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Abstract

A recently developed technique for the determination of the density of partition function zeroes
using data coming from finite-size systems is extended to deal with cases where the zeroes are not
restricted to a curve in the complex plane and/or come in degenerate sets. The efficacy of the approach
is demonstrated by application to a number of models for which these features are manifest and the
zeroes are readily calculable.
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1. Introduction

The study of phase transitions is central to statistical mechanics. Of primary interest
is the determination of the location, the order and the strength of the transitions. While
only systems of infinite extent display such phenomena, these are not directly accessible
to the non-perturbative computational approach, which is restricted to a finite number of
degrees of freedom. There are, however, well-established techniques for the extraction
of information from numerical studies of finite systems, and prominent amongst them is
finite-size scaling (FSS).

The FSS hypothesis is based on the premise that the only relevant scales are the
correlation length of the infinite-size system and the linear extent of its finite-size
counterpart[1]. A modification, in which the correlation length of the finite system replaces
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its actual size, extends the validity of the hypothesis to the upper critical dimension [2].
Traditional techniques to determine phase transition strength from finite-size data involve
the application of FSS to thermodynamic quantities or to the lowest lying partition function
zeroes [3].

However, a full understanding of the properties of the infinite-size system requires
knowledge of the density of zeroes too. While it has long been expected that extraction
of this quantity from finite-size systems would be a lucrative source of information, a
technique to do so proved elusive [4]. The source of the difficulties is that it involves
reconstruction of a continuous density function from a discrete data set, or sets, as
the density of zeroes for a finite system is essentially a set of delta functions. Recent
considerations have bypassed these difficulties [5,6]. Rather than focusing on the density of
zeroes itself, one determines the integrated density of zeroes. The robustness and efficiency
of this approach was demonstrated in [5,6] and the method favourably compared to other
techniques in [7].

In these previous analyses, the distribution of zeroes had two special properties. These
are (i) the zeroes dominating critical or pseudocritical behaviour lie on a curve called the
singular line, which impacts onto the real axis at the transition point and (ii) these zeroes
are simple zeroes (zeroes of order one). While these two properties are common to the bulk
of models in statistical physics and in lattice field theory, they are by no means generic and
the question of the generality of the technique presented in [5,6] therefore arises.

The purpose of this paper is to extend the method presented in [5,6] to deal with
situations where the above two properties do not hold. Instead, the method developed here
in Section 2 assumes the zeroes to be distributed across a two-dimensional region in the
complex plane and/or to occur in degenerate sets. Such distributions of zeroes have been
observed in various models of statistical physics and lattice field theory in two dimensions.
The models we address in Section 3 are (a) the Ising model on a square lattice (using
Brascamp—Kunz boundary conditions) with anisotropic couplings, (b) the Ising model on
a bathroom-tile lattice, and (c) the case of free Wilson fermions in two dimensions. While
all of these models are in the same two-dimensional Ising universality class, their detailed
distributions of zeroes are quite different and provide a sufficiently wide sample to test
the improved density-of-zeroes approach to the detection and characterization of phase
transitions. Finally, Section 4 contains our conclusions.

2. Zeroesand their densities

All of the information on a thermodynamical system in equilibrium is encoded in the
zeroes of the appropriate partition function. Indeed, for a system of finite size, when the
partition function,Z;, can be written as a polynomial in an appropriate functiQrof
temperature, field or of a coupling parameter, we may write

ZL(@)=AR [ [z —zjL). (2.1)

J



620 W, Janke et al. / Nuclear Physics B 682 [FS] (2004) 618-634

where L denotes the linear extent of the systejnjabels the zeroes, and(z) is a
smooth non-vanishing function which plays no crucial role in the sequel and is henceforth
discarded.

In numerical approaches to critical phenomena, FSS of the zetp@s) (with ;j
fixed—typically to j = 1, which labels the zero nearest the transition point), is used
to determine properties of phase transitions. A summary of the status of some of these
calculations is given in [5]. On the other hand, attempts have also been made to gain
a deeper understanding of some more tractable models analytically [8,9]. Where these
attempts have involved zeroes of the partition function, it is clear that much information is
contained in their density. The technique developed in [5] is essentially a convergence of
these two approaches, and we summarize it here for convenience.

