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Abstract

We show that it is possible to determine the locus of Fisher zeroes in the thermodynamic limit for
the Ising model on planar (“fat’* random graphs and their dual quadrangulations by matching
up the real part of the high and low temperature branches of the expression for the free energy. The
form of this expression for the free energy also means that series expansion results for the zeroes
may be obtained with rather less effort than might appear necessary at first sight by simply reverting
the series expansion of a functigiz) which appears in the solution and taking a logarithm.

Unlike regular 2D lattices where numerous unphysical critical points exist with non-standard
exponents, the Ising model on planaft graphs displays only the physical transition @t
exp(—28) = 1/4 and a mirror transition at = —1/4 both with KPZ/DDK exponentse(= —1,

B =1/2,y = 2). The relation between th#* locus and that of the dual quadrangulations is akin to
that between the (regular) triangular and honeycomb lattices since there is no self-duadgl
Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the more remarkable results to emerge from the study of various statistical
mechanical models coupled to two-dimensional quantum gravity is a solution of the Ising
model in field [1,2]. In discrete form the coupling to gravity takes the form of the spin
models living on an annealed ensemble of triangulations or quadrangulations, or their dual
planar graphs. The patrtition function for the Ising model on a single gt@phvith »n
vertices

Zsingle(G", B. h) = Z ef Ly oioith Lo (1)
{o}
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is promoted to a partition function which incorporates a sum over some class of graphs
{G"} by the coupling to gravity

Zu(B )= ZsingG", B, h). 2
{G"}

That introducing such an annealed sum over graphs into the partition function should be
a discrete version of coupling to gravity becomes clearer when one considers the approach
taken to simulating such models. In simulations one changes both the geometry (i.e.,
connectivity) of the lattice and the spins on the same timescale, so the spins affect the
geometry and vice versa, mimicking the back-reaction of matter and gravitation in the
continuum theory. The solution to the Ising model in [1] proceeded by first forming the
grand canonical partition function

o _4 n
n=1

and then noting that this could be expressed as the free energy

1
Z=—log / D1 D exp(— Tr[i(dﬁ +¢3) — chrpp — %(e’wi‘ + e‘%é)D,
(4)

of a matrix model, where we have written the potential that genekgtegraphs. In
the abovep; > are N x N Hermitian matrices¢ = exp(—28) and theN — oo limit is
performed in order to pick out planar graphs. The graphs of interest are generated as the
Feynman diagrams of the “action” in Eq. (4), which is constructed so as to weight each
edge with the correct Boltzmann weights for nearest neighbour interaction Ising spins.
Since the edges carry matrix indices the graphs in question are “fat” or ribbon graphs.

The integral of Eq. (4) can be evaluated using the results of [3] to give

4 Z
1 z 1 [dt 1 dt 5
Z=Zlog(=)-=[ — — | —
209<g) g/ [g(t)+2g2/tg(t), ©)
0 0

whereg is defined by

(6)

g(z) =3c%3 + Z[ 1 2, 6z(coshh — 1)]

1-32 © T (1-9:22
The implicit form of the solution may make it a little difficult to see what is going on,
but since the singularities & w.r.t. ¢ determine the asymptotics of ttg, the procedure
for extracting the thermodynamic limit is to look at the solutionsgt@) = 0. These
can be explicitly determined when=0 asz;, = —1/3,zp,, = (1/3)[1F \/ig], ZHzy =

1/3)[1+ %] and then substituted intp

(@)= 4 22
ELAO="75T9%

2 2, 4
gHy,(C) = éC - §C + 5\/5,
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2 2 4
gH3,4(C)=—§C— 5023135\/—_& (7)

wherez; is the low-temperature branch and the variayshigh-temperature branches.
Inserting the appropriatg(c) into the expression fax,,

b —4cg(c) -
Zyn~n [7(1—c2)21| , (8)

then gives the asymptotics of ti#, and the thermodynamic behaviour of the free energy
per siteF
—4cg(c)
F=- Iog[i(1 — 02)2], 9)
since if we are given a canonical partition functigp the associated free energy per site
F will be given in the thermodynamic limit by

F~ |lim EIog Zy. (10)

n—-oon

The third order phase transition with the so-called KPZ/DDK [4] exponerts—1, 8 =
1/2, y = 2 occurs whergy (¢) = gu,(c) which gives a critical coupling = 1/4. It is
possible to carry out a perturbative expansiorkiaround thez = 0 solutions above to
obtain the magnetic critical exponents directly from the discretized formulation [2] and
it is likewise possible to confirm universality by solving the modelghgraphs. The
KPZ/DDK exponents were verified in a continuum formalism in [4] using conformal field
theory techniques.

