfigsépe

As will be demonstrated below, the tricritical dilution dividing these two regimes is
roughly located afprcp ~ 0.68-084. In the regime of randomness-induced continuous
transitions (or weak first-order transitions, that is at low non-zero bond concentggtion
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Fig. 1. Evolution of the susceptibility as the size of the system increases (Up=td0) in the two different
regimes: pure system = 1.00 on the left plot and high dilutiop = 0.48 on the right plot.

the Swendsen—Wang cluster algoritlig2] was preferred in order to reduce the critical
slowing-down. As already pointed out by Ballesteros efia,23] a typical spin config-
uration at low bond concentration is composed of disconnected clusters for most of the
disorder realisations. It is thus safer to use the Swendsen—Wang algorithm, for which the
whole lattice is swept at each Monte Carlo iteration, instead of a single-cluster Wolff update
procedure. In the strong first-order regime (high bond concentratjpthe multi-bondic
algorithm[24], a multi-canonical version of the Swendsen—Wang algorithm, was chosen
in order to enhance tunnellings between the phases in coexistence at the transition tem-
perature. The Swendsen-Wang algorithm, being less time-consuming, was nevertheless
preferred even in this regime of long thermal relaxation as long as at least ten tunnelling
events between the ordered and disordered phases could be observed. As the first-order
regime is approached, more and more sweeps are needed to fulfil this condition. We had to
use up to

— 200000 Monte Carlo steps (MCS)at= 0.76 for L = 16 for example,
while in the second-order regime for much larger systems, we needed
— 100000 MCS ap = 0.68 for L =50,

— 30000 MCS ap = 0.56 for L =96, and
— 15000 MCS ap = 0.44 for L =128.
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This is the essential reason for the size limitation in the first-order re§ifneompari-
son between the two algorithms is illustrated in the case of the pure system for a moderate
size (L = 6) in Fig. ZAa). The insert shows a zoom of the peak in the susceptibility and
reveals as expected that in this first-order regime, the multi-bondic algorithm provides a
better description of the maximum which, since being higher is probably closer to the
truth.

In both regimes, the procedure of histogram reweighting enables us to extrapolate
thermodynamic quantities to neighbouring temperatures. It leads to a better estimate of
the transition temperature and of the maximum of the susceptibility, refining the finite-
size estimate at each new size considered, since the maximum is progressively reached
(Fig. 2b) and (c)). The reweighting has to be done for each sample, then the average is
obtained as in Eq(4). For a particular sample, the probability to measure at a given in-
verse temperaturg a microstateo] with total magnetisationM[,, j; = M and energy
Ei,n=E,is Pg(M,E) = (Z”](ﬁ))—lQ(M, E)ePE where2(M, E) is the degeneracy
of the macrostate. Note that we defingdas minus the energy in order to deal with a
positive quantity. We thus get at a different inverse temperattre

Py(M, E) = (Zi1(B)/Zin(B)) Ps(M, E)e# —PE, (22)

where the prefactotZ;,1(8)/Z;s1(8’)) only depends on the two temperatures. For any
quantity O depending only oM, ;1 and E,, ;1 the thermal average at the new poftit
hence follows from

(1) Yw.r Q(M, E)Pg(M, E)el# —PE
e > w.p Ps(M, E)elf'=HE

(23)

It is well known that the quality of the reweighting strongly depends on the number of
Monte Carlo iterations, the larger this number the better the sampling of the configuration
space and thus of the tails &. Here we have to face up to the disorder average also
and a compromise between a good disorder statistics and a large temperature scale for the
reweighting of individual samples has to be found, but we are mainly interested in the close
neighbourhood of the susceptibility maximum, i.e., in a small temperature window.

3.2. Equilibration of the samples and thermal averages

Before any measurement, each sample has to be in thermal equilibrium at the simula-
tion temperature. Starting from an arbitrary initial configuration of spins, during the initial
steps of the simulation process, the system explores configurations which are still strongly
correlated to the starting configuration. The typical time scale over which this “memory
effect” takes place is measured by the autocorrelation time. The integrated energy autocor-
relation timez¢ (one can define more generally an autocorrelation time for any quantity)

1 A rough estimate of the time needed by a single simulation is givebby (#MCS) x 1 ps for one sample
and one temperature.



C. Chatelain et al. / Nuclear Physics B 719 [FS] (2005) 275-311 283

8 T T | _ T T T T
a) o
' % --- Multibondic
d a o Canonic (SW)
o 4 _
l’ L) T T T T T 8
/ 1
B { Voot S i
6_ ,,9 3 I / °® o \ 175
A N
E4r d"‘ \\ I ° RN
Q.4 . // \
X ’ " I ’ \\_ 7
[ /' S ,d \‘—
[
v/ 6.5
1= |/ _f
1 | 1 | 1
- 0615 Wo.ezs T0.63
) T H R N B
0.58 0.6 0.62 0.64 0.66 0.68
BJ
1.130 1.131 1.132 1.133

e [ =25

320 —

- | B
1.1290 1.1295 1.1300 1.1305 1.1310

BJ

Fig. 2. (a) Comparison between canonical Swendsen-Wang and multi-bondic algorithms for a pure system
(p =1.0) of sizeL = 6 (histogram reweightings produced from simulations at inverse tempergtlire.605
to 0.655 are superimposed). The insert shows a zoom of the peak location. (b) and (c) Histogram reweighting
of the average susceptibility(8) in a disordered system with = 0.56 at different sized = 25 and 64. The

maximum is progressively obtained after a few iterations (the next simulation is performed at the temperature of
the maximum of the histogram reweighting of the current simulation).
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is given by
1 1 et 2
e — p

whereo? = (e?;)5 — (1)) is the varianceg/, is the value of the energy density at iter-
ation j for the realisationi /], and/ is a cutoff (]as defined, e.g., by Sokab]) introduced
in order to avoid to run a double sum upMycs, which would render the estimates very
noisy.