2.1. Smple zeroeson a singular line

The reduced free energy is obtained from (2.1) as
1 1
fr(@) = szL(z): VZln(z—zj(L)), (2.2)
J

having discarded the regular contribution coming fra). HereV represents the volume

of the system. In independent series of publications, Abe [8] and Suzuki [9] assumed that
the zeroes fall on a singular line in the complex plane, parameterizee:hy +r exp(i¢),
wherez, is the transition point. In this case, a necessary and sufficient condition to achieve
the correct scaling behaviour for the specific heat is behagg.@s) « r1~¢, wherex is

the usual critical exponent of the specific heat. Integrating, gives the cumulative density of
zeroes in the infinite-volume limit,

Goo(r) o 1?7, (2.3)

In the finite-volume case, the density of zeroes is a string of delta functions, and
1
g =1 ;a(r —rj(L)). (2.4)

where thejth zero is given byz; (L) = z. + rj(L) expi¢). Integrating this along the
singular line leads to the following expression for the cumulative density of zeroes [5,6]:

v if re(;,riva),
2j—-1D/2v ifr=r;.

The two central observations of [5,6] were, firstly, that equating the infinite-volume
density formula (2.3) to its finite-volume counterpart (2.5) is sufficient (with hyperscaling)
to recover standard FSS expressions (indeed, FSS, traditionally the consequence of a
hypothesis, emerges quite naturally from this approach), and, secondly, that (2.5) is a
sensible definition of the cumulative density of zeroes in the finite case. With this definition,
the strength of transitions may birectly measured by fitting to the ansatz

GrL(@r)= { (2.5)

G(r)=a1r?+as. (2.6)
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In particular, a non-zero value af; indicates a definite phase. Wheg vanishes, a
transition of first order is indicated if, ~ 1, while a value oty larger than 1 indicates a
second-order transition with strength

a=2—ap. (2.7)

In [5] and [6] this method was tested by application to a number of models in statistical
physics and in lattice field theory. In all of these models, the locus of zeroes is one-
dimensional, with a singular line impacting onto the real axis at the transition point.
Furthermore, all zeroes for finite lattices were simple zeroes (with no degeneracies). The
guestion now arises as to how the technique translates to more general distributions of
zeroes.

2.2. General distribution of zeroes

Departures from such smooth linear sets of zeroes were first observed for models on
hierarchical and anisotropic two-dimensional lattices, for which there can exist a two-
dimensional distribution (area) of zeroes [10-12]. Since then, a host of systems has been
discovered with this feature [13—16]. A common characteristic of all such two-dimensional
distributions of zeroes is that the only physically relevant point at which they cross the real
axis, in the thermodynamic limit, is that which corresponds to the phase transition. It is,
however, possible that the zeroes cross the real or imaginary axis at unphysical points.
These points may be associated with new universality classes.

Stephenson [17] has shown that the density of zeroes for such two-dimensional
distributions in the infinite-volume limit is

8oo(x,y) = yl"‘”’f(y%) (2.8)

where(x, y) give the location of zeroes in the complex plane, with the critical point as
the origin. Herem is a new type of exponent which is related to the shape of the two-
dimensional distribution [17].

Integrating out ther-dependence in (2.8) yields [17]

X2

goo(y) =/goo(x, y)dx ylfa, (2.9)

X1

wherex1 andxz mark the extremities of the distribution of zeroes at a distané®m
the x axis in the complex plane. Integrating again, to determine the cumulative density of
zeroes at the pointin the y-direction, yields