Given the solution of [1,2] it is tempting to use it as a test case to investigate various
statistical mechanical ideas and methods, in much the same manner as the Onsager solution
has served as a paradigm over many years. One such effort was presented in [5], where the
behaviour of the partition function zeroes for the Ising model coupled to two-dimensional
quantum gravity was investigated by series expansion and numerical means. The study
of partition function zeroes for statistical mechanical models was initiated by Lee and
Yang for complex external fields [6,7] and later extended by Fisher and others to complex
temperatures [8]. It offers an alternative viewpoint of the approach to the thermodynamic
limit and means of extracting critical exponents. A study of partition function zeroes for the
Ising model coupled to two-dimensional gravity addresses several interesting questions. It
is not clear a priori that loci of partition function zeroes will continue to lie on simple curves
in thec = exp(—2B) or y = exp(—2h) planes when a sum over some class of graphs, in
this case planar graphs, is folded into the partition function. Although this is generically the
case for the Onsager and related solutions on regular two-dimensional lattices [9,10], there
are exceptions such as the “bathroom-tile” lattice. Other sorts of behaviour are possible
too. For instance, introducing geometric disorder in the form of Penrose tilings gave an
complicated extended structure of temperature zeroes away from the physical critical point,
but still gives rise to Onsager exponents [11]. Fractal lattices on the other hand display an
intricate fractal pattern of zeroes [12].

The work in [5] suggested strongly that the temperature zedmkBe on curves and
that the field zeroes still lay on the unit circle in the complex exp(—2h) plane, as
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in the regular lattice Onsager solution. Similarly, a comprehensive analytical study of the
Lee—Yang zeroes for the Ising model on plapérgraphs was carried out in [13], where

it was found implicitly that the Lee—Yang circle theorem still held, since the complex
field singularities were shown to lie at purely imaginary field values. In this paper we
concentrate on the temperature (Fisher) zeroes for the Ising model on ¢fagraphs and

their dual quadrangulations, showing how to derive the locus of zeroes analytically using
the idea that the locus should be thought of as Stokes lines [9,10,12,14,15]. We compare the
results with the various sorts of behaviour observed in [9,10] for regular two-dimensional
lattices and also note that the form of the Ising solution means that the various zeroes on
finite planarg® graphs can be extracted without evaluating a series expansion for the full
expression forZ. In the sequel we first briefly discuss the general background to Lee—
Yang and Fisher zeroes and the analytic determination of the loci of zeroes. We then show
how series expansion results for finite graphs, such as those in [5], can be recovered and
extended economically before we move on to discuss obtaining the loci of Fisher zeroes
for the Ising model op* graphs and their duals analytically.

2. Lee-Yang and Fisher zeroes

The starting point of Lee and Yang'’s work [6,7] was the consideration of how the non-
analyticity characteristic of a phase transition appeared from the partition function on finite
lattices or graphs, which was a polynomial

ZZZDmnCmyna (11)

for a lattice withm edges ana vertices, again witle = exp(—28), y = exp(—2h). They
showed that the behaviour of the zeroes of this polynomial in the complaane, in
particular the limiting locus as:, n — oo, determined the phase structure. Similarly, the
behaviour of the zeroes in the compleglane determines the nature of temperature driven
transitions [8]. In the latter case, in zero external field for simplicity, the free energy on
some lattice or grapty,, with n nodes and: edges can be written

F(Gn, p)~=In]] (c—cx(B)), (12)

k=1
which in the thermodynamic limit becomes

F(Goo,ﬂ)~—/dcp(c)|n(c—c(L)), (13)
L
whereL is some set of curves, or possibly regions, in the complpkane on which the
zeroes have support andc) is the density of the zeroes there. The singular behaviour
of p(c) asc approaches the physical transition poipt is related to the specific heat
exponentx by

p(c) ~ (c —cpp)i™. (14)
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The general question of how to extract the locus of zeroes analytically has been
considered by various authors. It was observed in [12] that such loci could be thought of as
Stokes lines separating different regions of asymptotic behaviour of the partition function
in the complextemperature or field planes. Across these lines the real part of the free energy
should be continuous and the discontinuity in the imaginary part should give the density
of zeroes. Shrock and collaborators [9,10,14] have obtained many interesting and explicit
results on the Fisher and Lee—Yang loci for the Ising and other models on regular lattices
by matching free energies in this manner. They also observed that the coftiitidr= 0,
where¢ was the correlation length, gave equivalent loci [14]. Both this condition and the
matching of free energies are consistent with the idea that the loci of zeroes coincide with
a change of dominant behaviour in the asymptotics.

