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Abstract 

In a recent paper [C. Baillie, D.A. Johnston and J.-E Kownacki, Nucl. Phys. B 432 (1994) 
551 ] we found strong evidence from simulations that the Ising antiferromagnet on "thin" random 
graphs - Feynman diagrams - displayed a mean-field spin-glass transition. The intrinsic interest 
of considering such random graphs is that they give mean-field theory results without long-range 
interactions or the drawbacks, arising from boundary problems, of the Bethe lattice. In this paper 
we reprise the saddle-point calculations for the Ising and Potts ferromagnet, antiferromagnet and 
spin glass on Feynman diagrams. We use standard results from bifurcation theory that enable us to 
treat an arbitrary number of replicas and any quenched bond distribution. We note the agreement 
between the ferromagnetic and spin-glass transition temperatures thus calculated and those derived 
by analogy with the Bethe lattice or in previous replica calculations. 

We then investigate numerically spin glasses with a + J  bond distribution for the Ising and Q = 
3, 4, 10, 50 state Potts models, paying particular attention to the independence of the spin-glass 
transition from the fraction of positive and negative bonds in the Ising case and the qualitative 
form of the overlap distribution P ( q )  for all of the models. The parallels with infinite-range 
spin-glass models in both the analytical calculations and simulations are pointed out. 

1. Introduction and analytical calculations 

The analytical investigation of  spin glasses on random graphs of  various sorts has a 

long and honourable history [ 1,2], though there has been little in the way of  numerical 

simulations I . Random graphs with a fixed or fixed average connectivity have a locally 

tree-like structure, which means that loops in the graph are predominantly large, so 

Bethe-lat t ice-l ike [4]  (i.e. mean-field) critical behaviour is expected for spin models 

on such lattices. Given this, the analytical solution for a spin model or, in particular, 

I For some recent simulations, see Ref. [3]. 
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a spin glass on a Bethe lattice [5,6] can be translated across to the appropriate fixed 

connectivity random lattice. Alternatively, a replica calculation can be carded out directly 
in some cases for spin glasses on various sorts of random lattices. For the case of Ising 
spins on a fixed connectivity random lattice we arrive at the following prediction for the 
ferromagnetic transition temperature, if one exists: 

o o  

f P ( J )  tanh(flFMJ) dJ  = 1 z - l '  (1) 
- - O O  

where P ( J )  is the quenched probability distribution of bonds in the model, z is the con- 
nectivity and flFM is the (inverse) transition temperature. A similar relation is predicted 
for the spin-glass transition temperature flSG 

o o  

P ( J )  tanhE(flSGJ) dJ  - 1 z - 1" (2) 
- - O O  

From Eqs. (1),  (2) we would expect to find a ferromagnetic transition when P ( J )  = 
p S ( J - 1 )  + ( 1 - p ) 6 ( J  + l) at 

1 
Z -- 1 (3) (2p - 1) tanh(flFM) = - -  

or a spin-glass transition at 

1 
t anh2 (flSG) - Z -- 1" (4) 

depending on which critical temperature was lower. The global order parameter that is 
necessary to describe the system in the spin-glass case [ 1,2] appears as the Fourier 
transform of the local field distribution. 

A rather different way of looking at the problem of spin models on random graphs 
was put forward in Ref. [8], where it was observed that the requisite ensemble of 
random graphs could be generated by considering the Feynman diagram expansion for 
the partition function of the model. For an Ising ferromagnet with hamiltonian 

H = fl Z °'i°rj' ( 5 ) 
(i j)  

where the sum is over nearest neighbours on three-regular random graphs (i.e. ~b 3 
Feynman diagrams), the partition function is given by 

1/ daf d~b+ d~b_ e x p ( - S )  (6) 
Zn(fl) x Nn = ~ A~n+ 1 2,tr dv/-d--~ 

where Nn is the number of undecorated graphs with 2n points, 

( 6 )  2n ( 6 n - - 1 ) "  
Nn = (2n)!! ' (7) 
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K is defined by 

Ill g a b =  1 

and the action itself is 

(8) 

S =  1 E  ft~agabl ~/)b - 1 3 ~(~b+ + ~b3__ ), (9) 
a,b 

where the sum runs over 4- indices. The coupling in the above is g = exp(2flJ) where 
J = 1 for the ferromagnet and the ~b+ field can be thought of as representing "up" spins 
with the qb_ field representing "down" spins. An ensemble of z-regular random graphs 
would simply require replacing the 4) 3 terms with ~b z and a fixed average connectivity 
could also be implemented with the appropriate choice of potential. 