Goolr) ocr®™®, (2.10)

an expression identical to (2.3). The strength of the transition, as measureddayn
therefore be determined by similar methods to those previously used. However, rather than
counting the zeroes along the singular line, one now counts them up toyadinewithin

the two-dimensional complex domain they inhabit.
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The second new feature we wish to accommodate is the existence of degeneraciesin the
set of zeroes. If a number of zeroes coincide, as defined in (2.5), is multivalued and is
no longer a proper function. A more appropriate density function is determined as follows.
Suppose, in general, that = z;11 = - -- = zj14;-1 aren-fold degenerate. By a glance
at Fig. 1 it is easy to convince oneself that the densities to the left and right of an actual
zero are given by

JjHnj—=1 forrejin—1,7j+4n;),
= : 2.11
VGLr) {j—l forr e (rj_1,r)). ( )
The density at the ;-fold degenerate zero,, is again sensibly defined as an average:
1/, n;
GL(rj)=V<J+7’—1). (2.12)

This is the most general formula for extracting the density of any distribution of zeroes
and deals with two-dimensional spreads and degeneracies. Fitting this quantity to the form
(2.6) yields the strength of a second-order transition through (2.7). As in [5] and [6], the
criteria for a good fit are good data collapsd.irfor V) andj near the transition point and

a3 be compatible with zero.

The error estimates appropriate to this modified density analysis may be determined
from a procedure adapted from [5] and which we now elucidate. In the present case, where
zeroes may be degenerate, the monotone nature of the cumulative density function means
that the actual value & (r; (L)) cannot deviate from (2.12) by more tham ;/2V (see
Fig. 1). The quantitative difference between this starting point and that in [5] is that this
deviation is not constant in this case.

Let G‘]?bS(L) represent the data point coming from the sizéattice and corresponding
to the jth zero, which is: j-fold degenerate. Assign an initial er@y(L) = oaryr;/V to
this data point, whereg, is arbitrary. With these errors, the appropriate goodness-of-fitis

—

O
>

N B~ N 0
©

¢
r r, r

1

Fig. 1. Schematic plot of the cumulative density of zeroes as defined by (2.12). In this example, where the volume,
V, is fixed,r1 = rp are 2-fold degenerate, whilg = - - - = rg are 4-fold degenerate.
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given by

[GSPXL) — GS™(L)P?

V 2 2
2 obs, exp
xZ= = [G°P%L) - G, (2.13)
LZ,; oj(L)? LXJ: Ga%rb”? ! !

where the expected density valug]™(L), comes from the model (2.6). Minimizing?

yields the parameters in (2.6) with associated errors denotﬁﬁf’b.
Assume, now, the actual error associated with each data point is, irfacty. The
corresponding chi-squared may be written [5]

2 o‘Zb 2
x5 = %xl. (2.14)
If the model fits Wen,XZZ/Ndof should be close to unity, whem¥yos is the number of

degrees of freedom. The error assigned to each point now becomes

0% = 0Zpx%/Ndot = X%/ Naor. (2.15)

having chosem,r, to be unity. Moreover, the actual errors associated with the parameters
a; are (withogp=1)
da; = Z da?rb =0 daiarb. (2.16)
Oarb
Just as in [5], this approach prohibits an independent goodness-of-fit test.
In summary, the procedureis to let(L) =n;/V and minimizexl2 in (2.13) to finda;
andda®®. The best estimates for the errors are, thien =,/ x?/Ngotda?™.

Note that standard FSS is for fixed-index zeroes and gives that the distance of a zero
from the critical pointis

ri(Ly~ L7 (2.17)

Typically one uses the imaginary part of the zerozlnfor the distance; in a traditional
FSS analysis. The real part of the lowest zero may be considered as a pseudocritical point.
Its scaling is characterized by the so-called shift exporierand

Rezi(L) — ze ~ L7, (2.18)

wherez, marks the critical point. Usually coincides with v, but this is not always

the case and the actual value of the shift exponent depends on the lattice topology. For
a summary of some recent results concerning the finite-size shifting of the pseudocritical
point in the Ising case in two dimensions, see [18].