It is worth giving a definition of the errors as computed in this work. There are two
different contributions. Assuming the different realisations of disorder as completely inde-
pendent, one has an error due to randomness on any physical q@ardifined according

to
— (02— 0%\?
Arde—( N{J) ) . (25)

To the thermal average for each sample is also attached an error which depends on the
autocorrelation time 2, such that the total error on a physical quantity is here defined as:

_ 1 270 52 Q 12 o6
AIOIQ— rde+m NMCS . ( )

For each disorder realisation, the initial configurations have to be discarded and one
usually considers that after 20 times the autocorrelation tifhghermal equilibrium is
reached. The measurement process can then start and the thermal average of the physical
guantities is considered, in the case of a single sample, as satisfying when measurements
were done during typically FOx z¢. For a quantityQ, a satisfactory relative error of the
order of

A 270
theer T 27)
V N{J} x NMCS

indeed requires typicalliW{J} x Nmcs >~ 104£_Q. Since we also need a large number of
disorder realisations in order to minimisﬁde typically N{J} ~ 10°~10%, each sample

requires a “production” process duringvcs > (100—102)rQ In this paper, we choose
to work at the upper limit withWycs > 10°7¢ (since there is a single dynamics in the
algorithm, the time scale is usually measured through the energy autocorrelation time) and
N{J} > 10°.

Examples of times series of the magnetisation are showigin3 for particular sam-
ples (those which contribute the most to the average susceptibility) at the three largest
sizes studiefiat dilutionsp = 0.44, 056, and 064 in the second-order regime. The simu-
lation temperature is extremely close to the transition temperature and tunnelling between
ordered and disordered phases guarantees a reliable thermal average.

2 The main illustrations are shown in the worst cases, i.e., for the largest systems at each dilution.
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Fig. 3. Monte Carlo data of the magnetisation for the disorder realisation that gave the largest yajyéfatax)
for p = 0.44 at lattice sizd. =128, p = 0.56 (L = 96) andp = 0.68 (L = 50).

Another test of thermal equilibration is given by the influence of the number of MCS
which are taken into account in the evaluation of thermal averages. An example is shown
in Fig. 4where the histogram reweightings of the susceptibility, as obtained with different
MCS #'s, are shown for a typical sample (the first sample, #1, is in fact supposed to be
typical). Although quite different far from the simulation temperature (which is close to
the maximum) the different curves are in a satisfying agreement at the inverse temperature
Bmax Of the maximum of the average susceptibility, shown by a vertical dashed line. The
criterion #MCS> 250 x ¢ is safely satisfied for the larger number of iteratiéns.

3.3. Properties of disorder averages

For different samples, corresponding to distinct disorder realisations, the susceptibility
xr71(B) at thermal equilibrium may have very different values (5&g 5where the run-
ning average over the samples is also shown and remains stable after a few hundreds of
realisations).

We paid attention to average the data over a sufficiently large number of disorder
realisations (typically 2000 to 5000) to ensure reliable estimates of non-self-averaging
guantitieg26]. Averaging over a too small number of random configurations leads to typi-
cal (i.e., most probable) values instead of average ones. Indeed, as can beé=sgef) the

3 We also note that something happened between 5000 and 10000 MCS, since the shapatdiigh
temperatures becomes unphysical. This is an illustration of the finite window of confidence of the histogram
reweighting procedure.
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Fig. 4. Susceptibility for sample #1 for= 0.44 andL = 128. The different curves show the result of histogram
reweighting of simulations close to the maximum location after 5000, 10 000, 12 000, and 15000 MCS. We can
safely consider that the value at the temperature of the maximum of the average susceptibility (vertical dashed
line) is reliable after 15000 MCS.
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Fig. 5. Different values o ;1(Bmax) (over the samples) of susceptibility at= 0.56, L = 96 (the simulation
is performed at the temperature of the maximum of the average susceptibility). The running average over the
samples is shown by the solid line.

probability distribution ofy;; (plotted at the inverse temperatySgax where the average
susceptibility is maximum) presents a long tail of rare events with large values of the sus-
ceptibility. These samples have a large contribution to the average, shifted far from the most
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Fig. 6. Probability distribution of the susceptibilifyf s (Bmax) for the bond concentrations = 0.44, 056, and

0.68 for the largest lattice size in each case. The full curve represents the integrated distribution. At each dilution,
a full vertical line shows the location of the average susceptibility, a dashed line shows the median and a dotted
line shows the average over the events which are smaller than the median.

probable value. The larger the valuemfthe longer the tail. Scanning the regime close to

the first-order transition thus requires large numbers of samples to explore efficiently the

configuration space, so the simulations were limited te 50 atp = 0.68 while we made

the calculation up td. = 128 atp = 0.44. In the example ofFig. 3, the thermodynamic

guantities have been averaged over 3500 disorder realisatiops=fdy.44 at lattice size

L =128, 2048 forp = 0.56, L = 96, and 5000 disorder realisations for= 0.68, L = 50.
Self-averaging properties are quantified through the normalised squared width, for ex-

ample in the case of the susceptibili, = o2(L)/x?, whereo? = x? — x2. For a

self-averaging quantity, sa@, the probability distribution, albeit not truly Gaussian, may

be considered so in first approximation close to the peak, Ryi@) ~ (Znoé)—l/z X

e’(Q’(Q»z/Z”é evolves towards a sharp peak in the thermodynamic ligystQ) — 17—
8(Q —(Q)). The probability of the average evei@) goes to 1 and the normalised squared
width evolves towards zero in the thermodynamic limit while it keeps a finite value for a
non-self-averaging quantity, as shown in the case of the susceptibilfigiry. The ob-
servation of a longer tail in the probability distribution of thevalues wherp increases
is expressed irFig. 7 by the fact thaty becomes less and less self-averaging wpen
increases.

In contradistinction to the magnetic susceptibility, the energy seems to be weakly self-

averaging in the range of lattice sizes that we studied as seEig.ir8. The associated
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Fig. 7. Normalised squared width of the susceptibilRy,, plotted against the inverse lattice size for the three
dilutions p = 0.44, 0.56, and 0.68. The solid lines are polynomial fits used as guides for the eyes. Ngtésthat
apparently less and less self-averaging ascreases.
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Fig. 8. Normalised squared width of the energy; plotted on a log—log scale against the inverse lattice size for
the three dilutiong = 0.44, 0.56, and 0.68. Power-law fits have been performed and corresponding exponents
printed by the curve. The insert presents the same data plotted on a linear scale.

exponent depends on the concentration of bgndkhis concentration dependence may be
effective and due to corrections generated by other fixed points (see below).