This approach was inspired by the considerable amount of work that has been done 
in recent years on N x N matrix 2 versions of such integrals which generate "fat" or 
ribbon graphs with sufficient structure to carry out a topological expansion [9] because 
of the matrix index structure. The natural interpretation of such fat graphs as the duals 
of triangulations, quadrangulations, etc. of surfaces has led to much interesting work in 
string theory and particle physics [ 10]. The partition function here is a poor, "thin" (no 
indices, so no ribbons), scalar cousin of these, lacking the structure to give a surface 
interpretation to the graph. Such scalar integrals have been used in the past to extract 
the large-n behaviour of various field theories [ 11 ] again essentially as a means of 
generating the appropriate Feynman diagrams, so a lot is known about handling their 
quirks. 

For the Ising ferromagnet on three-regular (q~3) graphs, solving the saddle-point 
equations at large n shows that the critical behaviour appears as an exchange of dominant 
saddle-point solutions to the saddle-point equations 

+ 

1 2 
~b_ = x/g~b~ + - ~ b +  (10) 

at g = exp(2BV-M) = 3. The high- and low-temperature solutions, respectively, are 

¢ + , ¢ _  __. 
g + l '  

v'g ( 1 +  g - 3  (11) 
~b+'~b- = 2 ( g -  1) ~ 1 ) '  

2 N, the size of the matrix is not to be confused with n, the number of vertices in the graph! 
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which give a low-temperature magnetized phase that can be detected by a non-zero 
magnetization order parameter, which is defined in terms of the fields 4,+, 4,_ as 

M = 4 , 3  _ 
4,3 + 4,3_" (12) 

The critical exponents for the transition can also be calculated in this formalism and, as 
expected, are mean field. In general a mean-field transition appears at 

exp(2/3V-M) = Z/(Z -- 2) (13) 

on 4,z graphs, which is exactly the value predicted by Eq. (3) in the standard approaches. 
To consider a non-trivial bond distribution it suffices to make the substitution [ 8] 

O O  

Kab --* / KabP(J) dJ. (14) 

- - 0 0  

in the saddle-point equations. If we take the distribution P(J)  = p6 (J  - 1) + (1 - 
p) 6 ( J  + 1), this has the effect of replacing g by 

pg+ 1 - p  
p + (1 - p ) g "  (15) 

On 4,z graphs we find that this change in the coupling shifts the ferromagnetic transition 
point to 

(2p - 1)(z - 1) + 1 
exp(2/3FM) = (2p -- 1)(Z -- 1) -- 1' (16) 

which is again identical to the value found from Eq. (3). 
This is rather surprising as a direct substitution of the weighted propagator coming 

from Eq. (14) into the saddle-point equations might be expected to correspond an 
annealed distribution of bonds because we are calculating with a finite number (one) of 
replicas. The calculations leading to Eqs. (3) and (4),  however, have taken quenched 
bond distributions by calculating with k replicas and then taking the limit k ---} 0. 

2. The saddle-point equations for spin glasses 

There are various possibilities for addressing spin-glass order in the Feynman diagram 
approach. In Ref. [8] the entropy per spin was calculated for the Ising anti-ferromagnet 
on 4, 3 graphs and it was found to become negative for sufficiently negative/3, which 
is often indicative of a spin-glass transition. Similarly it was found that the factorized 
solution (which exists in the ferromagnetic and anti-ferromagnetic cases) broke down 
for higher moments Z k of the partition function, which is again indicative of a spin- 
glass transition. The temperature at which this happened appeared to be converging to a 
finite value as the moments increased, unlike the random energy model where a similar 
calculation gives a temperature that diverges as ~ [ 12]. 
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We now look at the calculation of Z 2 in a little more detail. We can put two Ising 
models on each Feynman diagram by taking four fields ~b++, ~b+_, ~b_+, ~b__, where 
the double subscript now covers both replicas, and enlarging the inverse propagator to 