3. Testing the method on various (Ising) models
We take three two-dimensional models for which the zeroes are easily calculated. In

each case the real, physical, critical point is in the Ising universality class, with strength of
transition given byyr = 0 (corresponding to a logarithmic divergence in the specific heat).
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3.1. Squarelattice Ising model with anisotropic couplings

The task of analytically solving the Ising model in two dimensions for finite-size
systems is greatly ameliorated by the usage of Brascamp—Kunz boundary conditions [18,
19], where for anM x 2N lattice, the spins in the left boundary row.at= 0 are fixed to
+ and in the right boundary row at= M + 1 to the alternating sequenge— + — - -,
whereas in the-direction periodic boundary conditions are assumed. In the general case
of anisotropic couplings-# along thex- andJ> along they-direction, with arbitrary ratio
R = Jp/J1—the partition function takes the form [20]

M N
Zuoy =22"M [ [ [[cost2p) cosh2rp) — sinh2p) cog¢i)

i=1j=1
— sinh(2RB) cog6;)]. (3.1)

where¢; =in/(M + 1), §; = (2j — Dn/2N, and g = J1/kpT. Recall that for fully
periodic boundary conditions, the analogue of (3.1) consists of a sum of four product
terms [21] which is much more cumbersome to analyze for the zeroes.

For isotropic couplings withk = 1 the term in square brackets of (3.1) simplifies to
1 — 2¢sinh(2B) + sinf?(2B), with —1 < & = (cosp; + cosd;)/2 < 1. It immediately
follows that the complex zeroes can be parameterized exactly a@8inh & +i/1 — £2,
i.e., that they are distributed on the unit circle in the complex@ghplane.

For the anisotropic model witR = 3, each factor in (3.1) can be rewritten as a fourth-
order polynomial inw = 2 sinh(28) to give

M N
Zuov =[] [][w*+5w® + 4 — 2w cosd¢r) — (6w + 2w?) cog6;)]. (3.2)
i=1 j=1

The zeroes of (3.2) are also easily determined numerically, but it is not possible to
parameterize them by a single variable, implying that they are distributed across a two-
dimensional region rather than on a one-dimensional curve as in the isotropic case. In
Fig. 2 this two-dimensional distribution of zeroes is shown for the éase3 and a square
lattice of sizeL = M = 2N =40.

The zeroes impact onto the real axis at the paint 1 and the critical behaviour is
expected to be dominated by the zeroes close by. The zeroes in this case are all simple
zeroes (no degeneracies), so it should be noted that this case is essentially a test of the
applicability of the method to the situation of a two-dimensional distribution of zeroes in
the complex plane rather than a test of how the method copes with varying degeneracies.

The cumulative-density distribution for this set of zeroes is plotted in Fig. 3. A three-
parameter fit to (2.6) for the first 8 zeroes for lattices of dize 40, 60, 80, 100, 120, and
140 givesuz = 0.00000215), indicating the presence of a transition. Withset to zero,

a two-parameter fit then yields = 2.016(32), close to the expected value of 2 (which
corresponds ta = 0).

A closer inspection of Fig. 3 shows that thie= 1 zeroes (denoted by the symbo)
are slightly misaligned with respect to the higher-index zeroes. We have therefore
repeated the fit restricted tp = 2—8, which yieldsG(r) = 0.0887)r200833 5o that
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Fig. 2. The partition function zeroes in the complex= 2sinh(28) plane for the anisotropicJt = 3J1)
L =M = 2N = 40 Ising model with Brascamp—Kunz boundary conditions.
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Fig. 3. The distribution of zeroes near= 1 for the anisotropic Ising model with anisotropy rato= 3 subject to
Brascamp-Kunz boundary conditions foe= 40-140 andj =1 (x), j =2 (+), j =3 (), j =4 (0), j =5 (O),
J=6(0),j=T7(e) j=8 ().

a = —0.008(33). This is nice confirmation that the technique works when the distribution
of (non-degenerate) zeroes is two-dimensional.

Standard FSS applied to fixed-index zeroes using (2.17) yields the expectedresiilt,
[18]. Similarly, the shift exponent in (2.18) is found to be= 2. Thusa is not coincident
with 1/v. This contrasts with the case of the Ising model in two dimensions with toroidal
boundary conditions [22] but matches results using topologies with a trivial fundamental
homotopy group [23].