In Table 1 the influence of the number of MCS is shown for typical samples, but also
for the average susceptibility. Although the variations for a given sample and from sample
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Table 1

Evolution of the susceptibility with the number of Monte Carlo sweeps per spin for different sampieand
the average value (with 2048 samplespat 0.56, L = 96. The data are given at the maximum location of the
average susceptibilitimax. The last column gives the number of independent measurements per sample

Nmcs X#1 X#2 X#3 X#4 X#5 X max 7¢(Bmax) MEAS/sample
5000 994 404 611 682 1803 617(8) .95 ~50

10000 952 390 698 614 1574 634(8) 197 ~ 90

15000 1010 356 680 819 1398 638(8) mi ~130

20000 939 351 689 851 1320 641(7) 104 ~ 175

25000 911 327 675 848 1308 643(8) 135 ~ 200

30000 934 327 733 837 1297 643(8) 196 ~ 250

to sample are important, the average seems stable with our choice of number of iterations
(the largest), and also the autocorrelation time (for the average) is stable.

In Fig. 6, a full vertical line points out the location of the average susceptibilifyx.
In order to give a comparison, the median vajsgq defined as the value gf;; where
the integrated probability takes the value 50%, is shown as the dashed line. The more it
differs from the average, the more asymmetric is the probability distribution. This is more
pronounced whemp increases. We also notice that the maximum of the probability distri-
bution (the typical samples) corresponds to smaller susceptibilities. For a given number of
disorder realisations, this peak is better described than the tail at larger susceptibilities, so
we also define (shown as dotted lines) an average over the samples smaller than the median
susceptibility, that we denotgso,

Xmed Xmed 1
X500% = 2 / Xt Ps (o) d xn.s / Ps(xpD dxin = > (28)
0 0

where the factor 2 normalises the truncated distribution. In the particular case of the proba-
bility distributions observed here, i.e., with a sharp initial increase, a peak located at small
events and a long tail at large values of the varidlités definition empirically gives a sen-
sitive measure of the typical or most probable value. We shall refer to this quantity when
typical behaviour will be concerned.

4. Qualitative description of the transition

Before performing a quantitative analysis of the transition, it is interesting to study in
some detail why the probability distributions have significantly different shapes when
varies, and which type of sample can be considered as a typical one, or which one corre-
sponds to a rare event with quite a large or very small susceptibility. Here we shall focus
on the second-order regime and in particularpog 0.44 for the largest simulated size,

L =128, for which the probability distribution of;j; at Smax can be inspected ifig. 6.

Each sample displays its own maximum and due to the fluctuations over disorder, the

inverse temperaturgy ;1 max Where it occurs varies from sample to sampleTéable 2 we

4 This shape of probability distribution is very different than in the case of the 3D dilute Ising f2¥jel
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Table 2

Relative variations of the peak heighty[ j1/ X maxand peak location\ 8| ;1 max/Smax for a few samples, chosen
among the rare and the typical samplep at 0.44, L = 128. For reference, the values of the average are given by
BmaxJ = 1.4820, x max = 1450. The asterisks (*) mark those samples that are discussed in détigigiri2—-14

Type Sample#  x(J1.max Brs1.max/ Axrs1/Xmax (%) AB[J1,max/ Bmax (%)
Rare 0035 (*) 5253 1.4823 262 0.02
(largey) 0438 3862 1.4822 168 0.013
1135 3825 1.4821 168 0.007
3302 4314 1.4823 19% 0.02
Typical 0006 1550 1.4831 .8 0.07
(around peak) 0008 (*) 2792 1.4810 .82 -0.07
0021 1473 1.4819 .6 —0.007
0039 2345 1.4817 61 —0.02
Rare 0373 946 1.4852 —-34.7 0.22
(smallx) 1492 (*) 286 1.4830 -803 0.07
1967 1063 1.4847 —26.7 0.2
2294 769 1.4853 —46.9 02
02 . J ‘ | . 6000
— Average 7
o 13 — #0035
N — #0438 — 5000
S o4 — #1135
S ’ — #3302 _
V
0.05 — — — 4000
0 B ] —~
1.480 1.485 e.
— — 3000 S
| i =
— 2000
— 1000
| ! |

1.480 1.485 1.485

BJ

Fig. 9. Examples ofare events forp = 0.44 andL = 128, withlarge values ofx;;. The thick lines show the
averages over all realisations.

quote for a few rare and typical samples the valuegf max and B s, max the maximum
of the sample susceptibility and the corresponding inverse temperature (sdégalsé
to 11). The relative variations of these numbers with respect to their average values at
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Fig. 10. Examples dfypical events for the same parameters abim 9. The thick lines show the averages over
all realisations.

Bmax: Ax(71/Xmax= [X(71,max — Xmax]/ X max, ANAAB 11/ Bmax = [Bs1,max — Bmaxl/ Pmax

are also collected iffiable 2 It turns out that rare events with large susceptibility do also
display a very small shift of the temperatysgr; max With respect to the average. Other
events have a smaller susceptibilitySafax both because their maximugi, maxis smaller

but also because of a larger shift of the inverse tempergiyje,ax where this maximum
occurs. A few examples ahre events corresponding targe values ofx;; are shown

in Fig. 9. Rareevents corresponding smallvalues ofy;,; are presented iRig. 11 They
have a very small contribution to the phase transition, so in the following, we will refer
only to events with large values gf;; when mentioning rare events. Fig. 10 the same

is done fortypical events, i.e., those for which the values)gf; are in the peak of the
distribution. The scales of both axis are the same in the three figures in order to facilitate
the comparison.