More recently, the case of models with first-order transitions has been investigated by
Biskup et al. [15] who showed rigorousiythat the partition function of @-dimensional
statistical mechanical model defined in a periodic voluvhe= L¢ which depends on
some complex parameter such@sr y can be written in terms of complex functions
F; describingk different phases as

k
Z= Zqze_ﬁF’V +O(e L/tog=AEY), (15)
=1

whereg; is the degeneracy of phakes is the inverse temperature ahg is of the order of

the correlation length. The various are the metastable free energies per unit volume of
the phases, withi F; = F' characterising the free energy when phiisestable. The zeroes
of the partition function are then determined to lie withifed"/ o) of the solutions of the
equations

RFT =RFEM <RFE", Vk#Lm,

BV (3F.L —3F, )= mod 2r. (16)

The equations (16) are thus in perfect agreement with the idea that the loci of zeroes should
be Stokes lines, since the zeroesZzofisymptotically lie on the complex phase coexistence
curvesiFy ; = NF, 1 inthe complex parameter plane.

The specific Biskup et al. results apply to models with first order transitions — the
canonical example being the field-driven transition for the Ising model, and we are
interested here in a model with a third order transition, so it might initially seem that these
results were inapplicable. We are saved by the fact that when considered in the complex
temperature plane the transition is continuous only at the physical point itself (and possibly
some other finite set of points). This is nicely illustrated by looking at expressions for the
magnetization for the Ising model on the square lattice, on fat (platfagyaphs and on

1 Under suitable technical conditions.



W, Janke et al. / Nuclear Physics B 614 [FS] (2001) 494-512 499

thin (genericy?® graphs:
A+ YA —6u+u?)/B

M 1_mi2 (square)
3(1—16u)l/?
=S ()
_ 1/2
(1= %) (thing?), 17)

T (1-201+0)12

whereu = ¢? = exp(—4p). It is clear from these expressions, which apply through the
complex extension of the low-temperature phase Withero outside, that althoug¥ will
vanish continuously at the physical critical poiniss 3 — 2/2; u = 1/16 (i.e.,c = 1/4);

¢ = 1/3, respectively? it will generally be non-zero at the phase boundary approaching
from within the low-temperature region, whereas it will be zero approaching from outside,
which is characteristic of a first-order transition.

In summary, both general considerations about the change of asymptotic behaviour of
expansions of the partition function in different regions of the complex temperature or field
planes [9,10,12,14] and rigorous results [15] lead to Eqg. (16) as a means of determining
the loci of zeroes.

3. Seriesexpansionswith (two thirds) less pain

To get a series expansion f& one must in principle go back to Eq. (5) and invert (or
more correctly, revert) the expression far) in Eq. (6) expanded as a seriexito get an
expansiorz(g) in powers ofg. This is then inserted in Eq. (5) in order to obtain the desired
series from which the zeroes may be extracted. However, if one considers the various terms
in Eqg. (5) independently some interesting observations can immediately be made. Taking
each of the terms in Eq. (5) separately,

1 z
Z1.  =log| =
v g(g),

Z

1 [dt
g t
0

1

Z
dt
Zan — | — ()3, 18
S 80 (18)
0

the series expansion of each teme 1, 2, 3 can be written agy =) |, a/ A, (c?)g" where
A, (c?) is identical for all the 2. In addition, normalizing:} = 1 for the% log(z/g) term

2There are further points where the magnetization vanishes continuously: at the anti-ferromagnetie=point
3+ 24/2 and the unphysical point= —1 on the square lattice; and the unphysical poiat—1/4 on the planar
#* graphs, but these are discrete and finite in number.
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(since any: dependence in this can be putdp), one finds

n__ 2n n__ n
“TTary CT Gty
Although theA,, (¢?) which determine the partition function zeroes for a given power of
are the same for eac#, this is obscured by the differeaf in the sumz; + 2, + Zs.

Why should this structure be present? The solution given in Eq. (5) comes from
integrating an expression of the form

aj =1, (29)

1

Z:/dx(l—x)log(f(x))+~-~, (20)
0
which is common in form to all matrix models. The particular details of a given model are
encoded in the (x) which for the Ising model wittk = 0 satisfies