To understand these numerical results we return to the finite lattice expansion of (3.2)
and look at the finite-size scaling of the lowest zerg which is given by the roots of the
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Re w 1.5

Fig. 4. The partition function zeroes in the complex= 2sinh28) plane for the anisotropicJf = 2J1)
L =M = 2N = 40 Ising model with Brascamp—Kunz boundary conditions.

factor in (3.2) withi = j =1 on anM x 2N lattice. For an infinite lattice the expression
factorizes to give4 + w?)(1 — w)? and we see the points where the distribution pinches
down as the roots ab = 1 (and atw = £2i). For a finite square latticd.(= M = 2N) we
can expand around the root at 1 in powers Af 1o find
wi  7w(2i 4 5m)
w=1+ 7 1012 + e (3.3)

Separating the real and imaginary parts yields#tiL) ~ L1 and Rewy (L) — w. ~ L™2.

For comparison, we present a similar analysis with anisotropy Rtio2, for which
the zeroes are plotted in Fig. 4. While the overall shape of the distribution is the same
as in theR = 3 case of Fig. 2, its detailed structure is different. In this case the density
analysis revealaz = —0.000012), and a subsequent two-parameter fit to the first 8
zeroes for lattices of sizé = 40-140 yieldsi; = 2.00930), i.e.,a = —0.00930). The
corresponding data is displayed in Fig. 5.

3.2. Bathroom-tilelattice

Itis also possible to obtain two-dimensional distributions of zeroes for two-dimensional
Ising models with sotropic couplings, one example being the Ising model on a bathroom-
tile lattice [13]. This is the4 - 82) lattice depicted in Fig. 6 and which is dual to the Union
Jack lattice.

The continuum form of the (reduced) free energy on the bathroom-tile lattice is given

by

f=5 + In(1+u) + 3 / f d(gzld)gzz [A() + B(u)(cog61) + cog62))

- =7

+ C(u) cog61) cog62)], (3.4)
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Fig. 5. The distribution of zeroes near = 1 for the Ising model with anisotropy rati® = 2 subject to
Brascamp-Kunz boundary conditions foe= 40-140 andj =1 (x), j =2 (+), j =3 (), j =4 (0), j =5 (O),
J=6(0),j=T7(e) j=8 ().

O

Fig. 6. The bathroom-tile lattice.

whereu = exp(—28) and

A) = (1+1%)%(1— 4u + 1002 — 43 + 1),
B(u) = 2u(1 = u)*(1+u) (1 +u?).
Cu) = —4u*(1—u)*, (3.5)

This system is described in detail in [13]. The zeroes of the partition function were
calculated from the finite lattice discretizationasfe of the terms in the partition function
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Re u 3 5

Fig. 7. The partition function zeroes in the= exp(—2p8) plane for the bathroom-tile Ising model (3.6) with
L =M = N = 40. Here AFM, PM, FM and @indicate the antiferromagnetic, paramagnetic, ferromagnetic and
unphysical phases, respectively.

for periodic boundary conditions leading to (3.4), namely

M N
_ oMN 2r—1 2s — 1
Z=2 HH{A(MH—B(M)[COS(—M )+cos( ~ )]

r=1s=1

_ _ 1/2
+ C(u)cos(er 1) cos(ZSN 1)} . (3.6)

In principle the full partition function is a sum of folisuch terms, differing in the
arguments of the cosines which correspond to the four possible choices of (anti)periodic
boundary conditions for the two species of fermions in the continuum limit of the model.
In using (3.6), we are assuming that the scaling behaviour of one of these terms is generic.
An alternative, which we do not pursue here as we are essentially interested in testing
the scaling of the cumulative density of zeroes rather than formulating the finite lattice
models themselves, would be to construct Brascamp—Kunz type boundary conditions for
the bathroom tile lattice. This would also have the effect of projecting out a (different)
single product term in the expression {or