/ g  1 1 1 / 1 g - 

1 g - 1 

Kab = 1 g " (17) 
1 - g 1 

1 g 
- 1 1 g 
g 

If we solve explicitly the saddle-point equations for the two-replica system with P ( J )  = 
p 6 ( J -  l ) + ( 1 - p )  6( J +  1 ) we find a p-independent solution appearing at g = 5.8284. . .  
and a mirror solution at the corresponding antiferromagnetic value given by the inverse 
of this, g = 0.1716 . . . .  The second solution, g = 0.1716 . . . .  was also observed in 
Ref. [ 8] as the point where the factorized solution broke down for the antiferromagnet 
with k = 2. Remarkably, as we are looking at a finite number (two) of replicas here, 
g = 5.8284, g = 0.1716 are precisely the values given by Eq. (4) for/3sc, where the 
limit k ~ 0 has been taken to obtain the spin-glass transition temperature. Thus, just 
as for the ferromagnetic transition, the quenched k ~ 0 results are appearing already at 
k 4: 0. Using numerical routines to investigate the structure of the saddle-point equations 
for more Ising replicas reveals that the solutions at //FM and //s6 still appear at higher 
k as bifurcations from the symmetric high-temperature solution. 

This is not quite the whole story. As already noted in Ref. [8] for k = 3,4 . . . .  we hit 
a different sort of critical behaviour which takes us off the symmetric solution branch to 
a repl ica symmetric solution before reaching/3s~. At these points a first order (jump in 
q) transition occurs. This behaviour is identical to that of the Ising replica magnet [ 13], 
which is effectively the SK model at a finite number of replicas for a suitable choice 
of parameters. In this the k = 2 transition is second order and the transition temperature 
coincides with the k = 0 value, whereas the k ~> 3 transitions are first order and occur 
at higher temperatures. 

We can attempt to analyse the saddle-point equations for any  number k of Ising repli- 
cas in the case of purely ferromagnetic or antiferromagnetic couplings using bifurcation 
theory methods because the tensor product structure of the propagator gab is preserved 
in these cases 3 which facilitates the calculation. We will not, however, see first-order 
transitions such as those discussed above because the bifurcation structure only tells us 
about continuous transitions from the symmetric high-temperature solution. 

If we denote the 2 × 2 propagator in Eq. (7) as K ( g )  for brevity, the saddle-point 
equations for the k-replica case may now be written schematically as 

3 This is just a more formal statement of the observation in Ref. [8] that a solution given by the product of 
k = 1 solutions existed in these cases. 
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OSt a--~ ~ qb -- ®kK(g)¢~2 = 0, ( 1 8 )  

where (h, ~2 are now 2 t dimensional vectors, the tensor product is taken over k copies 
of K and the action for k replicas is denoted by Sk. We have abused the notation slightly 
in Eq. (18) as the left-hand side is really ®kK(g)OSk/Od~ because we have multiplied 
by ®kK(g) to get rid of the inverse factor coming from the quadratic term in St, which 
simplifies the analysis of the saddle-point equations. We will continue the abuse in the 
discussion below. 

For the antiferromagnetic case g is simply replaced by 1/g throughout. We restrict 
ourselves to investigating the symmetric branch (and hence ignore the first-order solu- 
tions that appear for k > 2). A symmetric, high-temperature solution can be constructed 
by taking products of the k = 1 symmetric solution in Eq. (10) (t, t) where 

t = x/g . (19) 
g + l  

Standard theory [ 14] then shows that a bifurcation from the symmetric high-temperature 

solution (i.e. phase transition) is expected when the hessian det (02St/Odp 2) is equal 

to zero. More explicitly 

(o12Sk'~ 
det ~,0q~2 j = det(2tkKt -- 1), (20) 

where we have denoted the tensor product of k copies of K by Kk. If we absorb the 
factors of t into K and denote K" = (x /~+  1/x/~)-lK we thus have 