_(2f 1 2 »(2ef\°

The expression in Eq. (5) emerges on defining2¢gf /c and integrating by parts.
If we expand the logf(x)) in the integrand of Eq. (20), then we g¢tdx (1 —
x)P(gx,c), whereP(gx, c) is a power-series igx. Looking at the structure aP (gx, ¢)
it is clear that the integration over only affects numerical factors, butot the ¢?-
polynomials which determine the zeroes. If we now carry out the partial integration
on the P(gx, c), we obtain three termsP(g,c)/2 from the boundary corresponding
to Z1 (and irrelevant additional terms); [ dxxP’(gx,c) corresponding toZ; and
%fdx x2P’(gx,c) corresponding taZz. Carrying out the differentiation of the power
seriesP’(gx, c), followed by the integration above recovers the observed values of the
The upshot of all of this is that for the purposes of extracting partition function zeroes it
is sufficient to simply consider the expansion of(9@)/g) in powers ofg, by reverting
the series fog(z),

g=(1—-c?)z+622+3(c?+9)°+ -, (22)
to get
7(8) =& —68°+3(c®+5)(c>+3)g%+ -, (23)

and then taking log(g)/g), where we have rescaled— (¢2 — 1)z, g — (c2 — 1)23 for
algebraic convenience. The polynomialdfin front of the appropriate power ¢ will
then yield the desired Fisher zeroes. Various efficient algorithms exist for the reversion of
series (i.e., getting from Eq. (22) to Eq. (23)) and we have used both the built in algorithms
in Maple and Mathematica and one of the earliest numerical algorithms, Newton iteration,
to revert the series fqg(z) [16], all with identical results.

For the Newton iteration wheln= 0 we take our starting function to be

£ =~ (a2~ 1)z - 1) -2

+ (CZZ - 302(02 — 1)223) (B(c*—1)z— 1)2. (24)
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Table 1
The zeroes from an expansion of both (©@)/g) and Z to orderg14 are identical. The complex
conjugates of all the values shown are also zeroes

17.26983082 9.620359803 4.237939134

3.307585457 2.153341531 1.952696297

+0.2259213695 +0.1989588142+ 0.6083974700 +0.1697220421
+ 0.3562012608 +0.128548777H-1.322771774 +0.9027390050

This is then iterated with the standard Newton formula [16]

(@)
@)’
with the starting conditiorip = g (see Eq. (23) above). Since Newton iteration displays
quadratic convergence the iteration indeis related to the order of the expansiobfor
Zin g by i = 2¢. We thus get order®2— 1 for z(g)/g in k iterations. This is both an
advantage and a disadvantage since, although long series are generated quite rapidly, they
are doubling in length at each iteration which can rapidly exhaust the available memory.
With the built in functions on the other hand, one can proceed incrementally in the order.

To verify that logz(g)/g) really is sufficient to determine the zeroes correctly we can
compare the results for the zeroessinoming from the polynomial coefficient at a given
order in the expansion of l6§(g)/2), for instancez!4,

Zk+1=Zk — (25)

476812
§——g§——-0c28+525562344@264-54707993082624+1777427230536622

+ 2565884409300067° + 1908495144456488°8 + 7988644803377344°

13865261856130224
+ > c944-300128829911931662

+ 28216084061998806°+ 16541610886750148 + 6002231595716886
95938227092700
7 b

+133514857766160¢ + 17390110008960& + (26)

with the results from the full expression f& from [5].2 There is complete agreement
between the numerical values of the zeroes obtained with either method as shown in
Table 1.

Itis easy to obtain an expansion of I@gg)/¢g) in g up to quite high order with relatively
modest computing facilities. The coefficient §f° from such an expansion is given in
Appendix A and we use this for comparison with the analytical expressions for the loci of
Fisher zeroes in the next section.

The observations above regarding the sufficiency ofd¢9/g) for determining the
partition function zeroes also apply to both Lee—Yang zeroes and the Fisher zeroes in non-

3 We would like to thank the authors of [5] for providing us with their original data.
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Fig. 1. Lee—Yang zeroes in the complex exp(—2h) plane for the Ising model on pIanaf1 graphs
calculated from an expansion 9fg)/g to ordery31. They clearly lie on the unit circle.

zero field, since the general structure of the expression for

1
z:/dx(l—x)|09(f(X))+""
0

is unchanged when the field is turned on — it is the defining equatiorf foy which

is altered. A nice confirmation of this can be obtained by using the series expansion of
log(Z(g)/¢) to obtain the field zeroes in the variable= exp(—2k) which are plotted in

Fig. 1 for an expansion up to (@1) with ¢ = 1/4. These clearly lie on the unit circle,

as they do for the full partition function, and are also evenly distributed. Similarly, Fisher
zeroes for the partition function in field can also be investigated by expanditg$0gg),

using the full expression in Eq. (6) with# 0. The flow observed reproduces that seen in
[5] where the complete partition function was considered (at much lower order).