The phase diagram for such a system has paramagnetic [PM], ferromagnetic [FM] and
anti-ferromagnetic [AFM] phases as well as an unphysical phase which we denotg as O
to adhere to the same notation as [13]. The zeroes have varying degrees of degeneracy.
Those forL = M = N = 40 are depicted in Fig. 7 in the complex= exp(—28) plane
and a blow-up of the region near the ferromagnetic critical point_fer 200 is given in
Fig. 8. Zeroes in the vicinity of the critical point taper off into a quasi-one-dimensional
locus, so the bathroom-tile case is a test of the applicability of the method to zeroes of
varying degeneracies, rather than to a true two-dimensional distribution.

1 One of which will vanish at criticality for toroidal topology.
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Fig. 8. The bathroom-tile Ising zeroes near the ferromagnetic critical poiat0.2490384.. for L =
M =N =200.
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Fig. 9. The distribution of zeroes for the bathroom-tile Ising model @its 40—200 andj = 1-4 (x), j = 5-12
(4), j =13-16 ¢), j = 17-24 6), j =25-32 (0), j =33-40 ¢), j =41-44 ¢).

The physical ferromagnetic critical point is given by= (1/2)(vV4v/2 —2 — v/2) =
0.2490384.., corresponding t@ = 0.695074 1. .[13]. In this region, thegf = 1 zeroes
are four-fold degenerate, the=5 are eight-fold degenerate, thje= 13 zeroes are

again four-fold, thej = 17, j = 25 andj = 33 zeroes are each eight-fold degenerate,
and thej = 41 zeroes are four-fold degenerate. The cumulative density of zeroes near

this ferromagnetic critical point is depicted in Fig. 9 fbr= 40, 70, 100, and 200 with
Jj = 1-44 (seven data points for eagf). A three-parameter fit to the form (2.6) clearly

shows that the curve goes through the origin. Indeed, such a fit to the above data gives

a3z = 0.000000 {830). Now, settingaz = 0, a two-parameter fit to the data yields =
1.998(18), corresponding ta = 0.002(18), fully consistent with zero, as expected.
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The physical antiferromagnetic critical pointis giveniby: 4.0154454 . ., near which
the zeroes again have a one-dimensional locus (as evident in Fig. 7). The degeneracy
pattern for the first 44 zeroes is the same as in the above ferromagnetic critical case.
A three-parameter fit yieldsz = 0.000 01(3), and a two-parameter fit to this data gives
az = 2.03(2). Restricting the fit closer to the origin by using the= 1-16 (3 data points
for eachl) yieldsap = 1.999 4163), compatible withy = 0.

The accumulation point between the ferromagnetic and unphysical regions occurs at
u=-—0.6012318.. (for which there is no reg#). Here the degeneracy pattern is different
to those above, with th¢ = 1 zeroes being four-fold degenerate, the 5 zeroes eight-
fold, the j = 13 zeroes again four-fold, the= 17 andj = 25 zeroes each eight-fold
degenerate while th¢ = 33 zeroes are four-fold and the= 37 zeroes are eight-fold
degenerate. The density analysis again reveals a transitiea @), with a> = 2 (e.g., the
first 24 zeroes fol. = 40-200 giveuy = 1.993(12), corresponding ta = 0.007(12)).

A similar accumulation pattern occurs at the boundary between the antiferromagnetic
and unphysical @ phases att = —1.663 2519, with the corresponding density analysis
yieldingaz; = 2.009 5123).

At each of the above four accumulation points, traditional FSS yieldd andi = 2.