(02Sk~ = det(2~'k -- 1) = 0 (21) 

as our bi furcat ion equation. The extension to z-regular (t~ z ) graphs is tr ivial, For these 
the k = 1 high-temperature solut ion is (?, t-) where 

"t= ¢ VI ~ ~llCz-2) 
\ g  + 1 .] (22) 

and the hessian becomes 

( 02Sk ~ 
det \ ~ - j  = det((z  - 1)(Fz-2)kKk-  1) (23) 

so the net effect is simply to replace 2 by z - 1 in the bifurcation equation. 
The matrix ~" has two eigenvalues 1 and ( g -  1 ) / (g  + l)  = tanh(fl). From the 

algebraic structure of ~'k we can readily calculate the eigenvalues Am = tanh(fl) m, 
m = 0, 1,2 . . . .  k where each eigenvalue has multiplicity (m k) and express (taking z = 3) 

det ~ -~--~j = H ( 2 t a n h ( f l ) m  - 1)(*-) = O. (24) 
m=O 
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The roots of  the bifurcation equation are thus 

tanh(fl) = 2 - l / m ,  m = 1 , 2  . . . . .  k,  (25)  

reproducing Eq. (3) for p = 1 and z = 3. In terms of fl = ½ log(g) we can write this as 

(2'/-+1) 
flm=½1oglt21-77-g-~_ 1 , m = l , 2  . . . . .  k, (26) 

where we have retained the label m on ft. The above analysis holds for the ferromagnet 

where g = exp(2fl)  ~> 1. In the case of  a pure antiferromagnet g = exp(2/~) ~< 1 and 

tanh(fl) is negative, so we can only find roots of the bifurcation equation for m even. 

( 2 l /m :  1 ) Dm=½1og\2~i.,+l, m = 2 , 4  . . . . .  k. (27)  

We have thus recovered both flFM = fll (g = 3) for the ferromagnet and flsc = ~2 
(g = 0.1716) for the antiferromagnet in this approach. 

A generic feature of the above solutions is immediately obvious - once a bifurcation 

appears at some k it is always present for a greater number of  replicas. This suggests 
a possible resolution of the puzzle of why the quenched transition temperatures are 

appearing already at finite k: The appropriate transition is encountered at the same 

temperature for all k, so the analytical continuation k ~ 0 is trivial. In the spin- 

glass case the first-order transitions for k ~> 3 are the fly in the ointment, as these 

are encountered before the putative continuous transition at flsc. Looking explicitly at 
the replica symmetric solution for k -- 3 [8] shows that the replica symmetric branch 
appears in a first-order transition at g _~ 0 .19 . . .  (in the antiferromagnet) before the 

symmetric branch takes over again below this. 

It is rather amusing that we have encountered a "c = 1 (2 Ising model) barrier" in 

this context. Calculations are still possible here for k > 2, but there is certainly a change 
of behaviour. In the case of spin models on annealed ensembles of fat graphs analytical 

calculations have struggled to get beyond c = 1, whereas simulations have so far failed 
to see much difference between c < 1 and c > 1. 

Although the tensor product structure of Kk is lost when p 4= 0, 1 and the saddle-point 

equation becomes 

ask a-~ = 4J - (p ®k K(g)  + (1 - p)  ®k K ( 1 / g ) )  ~b 2 = 0, (28) 

the matrices K ( g ) , K ( 1 / g )  differ only in the sign of the eigenvalue tanh(fl),  so it is 
still possible to derive an explicit expression for the hessian, which in this case is 