In Figs. 12—14we can follow the fluctuations of the magnetisation during the thermali-
sation process (after equilibration) for three different samples. Configuratior=#35.0)
corresponds to a rare event, with the definition given above, while the samfég#8 3
is a typical one. The last sample, #1482y, 14), is an example of a realisation of disorder
which leads to a very small susceptibility peak. These figures also present the magnetisa-
tion and energy probability distributions. The rare evétigj( 12 displays a double-peak
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Fig. 11. Examples ofare events for the same parameters a&ig. 9 with x|, at the foot of the probability
distribution. The thick lines show the averages over all realisations.

structure in the probability distributions (only a shoulder is visiblePig,,(e[s1)), pre-
sumably a remnant of the first-order type transition of the pure system. In the average
behaviour, it seems that at small valuegothese types of samples are “lost” in the large
majority of typical samples which have a “second-order type” of probability distribution.
This observation is corroborated by similar “signalsFigs. 9 to 11concerning the shape

of the susceptibility (narrow peak for rare events with large susceptibilities and broader for
others), of the order parameter (sharp increase gvith the transition for rare events, and
smoother variation for the typical samples), or of the Binder cumulant (deep well at the
transition in the case of rare events and less pronounced wells for typical ones).

We may thus argue that a possible mechanism which keeps the pure model’s first-order
character of the transition at larger valuespois connected to the occurrence of a larger
proportion of samples with the “first-order type”, i.e., a very big susceptibility signal at
Bmax- In Fig. 15 the quite long tail of large susceptibilities in the susceptibility distribu-
tion confirms this assumption, for=0.84 (L = 20), i.e., closer to, or probably inside the
first-order regime. Also the double-peak structure of the energy distribution at this dilution
(seeFig. 16 is compatible with a first-order like transition for the average behaviour (of
course one would have to study the evolution of the energy barrier as the size increases,
but this makes no sense for a specific disorder realisation for which the notion of thermo-



C. Chatelain et al. / Nuclear Physics B 719 [FS] (2005) 275-311 293

0.2 . ‘ 500
- #0035 -
- <m>=0.00589 —|400
r X = 4545 )
A m —300
Q L T =259 i
s —{200
—100
1 l y
0 0.1 0
# MCS mys
1 .32 | [ | T ]
B<e>=1.309
- Clky=11.07|600
" =260 1
- — 400
- — 200
1 |
130, 10000 1.30 1.31 133

#MCS 36#35

Fig. 12. Time series of the magnetisation and the energy density and corresponding probability distributions for
arare event (#35) witHarge (s (p = 0.44, L = 128, simulation at inverse temperatyté = 1.48218).

dynamic limit is meaningless). The possible interpretation is that the rare events of higher
susceptibilities whemp becomes larger are more comparable to a system displaying a first-
order transition. This would explain that the susceptibility peak is narrower (and thus does
coincide with the temperature of the maximum of the average only in very rare cases).

5. Phasediagram and strength of thetransition
5.1. Transition line

We can now come back to the preliminary phases of this work. The transition temper-
ature was determined for 19 values of the bond concentration ranging frem.28 to
p =1.00 (pure system). We defined an effective inverse transition tempegturep) at
a given lattice sizd. as the location of the maximum of the average magnetic susceptibil-
ity x (seeFig. 17). Any diverging quantity could equally have been chosen but it turned
out that the specific heat was displaying larger statistical errors than the magnetic suscep-
tibility. Moreover, the stability of the random fixed point implies a slowly varying specific
heat with a critical exponent < 0.°

5 We expect a stable randomness fixed point at large enough dilutions, where the expsheuld be nega-
tive hence the singular contribution to the specific heat would not be diverging.
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Fig. 13. Time series of the magnetisation and the energy density and corresponding probability distributions for a
typical event (#8) withy 71 in the vicinity of the most probable valug & 0.44, L = 128, simulation at inverse
temperaturgsJ = 1.48218).

For eachp and L, several Monte Carlo simulations were necessary to get a reasonable
estimate of8.(L, p). As mentioned before, histogram reweighting was used to refine the
determination. The procedure was applied up to lattice dizesl6. The resulting phase
diagram for two different lattice sizes is plotted fig. 18 The data appear to be in a
remarkable accordance.

The numerical data presentedFfig. 18are furthermore in agreement with the mean-
field predictionT, (p) = pT. (p = 1) for large bond concentration, close to the pure system
(p ~ 1). At smaller concentratiop, the topological properties of the bond configuration
become important and the mean-field prediction fails to reproduce the observed behaviour.
The effective-medium approximation introduced in this context in the eighties by Tur-
ban[28] reproduces quite accurately the numerical data. Limiting the approximation to a
single bond, the following estimate for the inverse transition temperature is obtained:

. ([_Jurej_ .
(1— pe)eb 1 p)]’ 29)

(p) = J LI
ey =~ S

where 87"®J = 0.628632) for the pure system. This expression is exact (as exact as it

might be with numerical factors introduced) in the limits of the pure system () and
the percolation thresholg{ = 0.24881265)).
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Fig. 14. Time series of the magnetisation and the energy density and corresponding probability distributions for

arare event (#1492) with vergmall x[ 7}, which looks similar to typical eventg(= 0.44, L = 128, simulation
at inverse temperatugg/ = 1.48218).
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Fig. 15. Probability distribution of the susceptibility for a system of dize 20 atp = 0.84 andgJ = 0.74704,
in the seemingly first-order regime. The simulation was performed with the multi-bondic algorithm.
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Fig. 16. Probability distributions® and Py of the energye for the average behaviour and for a rare event
(large susceptibility), respectively, at= 0.84 (L = 13). The double-peak structure suggests a behaviour for this
specific sample which is similar to the one observed at a first-order transition. The simulation is performed at
inverse temperaturgJ/ = 0.746356.
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Fig. 17. Average susceptibility and its histogram reweighting for systems of si2emtiaL& for dilutions (from
left to right) p = 0.32, 0.40, 0.48, 0.56, 0.64, 0.72, 0.80, 0.88, and 0.96.
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Fig. 18. Transition temperaturég 7. (p)/J with respect to the bond concentratiprior two lattice sized. = 10
andL = 16. Mean-field and effective-medium approximations are also indicated by the dashed and solid lines,
respectively.