3.3. WiIson fermions

The partition functionZy, («) for a system of free Wilson fermions involves an integral
over Grassmann variables, which, on completion, leads to the determinant of the Wilson
matrix, M. Herex = 1/(2mo+d) is the hopping parametet, is the dimensionless bare
fermion mass and is the lattice dimensionality (which is 2 in our case). It is well known
that this system exhibits a phase transition &x1= d = 2, where massless fermions
appear in the continuum limit [24]. This determinant may be expressed as a product of
eigenvalues, and, for even lattice extent,

2
Zi () =dety@ =TT [+ . (3.7)

a=1 p
where

2
1
1P (p) = 5o = D c0spy +i(=1)" (3.8)

pn=1

with p, =27 p, /L and wherepy = —(L —1)/2,—(L —3)/2, ..., (L —1)/2, while pp =
—L/2,—-L/2+41,...,L/2. These values comply with standard boundary requirements
for Grassmann variables, namely that they are periodic in the spatial (1-) direction and
antiperiodic in the temporal (2-) one [24].

The complex hopping-parameter zeroes are easily and exactly extracted from the
multiplicative expression for the partition function (see [15]) and the zeroes for a system
of size L =50 are depicted in Fig. 10 in the complex2k plane.

A special feature of Wilson fermions is the occurrence of so-called doubler fermions.
This means that apart from the physical critical point, which occurs where the zeroes
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Fig. 10. The partition function zeroes for tlie= 50 free Wilson fermions in the complex 2« plane.
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Fig. 11. The distribution of zeroes near the physical critical poiffx1= 2 for free Wilson fermions with
L =50-250and =1-2(x), j =3-6 (), j=7-8 (), j =9-120), j =13-16 (0), j =17-18 ¢), j = 19-23
().

accumulate at 22« = 2 in the figure, there are lattice artefacts a2d = 0 and at
1/2« = —2 where further accumulations of zeroes, leading to critical behaviour, occur.
These Wilson-fermion zeroes clearly form a two-dimensional distribution. They also
come in degenerate sets, with the first and seventh zeroes being 2-fold degenerate, while
the third and nineth are 4-fold degenerate. So this system encapsulates both new features
we seek to address.
The density plot for the zeroes near the physical transition is given in Fig. 11. Using the
first twelve zeroes for lattices of siZze= 50, 100, 150, 200, and 250 (four data points for
each lattice size), a three-parameter fit yielgls- 0.000 00529), convincing evidence that



632 W, Janke et al. / Nuclear Physics B 682 [FS] (2004) 618-634

0.01

—

(5 o

0.005;

0 0.1 0.2 .03

Fig. 12. The distribution of zeroes near the artifactual critical pojt#x1= 0 for free Wilson fermions with
L =50-250 andj =1-2 (x), j =3-6 (+), j =7-8 (&), j =9-12 ).

the density plot indeed goes through the origin. The subsequent two-parameter fit yields
az = 1.996(11), givinga = 0, as expected.

It is worthwhile also applying the method to the artifactual doubler transition at
1/2« = 0, where the two-dimensional nature of the distribution is more pronounced. There,
the density data again fall on a universal curve (see Fig. 12uarnsl determined to be
0.00001%6). A two-parameter fit now yieldg, = 1.996(11), again demonstrating thatis
zero and the success of the method. Finally, as in the other systems studied here, traditional
FSSyieldsy = 1 andix = 2, so in each case the shift exponent does not match the inverse
of the correlation-length exponent.

4. Conclusions

A recently introduced technique to extract a continuous function, in the form of the
density of partition function zeroes, from sets of discrete data has been extended to deal
with the general case where (i) zeroes do not fall on a one-dimensional curve and/or where
(ii) multiple zeroes may occur. The technique is tested in a variety of models which lie in
the same universality class as the two-dimensional Ising model and which exhibit various
combinations of these general features. It is seen to be capable of direct determination
of the strength of the phase transition, as measured by the critical exponéfet have
compared the results obtained from more standard finite-size scaling of the individual
zeroes and also found good agreement.

It also perhaps worth highlighting that in this exercise we have found that formulating
an Ising model with anisotropic couplings and Brascamp—Kunz boundary conditions is
straightforward and still leads to a simple product form for the finite lattice partition
function, a very useful property for investigating scaling. Though we have only touched on
the topic briefly in this paper, the exotic critical points which appear at complex couplings
in many models are also amenable to our analysis, and we discuss this elsewhere.
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