( sk, k 
det 1~,~-~2 ] = H [2 tanh(fl) m (p + (-1)m(1 - p ) )  - 1] (~) (29) 

m=O 

We thus reproduce the values of flFM and flsc calculated from Eqs. (3),  (4) for general 
p as the first two bifurcation points. On ~b z graphs we replace 2 ~ z - 1, which is still 
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in accordance with Eqs. (3),  (4).  As all even bifurcation points are independent of p, 

we predict the p independence of the spin-glass transition point, as in the more standard 

approaches. 
Eqs. (3) ,  (4) are not restricted to distributions of the form P ( J )  = p 3 ( J -  1 ) + ( 1 - 

p) 8 ( J  + 1), but we can extend the approach here to accommodate this by making the 

observation that K ( g l )  will commute with another K(g2) for any gl,g2.  Thinking of a 

given distribution (a gaussian, say) as a weighted sum of delta functions over K's with 
different values of g, we can still diagonalize all of the terms in the sum simultaneously 

and arrive at an expression of the form 

( ° 2 & ~  - 2 e(J)tanh(/~J)'~dJ - 1 = 0  (30 )  det \ 04)2 ,] - m~ 

for the bifurcation equation. 

Although the continuous transition temperatures /~m are independent of the number 

of replicas, the multiplicity of solutions (i.e. low-temperature phases) that bifurcate at a 

given point are not. There are k ( k -  1 ) /2  solutions bifurcating at the spin-glass transition 
temperature/32, so just as in the infinite-range model there is a change in the nature 

of the solutions to the saddle-point equation when k < 1 and the number of solutions 
is formally negative. The classification of the spin-glass solutions in the current case is 
thus clearly closely related to the parametrization of the matrix Qab that appears in the 

saddle-point equations of  the infinite-range model [ 15]. 
It is also possible to consider Potts spins on a Bethe lattice [6,7]. We take the 

hamiltonian in this case to be 

H = 2fl y ~  Sin,,, ,, (31) 
{/Y) 

where the spins o" i can now take on Q values 4. The critical temperatures for ferro- 
magnetic and spin-glass ordering calculated in Ref. [6] give, in the style of Eqs. (1),  
( 2 ) ,  

P ( J )  k, exp(2/3FMJ) + Q - 1 z- - -~  (32) 

and 

o o  

i.<.,r ox.<..<,_, , 
\exp(2flSGJ) + Q -  1 dJ  = z - 1 

- - O O  

(33) 

4We have adopted a different normalization for the Ports hamiltonian from Ref. [6], taking a factor of 2 
rather than Q in front, for consistency with Ref. [ 16] 

for Q-state Potts models. If  we consider the ferromagnet, P ( J )  = B(J - 1), we find 

that exp(2flVM) = (Z + Q - 2 ) / ( z  - 2). There is, however, a parallel here with the 
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/sing spin-glass calculations. It was noted in Ref. [7] that this temperature is actually a 

spinodal point, for Q > 2 the Potts ferromagnet undergoes a first-order transition before 
reaching this point. Arguing, as in the Ising case, that a random graph looks locally like 
the Bethe lattice we would expect the various critical temperatures and spinodal points 
still to apply on ~b z graphs. 

It is also possible to solve the saddle-point equations explicitly to avoid relying on 
this analogy. For the 3-state Potts model with action 

S l 2 = 2(~/)a + t~ 2 "q- ~)2c) --  C(~/)ad/)b -}- ~/)a~/)c + ~/)b~c)  --  1 3 3 g(q~ + ~bo3 + ~bc), (34) 

this gives high- and low-temperature solutions 5 

~a,b,c  = 1 --  2c; 

1 + VII - 4 c -  4c 2 
~ba,b = 2 ' 

1 + 2 c -  X/1 - 4 c - 4 c  2 
~bc - , (35) 

2 

where c = 1/(g + 1). This gives a changeover in behaviour at c = ½, i.e. g = 4, which 
agrees with the value from Eq. (32) and thus picks out the spinodal point. Similarly, 

solving the 4-state Potts model equations gives the solutions 

~ a , b , c , d  = 1 - -  3c; 

1 + 3 c  - x / 1  - 6 c  - 3c 2 
~ a , b , c  "~ 

2 

1 - c +  x/1 - 6 c -  3c 2 
~bd - , (36) 

2 

where c = 1/(g + 2) here. The changeover here is at g = 5, again apparently at the 
spinodal point. It would be interesting to carry out a simulation to check the nature of  

the transition in these ferromagnetic models. 
Analysis of  the Potts spin-glass saddle-point equations follows a similar tack to those 

of  the Ising model. The caveats about missing potential first-order transitions at finite k 
still, of  course, apply. I f  we take the 3-state Potts model as an example K is replaced 
by the 3 × 3 matrix L(g) 6 