4. Thelocusof zeroeson ¢4 graphs

The determination of the locus of Fisher zeroes in the thermodynamic limit turns out
to be rather straightforward, as we now describe. Since we wish to rmiafichetween
the various solution branches to obtain the loci of Fisher zeroes and from EgF (30)
log(g(c)), the equation which determines the loci of zeroes in the thermodynamic limit is

log|gr(c)| = log|gx; (c)]. (27)
or more concisely
lgL(o)| = |gm; ()], (28)

where the varioug are given in Eq. (8) and =1, 2, 3, 4 where appropriate depending
on the region of the complexplane. The explicit expressions arising from substituting a
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Fig. 2. The locus of Fisher zeroes in the complex exp(—48) plane for the Ising model on the
square lattice. The ferromagnetic phase lies inside the inner loop, the paramagnetic phase between
the loops and the antiferromagnetic phase in the exterior.

complex value ot into Eq. (28) are not very illuminating and we do not reproduce them
here, but they allow the resulting curves to be plotted with Maple or Mathematica.

For comparison it is useful to refer back to the locus of Fisher zeroes for the Ising model
on a regular square lattice, which is the limagon in the complex:? = exp(—4p8) plane
shown in Fig. 2. The use of has the advantage of subsuming the- —c symmetry that
is present in the solution and is perhaps the most natural choice of variable. The (complex
extended) ferromagnetic phase lies inside the inner loop, the paramagnetic phase between
the loops and the antiferromagnetic phase in the exterior. The physical ferromagnetic
and antiferromagnetic transition points lie on the positive real axis-at3 = +/2 and
a multiple point with non-standard exponents is present at—1, as already noted in
the introduction when discussing the magnetization. The limagon maps onto a pair of
overlapping circles in the complexplane, which is probably a more familiar presentation.

In contrast only two phases are present in the diagram for the Ising model on ¢fanar
graphs in the: plane, since there is no antiferromagnetic phase in this case (the graphs are
not loosely packed — both odd and even loops can be present). The locus of Fisher zeroes
in theu plane for the Ising model on planaf graphs is shown in Fig. 3. The interior of the
loop is the ferromagnetic phase and the exterior the paramagnetic, with the physical transi-
tion lying atu = 1/16. The cusp point at 3 (4 + 5v/6) = —6.124362 . . doesnot repre-
sent an unphysical phase transition point, unlike the multiple point on the limacon, as can
be confirmed by looking at the discriminantg’) of ¢g’(z)(1 — 32)3/(1 — ¢?)2. This will
show up any non-generic points where multiple roots exist giving phase transition points
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Fig. 3. The locus of Fisher zeroes in the complex exp(—48) plane for the Ising model on planar
#* graphs. Some of the zeroes calculated from the series expansion t(g?)?derAppendix Aare
also plotted for comparison, though we have not plotted the zeroes lying at large negedivees
on the axis.

as opposed to the generic first-order boundati@be discriminant is proportional to

u’(1— 16u)?

A(g') X W, (29)

so the only place where non-generic behaviour appears apart from the trivialpeit,

is at the transition point = 1/16. At this point the KPZ/DDK exponenés= —1,8 =1/2,

y = 2 are manifested rather than the flat lattice Onsager exponents. In addition to the plot-
ted curve a cut runs down the negativexis from the cusp ta = —oco. In this respect

the locus of zeroes is more similar to that of the Ising model on a regular triangular lattice
rather than the square lattice [9]. Obtaining zeroes for finite size graphs from the series
expansion one also finds zeroes lying along the negatasés.

Back in the complex = exp(—28) plane one has the locus shown in Fig. 4 with a
physical transition point at=1/4 and a mirror image at= —1/4, both with KPZ/DDK
exponents. We have again omitted the cuts running up and down the imaginary axis from
the cusp points ai—%(g +/6) = +12.474744872. .to 1 0o for clarity. In thec variable
it is clear that these cuts, and the associated zeroes, appear becausg/ofténms in
the paramagnetic solutiorgg;, in Eq. (8). Due to the cut on the imaginary axis the entire
left hand region of the plane exterior to the locus plotted in Fig. 4 forms an unphysical
phase (labelled©” in the parlance of [9]), whereas the exterior right hand region forms
the (complex extended) paramagnetic phase. @hghase vanishes in the plane since

4The factor ofc/(1— ¢2)2 has been included to match with the factors in the free energy in Eq. (9) and the
(1 — 37)3 cancels the (irrelevant) denominatorgfz).
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Fig. 4. The locus of Fisher zeroes in the comptex exp(—28) plane for the Ising model on planar
#* graphs. The interior of the curve is the ferromagnetic FM region and the exterior the paramagnetic
PM and unphysicaD phases, separated by the cuts on the imaginary axis which we have not plotted.

the sections of the cut on the imaginary axis in th@ane are folded onto the negative
axis. Nonetheless the presence of the cut means that it is not possible to make a circuit of
the origin in thex plane in the paramagnetic region.