5.2. Order of the transition

Distinguishing a weak first-order phase transition from a continuous one is a very dif-
ficult task. The autocorrelation time of the energfyat the transition temperature may
be useful, since it displays a behaviour which depends on the order of the transition.
When using a canonical Monte Carlo simulation for the study of a first-order transition,
the time-scale of the dynamics is dominated by the tunnelling events between the or-
dered and disordered phases in coexistence at the transition temperature. Such a tunnelling
event implies the creation and the growth of an interface whose energy cost behaves as
BAF = 2004.LP~1 whereoo g is the reduced interface tension. As a consequence, the
autocorrelation time grows exponentially as

T¢(L) ~ o0d L7 (30)

For a continuous phase transition, this interface tension vanishes and the autocorrelation
time scales as a power-law of the lattice size,

(L) ~ L7, (31)

wherez is the dynamical critical exponent.

The numerical estimates of the autocorrelation tirfieare plotted inFig. 19for sev-
eral dilutions. They show a growth of the autocorrelation time with the lattice size which
becomes dramatic as the bond concentration increases and a behaviour compatible with
a power law of the system size whendecreases, as expected since the dilution softens
the transition and thus reduces the dynamical exponelevertheless, it is not possible
to distinguish precisely the two regimes on a plot of the autocorrelation time versus the
lattice size. Here, we may locate approximately the boundary between the two regimes
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Fig. 19. Autocorrelation time of the energy with respect to the lattice size at the (pseudo-)transition temper-
ature. The curves correspond to different bond concentrajioffiom bottom p = 0.28 to the topp = 1.00 in
steps of 004). The results shown here all follow from MC simulations using the Swendsen—Wang algorithm.

around—slightly above = 0.68. Indeed, the autocorrelation timerat 0.68 is very well

fitted with a power-law for all lattice sizes smaller thar= 30. Above, the data display a
downward bending that can be explained by a correction to the power-law behaviour but
not by an exponential prefactor (the bending would be upward). On the other hand, for
p = 0.84 it is not possible to find any set of three consecutive points that could be fitted
by a power-law: the autocorrelation time clearly grows faster than a power-law. Using two
successive lattice sizdg andL, > L1, we defined an effective dynamical exponent

Int¢(Ly) —Inté(L
zeft(L1, La) = —— “(,] in i Ll( v (32)

which is expected to reach a finite value for continuous transitions and to diverge for first-
order ones. The data, plotted kig. 20 again do not lead to any sound estimate of the
location of the tricritical point. Nevertheless, the transition again definitely remains con-
tinuous up to the bond concentratipn= 0.68. For higher concentrations, the data show
an increase of the dynamical exponent with lattice size, but it is not possible to state un-
ambiguously whether they develop a divergence or not. We also notice that the necessary
finite number of iterations leads to an underestimate“ofnd thus ofz for bond con-
centrations close tp = 1 at large lattice sizes (this is particularly cleatHig. 20for the
size L = 13-16). Multi-bondic simulations were thus needed in this case to improve the
measurement of thermodynamic quantities wipds close to 1.

Another approach is provided by the behaviour of the order—disorder interface tension.
Numerically, the interface tension can be estimated from the probability distribution of the
energyP (e). One has
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Fig. 20. Effective dynamical exponent (SW algorithm) with respect to the smaller lattice size at the transition
temperature. The curves correspond to different bond concentratidresm bottomp = 0.28 to the topp = 1.00
in steps of (04).

Prin o e PAF — g=200aLP7t (33)
Prmax

Indeed, the free-energy barrier can be related to the ratio of the (equally high) probabilities
of the ordered and disordered phases (corresponding to the two peaks) and of the mixed
phase regime involving two interfadeand which corresponds to the bottom of the gap be-
tween the two peaks. We started from the effective transition temperatures estimated from
the maxima of the magnetic susceptibility. At this temperature, the statistical weight of the
ordered and disordered phases are comparable so the height of the peaks is very different.
In order to define the interface tension, we reweighted the time series of the simulations to
the (close) temperature for which the two peaks have equal heights. The order—disorder in-
terface tension is plotted against the inverse of the lattice size at the transition temperature
in the upper part oFig. 21 It shows undoubtedly a vanishing of the interface tension for
p = 0.56, and presumably fgs = 0.76 (not shown here) also, being a clear indication of
a disorder induced second-order transition. On the other hang, $00.84 the interface
tension seems to converge towards a finite (but very small?) value in the thermodynamic
limit, which can be taken as a signal for the persistence of the first-order nature of the
transition in the pure case at= 1 down to this dilution.

As a consequence, we are led to the conclusion that the tricritical point is presumably
located betweep = 0.68 andp = 0.84, the upper bound corresponding to the observation
of an exponential growth of the autocorrelation time and the lower to a constant dynamical
exponent and the vanishing of the latent heat (both valugpsané indicated in the previous

6 Due to the employed periodic boundary conditions only an even number of interfaces can occur for topolog-
ical reasons.
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Fig. 21. Probability distribution of the energy at the temperature for which the two peaks have equal heights. The
two plots correspond to two different bond concentratigns; 0.56 on the left (SW algorithm, increasing sizes
L =25, 30, 35, 40, 50, 64, and 96) apd= 0.84 on the right (multi-bondic simulations, sizés= 16, 20, and

25). The order—disorder interface tensiggy = IN(Pmax/ Pmin)/(2LP 1) is plotted against.~1 in the upper
part of the figure.

Figs. 19 and 2D However, one cannot unambiguously prove by numerical simulations on
finite systems that what we identified as a second-order phase transition is not a weak first-
order phase transition with a correlation length larger than128, or that the fast growth

of the autocorrelation time fgy > 0.84 is not a cross-over to a power-law regime at larger
system sizes.