1 1 
1 - -  - -  

g g 
1 1 

Lab = - 1 - 
g g 

1 1 1 
g g 

/ (37) 

5 We gave these, and those for the 4-state model, incorrectly in Ref. [ 16]. 
6 This definition of L, which is the simplest from the point of  view of the saddle-point equations, involves 

a rescaling with respect to Eq. (34) which accounts for the different between t and the high-temperature 
solution in F.q. (35). 
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and the high-temperature solution on ~b 3 graphs is (t, t, t) where 

739 

t =  g-----~-- (38) 
g + 2 "  

The eigenvalues of 1,(g) = tL(g) are 1,A,A, where ,~ = ( g -  1 ) / ( g + 2 ) .  It is still true 
that L,(gl ), L,(g2) will commute for any gl, gz so we can put this to good use again to 
derive the hessian for general P ( J )  

det ~ , ~ - j  = m--0 \ exp (2 f l J )  
(39) 

The multiplicity of solutions has changed because of the possibility of taking one of 
two A from each replica. The results for flFM and fls~ from the Bethe lattice are thus 
faithfully reproduced as the first two bifurcation points. 

Generalizing to the Q-state Potts model on ~b z graphs, we find 

(40) 

and the eigenvalues of the Q x Q matrix L, will be 1 and Q - 1 h's, where A = 
( g -  1 ) / ( g  + Q - 1). This gives the hessian 

(02Sk~_~- I ( e x p ( 2 f l J )  = 1 d J - 1  
det \ 0 ~ b 2 j  - (z - 1) fP(J)  \ exp (2 f l J )  + Q -  1 

m=0 

(41) 

which the reader will be pleased to hear is the last elaboration of the bifurcation equation 
that we consider. The Q = 2 case reproduces the Ising results derived earlier. 

Given the accessibility of mean-field results on random graphs, especially as one is 
not forced to take infinite-range interactions or deal with the boundary difficulties of the 
Bethe lattice, the lack of simulational effort is rather surprising. As the new viewpoint 
offered by regarding the random graphs as Feynman diagrams offers the possibility of 
attacking various questions, such as the nature of replica symmetry breaking on random 
graphs, from a different angle, we thought it important to continue the simulations of 
Ref. [ 16] for the Ising and Q-state Potts spin glasses on ~b 3 graphs to check carefully 
the agreement with the known results for quantities such as the transition temperatures 
and critical exponents and to gain a thorough understanding of the numerics before 
going on to investigate less well understood aspects. Our numerical methods are largely 
similar to those of Ref. [ 16], so we describe them only briefly in the next section and 
concentrate on the results of the simulations. 
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3. Simulations: Generalities and Ising model 

In all of the simulations we report here we generated around 100 different Feyn- 
man diagrams at each of the sizes we simulated, 100, 250, 500 and 1000 vertices. The 
quenched bond distribution on each graph was P (J)  = p 8 ( J  - 1 ) + (1 - p )  8 ( J  + 1 ), 
with p taken to be 0.5 (the " + J "  distribution) unless specified otherwise. Various 
massively parallel processors were used to run the simulations of the different graphs si- 
multaneously and perform the quenched averaging over the graphs in situ. Again, in the 
interests of simplicity and reliability (and as in Ref. [ 16] ) we used only a metropolis 
algorithm with simulated annealing rather than some of the more advanced algorithms 
developed recently. At each fl value simulated we carded out 500,000 simulated anneal- 
ing sweeps, followed by 500,000 production sweeps with a measurement every tenth 
sweep. Each sweep consisted of a complete metropolis update of the lattice. Our strategy 
for extracting the critical exponents will be to use Binder's cumulant for the overlap, 
defined below, to extract an estimate for fls~ and the combination ~,d and then to look 
at the finite-size scaling of other quantities to extract further exponents. 