We have also plotted the numerically determined roots obtained from the coefficient of
29 in the expansion of log(g)/g) in Figs. 3, 4. Itis clear that the agreement with the
analytically derived locus is very good for the roots closest to the critical point(s). The
finite-size effects, which we have not investigated in detail, would be interesting to explore
further since it can be seen that in thelane the roots initially lie outside the analytic
locus before moving inside it as the cusp is approached.

The Fisher zero locus op* graphs is thus, if anything, simpler than the square lattice
locus — the antiferromagnetic phase is absent and there are no unphysical transition points
such as tha = —1 point on the square lattice. The topology is closer to the locus of zeroes
observed for regular triangular lattices which are also not self-dual, though the cut(s) do
not extend into the ferromagnetic region as they do on the triangular lattice.

5. Dual quadrangulations

Although the Ising model on plang® graphs does not display an antiferromagnetic
transition it does on their dual random quadrangulations [17]. Again it is useful for
orientational purposes to look at the locus of zeroes for the square lattice Ising model
which corresponds to the case of regular quadrangulations. This gives the overlapping
circles shown in Fig. 5.
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AFM

Fig. 5. The locus of Fisher zeroes in the compdeglane for the Ising model on the square lattice.
The O region is not connected to any physical values.of

The locus of zeroes for the random quadrangulations can formally be obtained by
mapping the locus of Fig. 4 in theplane to the:* plane.

=0
C (A+4¢)

which may also be written as* = tanh(8). The identification of the phases is, however,
different for the dualize@* diagram and the quadrangulations. In Fig. 6 we can see that
this gives a ferromagnetic phase around the origin, a crescent shaped paramagnetic phase
and an exterior region forming the antiferromagnetic phase. The boundaries of the crescent
are inverse to each other in the unit circle, a section of which also forms the image of the
cut along the imaginary axis in Fig. 4 and joins the horns of the crescenttel to form
the FM/AFM boundary. These horns lie D.7192731154..+ 10.6947274182.. and
just as for the cusp point(s) in theandc planes there is no sign of non-generic behaviour
there. The numerically determined roots have again been plotted for comparison.

One can also obtain the locus for the quadrangulations directly by using the dualized
expressions fog, replacinge — (1 —¢)/(1+c¢),

(30)

15c%-22c+5

36 (1+c2 °
5 422 —¢c -1+ (14 c)V1-¢2
8Hyp = —§ 1+ c)2 s
- 4c24c—-2+A+0)V/e2-1
§H.a =g 1+ )2 ’

and plotting|g.(c)| = |gu (¢)|. The results are identical whichever method is used. The

g1 (c) is now appropriate for the paramagnetic phase in Fig. 6, and#fie)’s cover the
ferromagnetic and antiferromagnetic phases.

gL =

(31)
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Fig. 6. The locus of Fisher zeroes in the complexplane for the Ising model on random
quadrangulations. This is formally identical to the mapping of the locus in Fig. 5 into the
¢* =1 - 0¢)/1+ c) =tanhB) plane but the identification of the phases is different. For
quadrangulations the interior of the crescent is the paramagnetic (PM) phase and the two horns of the
crescent are joined to= —1 by arcs of the unit circle which are the images of the imaginary axis
cuts in Fig. 4. These form the boundary between the inner FM and exterior AFM phases.

The dual quadrangulations display a ferromagnetic transitien=a8/5 (the image of

¢ = 1/4) and an antiferromagnetic transitionat 5/3 (the image ot = —1/4), both
with KPZ/DDK exponents. Looking at the dualized discriminant (cf. Eq. (29)),

- 3_525_321 141_ 14

A(X(c )= (3¢ )1(6+C)( C)’ (32)

C

we can see that this also vanisheg at —1 as well as the transition points ats3 5/3.
It would be an interesting exercise to determine the associated exponents in full from the
matrix model formulation or series expansions, but we do not pursue this further here.