6. Critical behaviour
6.1. Leading behaviour and critical exponents

We now concentrate on the second-order regime only, i.ep, 9r0.68 where we per-
formed an investigation of the universality class at the disorder fixed point. The critical
exponents are computed using the finite-size scaling behaviour of the physical quantities
(Egs.(11)—(14) at the effective inverse transition temperatgféL, p). In the usual renor-
malisation group scheme for disordered systems, the renormalisation flow is subject to the
influence of three fixed points describing respectively the pure system, the random sys-
tem and the percolation transition. The scaling behaviour is thus expected to display large
corrections resulting in a cross-over to a unique universal behaviour at large lattice sizes.
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Fig. 22. Evolution of the size-dependent (pseudo-)critical coupling with the inverse system size for relatively
small sizes on the left plots. The same on the right plot for the three main dilutions, where the data are by
anticipation fitted to a linear relatioBmax(L, p) = Bc(p) + aL~YV 4+ ... where our estimate for (~0.75)

will be discussed later. The slope coefficient is slightly positivegfes 0.44, slightly negative fop = 0.68 and
virtually zero atp = 0.56, where the corrections-to-scaling (at least for this quantity) appear to be the smallest.

According to this scheme, the exponents which are measured are expected to be (appar-
ently) concentration dependent. In the previous sections (seefig.dl,), the corrections
to scaling for the transition temperature have been observed to be weaker for the bond
concentrationp = 0.56. This behaviour is illustrated, e.g., Fig. 22 where the cross-
over effect reflects in the bending of the cunysax(L, p)J vs. L~ for three dilutions
p =0.32, p =0.56, andp = 0.80. The curve ap = 0.56, on the other hand, is almdlkt.
The corresponding data for the three main dilutions in the second-order regime.44,
p =0.56, andp = 0.68, are then plotted againstY/" on the right part. Although the
value ofv is not yet known, we anticipate here the later result, using already the “to-be-
determined-exponent”. Again, the curve at= 0.56 has an almost vanishing slope. As
a consequence, we decided to make further large-scale Monte Carlo simulations at this
concentrationp = 0.56 up to the lattice sizé& = 96. To monitor the effects of the com-
peting fixed points, we also made additional large-scale simulations for the concentrations
p = 0.44 (towards the percolation transition) apd= 0.68 (towards the regime of first-
order transitions) up to the lattice sizés= 128 andL = 50, respectively (size limitations
at these concentrations are linked to the discussion of Sefjtion

In Fig. 23 the finite-size scaling behaviour of the maximum susceptibifityax, the
magnetisation aBmax and the derivative of Im with respect to the inverse temperature
evaluated aBnax are plotted versus the system size on a log—-log scale. These curves should
give access to the exponemtsy, /v, and Y v, respectively. The three main dilutions are
represented. One clearly observes a crossover between two regimes. For small lattice sizes,
the system is strongly influenced by the proximity of a perturbing fixed point while a dif-
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Fig. 23. Finite-size scaling behaviour of the susceptibility, the magnetisation add? d Ini/dp at fmax (the
quantities have been shifted in the vertical direction for the sake of clarity). The behaviour at small lattice sizes is
presumably governed by the percolation fixed point (shown as dashed lines and characterised by exponent ratios
y /v ~2.05 andB/v >~ 0.475). Above a crossover length scale a new (random) fixed point is reached (shown by
the solid lines, with exponent ratigs/v ~ 1.535, 1/v ~ 1.34, andg/v ~ 0.73, discussed in detail below).

ferent, unique fixed point, is apparently reached at large sizes, as revealed by the slopes
which are at first sight independent of the dilution when the linear extent of the lattice
reaches values of abolit>> 30. The most probable susceptibilipgoo, is shown inFig. 24

and can also lead to estimates fgtv. According to the discussion given in Secti@nwe

expect that the most probable susceptibility is better described than the average susceptibil-
ity, for which there exists a significant contribution of rare events, and these rare disorder
realisations might be poorly scanned if a too small number of samples is considered. This
difficulty might be circumvented through the study of what we definegsag in Eq. (28).

In the presence of multi-fractality, the universal behavioug gy, should differ from that

of x. Since such a peculiar behaviour does not occur in the case of a global q{@6itity

like x, we expect compatible values gf/v as deduced fronysge, Or x. Observing the

data plotted irFig. 24 in fact, confirms our previous analysis. It seems thab, is less
influenced by the crossover effects than the avepags:. In order to support this state-
ment, we will present the results of fits of the susceptibility in two different tables for the
two regimes and for the three main dilutions:

— At small lattice sizes, the behaviour Bfax andiig,,, is in all three cases compati-
ble with the percolation exponentg,/v)perco= 2.05 and(8/v)perco> 0.475 shown in
Fig. 23by the dashed lines. This seems to be true (particularly in the case of the suscep-
tibility) over a wider range of sizes fgs = 0.44 than forp = 0.56 or p = 0.68. This
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Fig. 24. Log—log plot of the average susceptibility (open symbols) and the typical susceptibility (filled symbols),
as defined in Eq(28) by x50, for the three principal dilutions studied, indicating that the asymptotic scaling
regime sets in earlier for the latter quantity.

observation is compatible with a stronger influence of the percolation fixed point when
p = 0.44, which is closer to the percolation threshold than the two other dilutions. Sur-
prisingly, the assumption of a percolation influence is absolutely not confirmeithe
behaviour at small sizes of the third quantity of interést? (d Inini/dp) g, DU€ to

the involved differentiation with respect to inverse temperature, the identification with
percolation quantities becomes less obvious, but we do not have any explanation for
this strange result. Ifiable 3 we try to point out thénfluence of the percolation fixed
point This is achieved by power-law fits between a fixed minimum gige, = 4 up

to an increasing maximum siZanay below the valud. = 30 which apparently marks

the modification in the behaviour of the physical quantities under interest. We first ob-
serve thajs/v starts from a value very close to the percolation value, and second, that
X50% has always a lower exponent (i.e., more distinct from the percolation value).