In the Ising model the spin-glass transition temperature is found in simulations by 
putting two Ising replicas on each graph with spins o'i, 7"i to measure the overlap, which 
is the order parameter for the spin-glass transition 

1 ~ Ori'l'i • (42) 
q = n  i 

The Binder's cumulant for the overlap is then defined in an analogous fashion to the 
Binder's cumulant for the magnetization in a ferromagnetic transition 

[(q4)] (43) 
u,g = [(q2)]2 

where ( ) denote thermal averages and [ ] disorder averages. The plots of Usg for 
differently sized graphs are expected to cross at flsr. In the course of all the simulations 
the overlap distribution 

pn(q)=[( t~ (q - l~ -~ t r i l - i ) ) ]  (44)  

was also histogrammed. A non-trivial P(q) is a strong, but not infallible, signal for a 
spin-glass phase. It is perhaps worth remarking that the order of averages in Eq. (43) is 
not absolutely obvious a priori - one might have considered [(q4)/{q2)2], for instance. 
Regarding (qn} as moments of the distribution P(q), the choice in the Eq. (43) would 
seem most appropriate. The alternative overall average has been considered in quantum 
spin-glass simulations [ 17] on the heuristic grounds that it gives better scaling behaviour. 
We have carried out the scaling analysis of our simulations described below with both 
definitions for the Ising spin-glass and found essentially identical results. 

We expect the overlap to have the finite-size scaling form q ~- n -#/~d at any spin-glass 
transition and the spin-glass susceptibility, defined as 
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Table 1 
Spin-glass exponents for the Ising model 

741 

a fl y (5 ud 

- 1  1 1 2 3 0 

[ Q 4 ] / [ Q 2 ] . [ Q E ]  

x I000 

:...~..~ o 500 

2 

] , i , , I , , , , I , , , , I , , , i 

0.8 0.9 1 1.1 1.2 

gsg = n f q2pn(q) dq 

1 ~--~ [ (tritrj)2 ] Xsg = 
i j  

or, alternatively, 

(45)  

(46)  

to diverge as Xsg -~ n r/"d. Other critical exponents such as that for the specific heat 

C ~_ B + Con 'dud are defined in the standard manner and relations such as a = 2 - ud 

still hold good. 

The mean-field critical exponents are shown in Table 1 for an Ising (Q = 2) spin 

glass. We have written ud in Table 1 rather than u as we cannot disentangle u and d in 

the infinite-dimensional random graph case at hand. 

We now commence the analysis o f  the results of  the simulations proper for the 

Ising model.  The cumulant  for the overlap is plotted using both ways of  carrying out the 

averages in Figs. 1 and 2, from which it is clear that the resulting crossover points are, as 

claimed, very similar. Fitt ing the crossover point from either figure gives flso = 0 .88 (1 ) ,  

Fig. 1. The crossover in Binder's cumulant for the overlap in the Ising spin-glass calculated with individual 
disorder averages. Only the 250, 500 and 1000 lattice data are plotted for clarity. The lines are drawn only to 
guide the eye and are not the best fit curves used to determine the crossing points. 
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Fig. 2. The crossover in Binder's cumulant for the overlap calculated with an overall average. Again, only the 
250, 500 and 1000 lattice data is plotted and the lines are to guide the eye only. 

although the overall average that gives Fig. 2 is slightly noisier. This value is in good 

agreement with the theoretical predictions. An additional consequence o f  Eq. (4) is that 

flSG should be independent of  p for P ( J )  = p 6( J -  1 ) + ( 1 - p )  t~( J + 1 ). In Ref. [ 16] 

we considered the Ising antiferromagnet, which has p = 0, and found flSG = --0.94(2) 

by direct observation of  cumulant crossing, but we also found flSG = --0.88(2) from 

extrapolation o f  the specific heat peak. These results are thus only marginally compatible 

with the p independence. As a further check we simulated a complete set of  graphs with 

p = 0.3 and found that the cumulants were identical within the errors to the p = 0.5 

values, this giving the same flsG- The slight discrepancy at p = 0 may well be due to 

the poorer statistics we have for these runs. 

Further analysis of  the cumulants allows us to extract vd by looking at the scaling of  

the maximum slope o f  the cumulant with the number of  vertices n. 