6. Discussion and desiderata

We have seen that it is possible to obtain the locus of Fisher zeroes for the Ising model
on both planap* graphs and their dual random quadrangulations by simply matching the
moduli of the critical couplingg(c) or g(c) for the various phases. This gives the loci
in Figs. 3, 4 and 6, respectively, which form an interesting contrast to their square lattice
counterparts in Figs. 2 and 5. In particular, the lack of self-duality ogfhgraphs makes
for less structure than on square lattices since there is no antiferromagnetic transition and

the general picture is more similar to the loci seen for regular triangular lattices and the
dual honeycomb lattice [9].
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Although the considerations of [15] were for first-order transitions the fact that the phase
boundaries of the complex extended phases generically display first-order behaviour means
that the idea of matching up the real part of different branches of the free energy also
applies to the models here. The more general approach of [12,14] and the idea of regarding
the loci of zeroes as Stokes lines or complex phase boundaries also suggests that this will
determine the loci correctly. Comparison with series expansions results, both from [5] and
the much longer self-generated series here, found good agreement with the analytically
determined loci. We saw that generating such series expansions to obtain either the Fisher
or Lee-Yang zeroes for the Ising model on planar graphs reduced to the reversion of a
series forg(z) and taking a logarithm, both simple operations, and relatively long series
could be produced without undue effort.

It is perhaps worth noting that various properties of Fisher zero loci discussed in [10]
which were derived from general considerations still apply to the models considered here.
We have:

— The loci of points where the free energy is non-analytic is symmetric abodtdhe
axis (“Theorem 1” of [10]) — applies to bothp* graphs and quadrangulations.

— If the graph has even coordination number the locus of zeroes is invariantaneder
—c (“Theorem2” of [10]) — applies to thep? graphs.

— If the graph is bipartite the locus of zeroes is invariant urder 1/c (“ Theorem 3”
of [10]) — applies to the random quadrangulations.

We have looked only cursorily at Lee—Yang zeroes in this paper, for which a circle
theorem in the complex = exp(—2k) plane still appears to be valid on both planar [5]
and thin graphs [18]. We noted that the results for the series expansions still hold when
h # 0, and a series i to obtain the Lee—Yang zeroes could still be generated by reversion
of g(z). Since the form ofZ is identical for¢2 planar graphs, an investigation of Fisher
zeroes on planap® graphs and their dual triangulations along the lines of the work here
would thus be perfectly feasible. This would make for an interesting comparison with other
regular lattices and the cases discussed here since, as we have seen, the structure of the loci
of Fisher zeroes is highly non-universal even when the phase transition in the Ising model
is universal.

Finally, we note that similar methods to those employed here may be used to obtain the
locus of Fisher zeroes for the (mean field) Ising and Potts model on thin random graphs
[19].
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Appendix A

The polynomial inu which appears as the coefficient 8f° in the expansion of
log(z(g)/g). This was used to determine the zeroes plotted in Fig. 3 for comparison with
the analytically determined limiting locus.

37139835653499716006137093004620701844717837598860860

—  148105411685025580921368944483948303066640247852769588720

—  21979663196506038532400499878521322645514937535851779523 9040

—  164831966491059030819403027184073178546645417896670585118583360

—  73190682361368063761602209974275459964883309418605799340499676080

—  21193244550424189508255837901963813871588047644811792548846191056480

—  4271156254827515627988674042672332480042287504111958952442525040383760

—  6278621473905206413704464372911833507904808105791907311470224371180%6480

—  697451402481963581518647861239938075299416288100202802147799595869624¥8000

—  6018464875673457244143786208765208352061116125920486582535296176941626552480

—  412471197424814031713421607686052888384939032979910093299169932719217505805680

—  22861804785909511304850003848078876423860505468001445816621100351727090585759360

— 1040388001009525627004038511792853014499415633466242701751022788738614223763869200

— 3937229409789412050834300775784434139478345858309842059514852058286333563168%4924640

—  1252669979698277617112104382833071490296757418502909447129580208467158633229262650800

—  33824235941762809316986439403557899119830643621806795895083691041491223423768955205440

—  781506993375339419627869035781247001736394777182618059097298519992567856933676 156704880

—  15562658373901209414212760616146627814737888000032257222965672288658120697186968782275040

— 2688119116711369556909180422368568808583710662150934072417313897698891344935807512 99933200

—  4050291100241419582412182577585709209008056613597679444354569945583790578947675200488223040

- 53504781415966480294594562472712153356937322011357889872884583481047270602536642303088638640

—  622495367645869004219933292061848993497857662753083300275019010292939581507824341349635997280

—  6404543438655411633219849404298860613153085517505116213303372819518740708536174835590579287440

—  58485418180717913864496799218932794580143995855302867606977886170575639976699851845262721 795200

—  475621336785144578141093749216959112700270248123937785852140476541108616686976720192921iP50659120