— At large sizes, for each quantity considered here, the curves corresponding to the three
dilutions in Figs. 23 and 24volve, after a crossover regime whose exact location
depends on the value g@f, towards a presumably unique power-law behaviour which
seems to remain stable then (solid linesFig. 23. We thus believe that we have
reached large enough sizes in order to get reliable estimates i@&rtiem fixed point
exponentsThis is only a visual impression, since in fact the effective exponents are
still subject to significant variations, especially for the extreme dilutjprs0.44 and
p = 0.68. Effective exponentg /v, 8/v, and Yv may be defined from power-law
fits Of Xmax, 7 e @Nd L~PdInim/dp between an increasing minimum siZeyin,

7 The expected percolation exponent would e & 1.124 while the slope at small sizes is larger than in the
random regime where it takes a value close to 4 1.35.
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Table 3
Exponents deduced from the finite-size scaling behavioyrsfx and x5, in the vicinity of the percolation
fixed point (small sizes). Recall the percolation valugv)perco~ 2.05 for comparison

Lmin  Lmax p=0.44,y/v deduced from p=0.56,y /v deduced from p=0.68,y/v deduced from

X'max X50%  Xmax X50%  Xmax X50%
4 8 2.015 1.902 2.098 1.916 2.211 1.915
4 13 1.984 1.866 2.034 1.818 2.132 1.720
4 20 1.954 1.833 1.973 1.748 2.051 1.579
4 30 1.924 1.808 1.913 1.691 1.974 1.500
Table 4

Exponents deduced from the finite-size scaling behaviogmgfx and x5, in the vicinity of the random fixed
point (large sizes). The largest size taken into account in the fitgig= 128 for p = 0.44, 96 forp = 0.56,
and 50 forp = 0.68

Lin p =0.44,y /v deduced from p =0.56,y /v deduced from p =0.68,y /v deduced from
Xmax X50% X max X50% X max X50%

20 1.724 1.672 1.571 1.579 1.541 1.412

25 1.711 1.664 1.543 1.587 1.479 1471

30 1.706 1.669 1.518 1.596 1.438 1.539

35 - - 1.500 1.581 1.447 1.645

40 1.703 1.679 1.502 1.587 1.464 1.675

50 1.695 1.657 1.506 1.593

64 1.680 1.659

and a maximum ond, max. The valueLmax is kept to the maximum available value
L =128, 96, and 50 fop = 0.44, 0.56, and 0.68, respectively, and the results for the
susceptibility are presented Tiable 4 We see there thatsou is again better behaved
(more stable) than the average susceptibility.

Since we are mainly interested in the randomness fixed point, we now concentrate on
fits at large system sizes. An exhaustive summary (i.e., for all three dilutions under inter-
est) of the results of the fits performed at dilutigns= 0.44, p = 0.56, andp = 0.68 is
presented imable 5 The corresponding effective exponents are also plotted agb,mt
in Fig. 25 These results show that the data analysis is much more complicated than our
previous preliminary determination of exponent§able 4 Again, the crossover between
percolation and random fixed point behaviours is visible through the variation of effective
exponents and the data present large corrections-to-scaling.

A precise determination of the magnetic exponents is quite difficult. Indeed, as can
be seen irFig. 25 the effective critical exponenis /v)ess and (8/v)eff dO NOt converge
towards p-independent limits whelmin — Lmax. The cross-over effects on the thermal
guantities are much smaller. Indeed, the effective critical expomgris converging to a
roughly p-independent limit whel min — Lmax- We can give the following estimates for
y/vand Yv:

p =0.44:

(y/v)eff ~ 1.68(2), (1/v)eff =~ 1.36(2), (34)
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Table 5

Linear fits for X max, 7 gmay andL=PdIn m/dB at Bmax, leading to finite-size estimates of the combinations of
critical exponents /v, /v and J/v. These results correspond to the three main dilutions, and they are extracted
from the finite-size scaling behaviour of the quantities at the temperature where the maximum of the average
susceptibility is found by histogram reweighting. The results for dilutiprs 0.44 andp = 0.68 are less stable

than forp = 0.56, reflecting the role of the crossover

p Lmin Lmax Y/v Error  B/v Error /v Error  y/v+28/v
0.44 30 128 1.706 0.006 0.544 0.005 1.395 0.006 2.794(16)
- 40 - 1.703 0.008 0.552 0.007 1.381 0.008 2.807(22)
- 50 - 1.695 0.010 0.540 0.009 1.358 0.010 2.775(28)
- 64 - 1.680 0.016 0.534 0.014 1.357 0.016 2.748(44)
0.56 30 96 1.518 0.011 0.588 0.010 1.389 0.011 2.694(31)
- 35 - 1500 0.014 0592 0.012 1362 0.013 2.684(38)
- 40 - 1502 0.016 0.608 0.015 1.353 0.016 2.718(46)
- 50 - 1.506 0.026 0.645 0.024 1.330 0.025 2.796(74)
0.68 25 50 1479 0.021 0.343 0.015 1505 0.021 2.165(51)
- 30 - 1438 0.031 0.344 0.022 1.453 0.030 2.126(75)
- 35 - 1.447 0.047 0.342 0.033 1.437 0.046 2.13(11)
- 40 - 1.464 0.075 0.547 0.051 1.379 0.075 2.56(18)
I I °
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Fig. 25. Effective critical exponents/v and8/v, as computed from a power-law fit betweEpi, and Lmax,
with Lmax fixed to the maximum available value= 128, 96, and 50 fop = 0.44, 0.56, and 0.68, respectively.

They are plotted againslr;iln. The thin solid line shows the percolation values and the shadow stripe corresponds

to our estimate for the random fixed point values. In the case of the dilptior.56, the value of/ /v + 28/v

is also shown.

p=0.56:
p=0.68:

(v/v)eft =~ 1.51(3),
(v/v)ett = 1.46(8),

(1/v)eff ~ 1.33(3),
(1/v)eff >~ 1.38(8),

(35)
(36)
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Fig. 26. Effective critical exponents/v, /v, and Y v for the dilutionp = 0.56 obtained from fits betweelyi,
and Lmax = 96 and extrapolated td iy, — oo. In this limit, the scaling relatiory /v + 28/v = D is nicely
satisfied.