—  3454949138847954145125771003347606489152711556862180385372143917784666252021530028539664853182560
—  22479199511986118388889724740161629827026678535630939603915122091636882657168104303228159674782800
—  131329868076867196195186585236624456481415618356382317417014696466013312429780652860135768287296320
—  690521599841649282635736801910885058607271123389022410819911445499545307915907348287733164887752240
—  3274325328024256449458979614797082828181193217762090705841294573764309335044774708753150018882173600

—  14028681139432688233381147758023731741378398828505334676962034681706261933990437547881433240086857360
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54401231376357018504045387431573654084475881533965021111539531577783242990447085082088897334313973760
191239041521657795885877250378350106358177226586893476004928070338801521234269414232669291252489401040
610291336906248150439271697453406834444702936621298381611047533416154600700953132073526490390832405920
1770312091536857444373426280129531056383823804457933663200346345833395486708265307228705128695195679600
4673258693673369170099996712465402139410313870189955652194788714038526152805740081647593630982237053760
11238340128289348531242087550331250364185389607406579052122781101900272991182180944775170566681%4 9386000
24643620807293562049016307383826254746709674468010311230815770648930276238060169036875457070898580721120
493162150476814228206397980349685634726615861538591464523248806389368740144629174428305122514147 7320240
901318393228181045973333656978550099489171522229366388930652980171929612846379893219298248686268%42600320
150539307460569060574873043134235781924850278322933804772229480942138558944046423812994722573 756085825360
229903670914274936494547986274227024806559809186604659564439155029892404257079655480106334324468982885920
321195929010989242053422405330257454914814399821523791435254317299861335551419026344418606382638818360560
410667245136280380010581522457335103688614698402729092669357283369677965166842035371819832521185580164800
480660884611292610900465788979182810237367769486758482580971506790193274756800002989335685501195886450960
5151276226040090765153829913209218826548056629708415452289752718873701572424009462543391907293 11850734560
505572539992143017713391549930170518971477525159833401616072175808615633494794516723314803372928%1 9903920
454440543980099722883378100957933438165258237407744106629390938799988591553099389645099988347996759394560
374106736311266598660706201323205892577430894328276767390142693909422925642543062380498942843078528251600
28203730739234912231809639540144473977830193628423714531114981021252335337593349546399386969360146997280
194690973545520420014650890857022846138498239021284276872938877733302758744011263203822896548354453908080
123031667663724163290143244836151984882257781474006660444783619429304123640439106921897101552508284604480
71152689559788776900734692668351990631384530566734957851066183734605762285678691522899649638001404881040
37645077644878972338954061259578470473781833988432377397016223534337576278963315955825141659844837247200
1821268877015292037233106781985715839928641675281199660013467065219481393881367816913702931198/88169520
805308804562459495708503916394987237038843253612181001165500116701193266798390725150981877339199 0450560
325247064508222935600865075176835315684594001634356574243514470360885745334665091912159625190587 2636880
11990378784891137784387162718173915175127811760887176545601348806269721650410179138204595667 40270632480
403173861504807914325983089651615786813837710424803782422307586554827984880680408117617036296332317680
123545737931826333990589263018372737196158771136705218308890409337157363897683254886286406051631360320
34469806039566521127126491885908195430460993244436123158311930137387052183055924535551928957561135760
8747581221336382206763336472263174629514640810049804874785909198519454278642989719373646252343135840
2016966904073261456791906783288877971694018387744544285386966376644936811743262591541510272364280880
422040110288334497759627356286465867221287602590081491468592540570383771671547293848313282785512320
800369888141026623955457025715301106622771190503512832013901433783072540634423923563360748(37002080

1373716048286765788890397961235990438703962571943239586370660770915773014031533144455242 7440036800
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—  21305814897461798970631914536616294324836639712252844746908034802252303949960407062767533%7037600
—  208084582170998682522557843634130692118118248948169065379102074737434795961756416684382795001600
—  37544966215507523322227694572841010043722835844974349906421354497206822261619859885610242620000
—  4247074844108597663669728712049132720278802778418177142466258256291478726641887125832199121600
—  430155384350934174771440197370772245548350430019275647467244387233120149574187173959697949600

—  38846640456271627441559966602880555242219998526979599170425784619478931564006336448368211200

—  3109241968691735189036674456756079403285981061864652920257364770194926524810059222687549600

- 218519863192071952043562258682613228805967293880235742328799873278069522182085472683592000

—  13283468415320811624119223651865154826538028015964121931579143066280124387044588883314400

—  680683119521593923666628073413708550282239032204436877326746488850479986486890462153600

—  28058580972988347971863829784009239496026729839677340527392289791671643157102487191200

— 845523959563531370690705608441021047213998439259969130238386790640994054828513707200

— 1140887404597421591776554792039966147370831359556572145202708266673791740119529072800
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