simply corresponding to the last line Gdible 5 i.e., to the largest studied value b, for
each dilution. The value ¢f/v on the other hand is definitely not stable and more subject to
the competing influence of fixed points. Foe= 0.44 for example, the estimate 8/v)ef
is relatively stable against variations bfyin, with fitted values slightly above.D, close to
the expected value for the percolation transitio@{®). This is a quantitative indication
that the system is probably still subject to cross-over caused by the percolation fixed point.
In the case ofp = 0.68, the estimate of8/v)es IS very small, then suddenly increasing
for Lmin = 40. These remarks are consistent with the renormalisation scheme described
above. In order to help us to decide between the different effective values measured at the
three dilutions, we use the scaling relatipyw + 28/v = D = 3 which is almost satisfied
for the bond concentratiop = 0.56 only (shown inFig. 25 when taking into account
the lattice sized. > 50. For the bond concentratiops= 0.44 andp = 0.68, this scaling
relation is not satisfied for any of the accessible values. One is thus led to conclude that
the critical regime has not yet been reached for these concentrations, in spite of our efforts
to go up to very large sizes. Remember also that the corrections-to-scaling were found to
be the smallest ap = 0.56, so the asymptotic regime in neighbouring dilutions should
be more difficult to reachFig. 25thus suggests to rely only on the values measured at
dilution p = 0.56, extrapolated ta_min — oo, as shown irFig. 26 where a dashed stripe
emphasises such an extrapolation of the effective exponents measured at the largest sizes.
The values ofly /v)eff and (1/v)ef are indeed stable in the reginie> 35. We may thus
havereliable estimate®f the asymptotic values for these exponents, amdagonable
estimateor 8/v, ratifying the scaling relation.

Using this extrapolation procedure, our final estimates of the critical exponents of the
disorder induced random fixed point of the three-dimensional bond-diluted 4-state Potts



C. Chatelain et al. / Nuclear Physics B 719 [FS] (2005) 275-311 307

model are the following values:

y/v = 1.53530), (37)
B/v = 0.732(24), (38)
1/v = 1.33925), (39)

resulting from a linear extrapolation of the data points £afin = 25, 30, 35, 40, 50, and
64 atp = 0.56. Note that since the data are correlated, we have kept the error of the last
point.

6.2. Corrections to scaling

For the 3D disordered Ising model it is well known that the corrections-to-scaling close
to the random fixed point are strong (with a corrections-to-scaling exponent a#osnd
0.4). Let us assume here also the existence of an irrelevant scaling; figith scaling
dimensiony, = —w < 0. The scaling expression for the susceptibility

H(L™Y B~ Perg) = L7 £y (LIB — Bel”. L™g). (40)

expanded ap,. (on a finite system the susceptibility is always finite) around the fixed
point valueg = 0, leads to the standard expressiai.”/"[1 + b, L~ + O(L~??)]. In

order to investigate this question for the 3D 4-state Potts model, we tried to fit the physical
guantities forp = 0.56 as

Xmax(L) = LY (1+ by L_w), (41)

and similar expressions faig,.,,, in the rangel > 25 where the leading term was already
fitted in the previous section, and the subleading correction is due to the first irrelevant
scaling field.

Since four-parameter non-linear fits are not stable, we preferred linear fits where the
exponents are taken as fixed parameters but the amplitudes are frég. 2@, we show a
3D plot of the cumulated square deviation of the least-square linegffias a function of
y /v andw. There is a clear valley which confirms thatv is close to 1.5, but the valley
is so flat in thew-direction that there is no clear minimum to give a reliable estimation
of the corrections-to-scaling exponent. The same procedurg/foiis illustrated in the
next figure Fig. 28. Again, there is no way to get a compatible corrections-to-scaling
exponent from the three fits, but the leading exponents are indeed cl8ge 100.7 (and
1/v ~ 1.35). Of course the minima of?2 do not exactly coincide with the data presented
in the table which should corresponddo— co.

7. Conclusion

We studied the three-dimensional bond-diluted 4-state Potts model by large-scale Monte
Carlo simulations. The pure system undergoes a strong first-order phase transition. The nu-
merical estimates of the dynamical expongiaind of the interface tension give evidences
for the existence of a disorder-induced tricritical point for bond dilutions betwee®.68
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for p = 0.56. The exponents are treated as fixed parameters and the amplitudes are free. The base plane gives the
ranges of variation of the exponents23< y /v < 1.75 and 0< w < 5. The absolute minimum is at/v = 1.49,

o = 3.88, but the valley is extremely flat in the-direction. A cutoff atx2 = 50 has been introduced in order to
improve clarity of the figure.
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Fig. 28. Plot of thex2 deduced from linear fits ofi (the exponent is thus negative) in the range2b < 96 for
p = 0.56. In the base plane, the range of variation of the exponentd is —8/v < —0.5 and 0< w < 5, and
the minimum is aB/v = 0.85,w = 0.135.

and p = 0.84 below which the transition is softened to second order. Very strong crossover
corrections are observed up to lattice size< 30-40. The regime of the random fixed
point is best observed for the bond concentragos 0.56. From the values of the ratios

of exponents measured at that concentration,

y/v =1.53530), (42)
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B/v =0.73224), (43)
1/v = 1.339(25), (44)

the following estimates of the critical exponents are derived:

y = 1.146(44), (45)
B = 0.547(28), (46)
v =0.747(14). (47)

Let us mention that these exponents are in reasonably good agreement with recent star-
graph high-temperature expansidh6] of this model which giver = 1.00(3). The value

of v is eventually safe with respect to the bound: 2/D = 0.6666. .. of the stability

of the random fixed point. In the random fixed point regime, we are unable to extract
from the numerical data any reliable correction-to-scaling exponent (linked to the possible
appearance of irrelevant scaling fields), even though it is clear that such corrections cannot
be ignored.

In some sense, the outcome of this time-consuming work is disappointing, since we
were not able to reach the asymptotic regime where exponents in the second-order regime
of the phase diagram become dilution-independent, since the corrections to scaling are
too strong, and since the tricritical point was not located with precision. We believe that
this is due to the extreme difficulty of the problem and not to an unadapted approach.
Perhaps we were too ambitious, but we have the feeling that the final values given for
the critical exponents are reliable enough and should not be contradicted in the future by
similar studies.
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