( d _ ~ )  n,/~ d (47) max ~- . 

We find that p d =  2.9(1)  from the data in Fig. 1 and vd = 3.0(2) from that in Fig. 2. 

The simulations in Ref. [ 16] found the compatible value of  z,d = 2.8(2) for p = 0 

and all are in agreement with the mean-field value of  a = - 1  for the specific heat 

critical exponent, deduced from a = 2 - ~,d. A cusp in the specific heat C, rather than 

a divergence, is indicated by this negative value of  a in the finite-size scaling relation 

C ~_ B + Co naiad. (48) 

The cusp can clearly be seen in Fig. 3. A direct fit to the scaling of  the specific heat 
as in Eq. (48) is not particularly instructive, as the extra adjustable constant B allows 
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Fig. 4. The spin-glass susceptibility gsg. 

for a very good fit to the value o t / u d  = -½,  but it is at least consistent with the value 

emerging from the cumulant analysis. 
Turning now to the expected scaling of  the overlap, we find respectable agreement 

with the finite-size scaling relation 

q ~_ n -n lua  (49) 
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Fig. 5. The linear susceptibility XM. 

with f l / z 'd  calculated to be 0.30(1)  by extrapolating to the pseudocritical value of  

f i s t  = 0.88. Having considered the first moment of  P ( q )  with q, we now move on 

to what is effectively the second moment of  the P ( q )  with Xsg. In Fig. 4 we see the 

expected divergence, and a fit to the finite-size scaling relation 

Xsg "~ n y/~d (50) 

gives 3//pd = 0.34(2) ,  in agreement with the mean-field value of  3/= 1. No divergence 

is expected in the linear susceptibility 

dM 
X~ = d H  (51) 

and, as is clear from Fig. 5, none is seen. We have not measured the response of  the 

model to an external field, nor attempted to fit the correlation functions at the critical 
temperature, so we have no estimates for 8 and 7/. However, it is clear from the above 

results that the model is giving mean-field-like behaviour for the spin-glass transition 

that is observed. 

The results for the specific heat and the susceptibilities reported here for the + J  

spin glass are essentially identical to those in Ref. [ 16] for the Ising antiferromagnet, 

which can be taken as a further confirmation of  the p independence of  the spin-glass 

transition. Looking directly at the histograms of  P (q) themselves in the spin-glass phase 

for p = 0 (the antiferromagnet) and p = 0.3, 0.5 (the models simulated here) does show 
some differences as can be seen in Fig. 6. However, the determination of  the critical 
point depends on the scaling of  the moments of  P ( q )  around the transition point at 
fl = 0 . 8 8 1 4 . . .  and it is here we expect to find p independence. This is indeed what 

we see at fl = 0.9 in Fig. 7 - the histograms are essentially identical for p = 0.3, 0.5. 



C.E BaiUie et al./Nuclear Physics B 450 [FS] (1995) 730-752 745  

v 

' ' ' ' I '  ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' '  

P(q), ~ = 1.2, Q=2 

, = 0 . 5  

, , , I ~ , ~ ~ I ~ , , ~ I , , , ' , ' ~  , - 0  

- 0  0 . 2  0 . 4  0 . 6  0 . 8  1 

Fig. 6. P(q) v e r s u s  q for  p = 0, 0 .3 ,  0 .5  on  g raphs  o f  500  ver t ices  at f l  = 1.2, deep in the spin-glass  phase .  

4 

P(q) ,  fl = 0.9, Q=2 

~.- 

N e 

1 

- 0  0 . 2  0 . 4  0 . 6  

. . . .  I ' ' ' ' I . . . .  I ' ' ' ' 

0 . 8  

Fig. 7. P(q) v e r s u s  q for the same p on graphs of  500 vertices at f l  = 0.9,  close to f l s c .  T h e  h i s t o g r a m  for 
p = 0, which deviates sl ightly,  is label led.  

There is a slight discrepancy still for p = 0, which is a reflection of the less convincing 
scaling analysis in Ref. [ 16] that determined the critical point in the case of the pure 
antiferromagnet. We have shown only the P(q) for graphs with 500 points in the figures 
for clarity, the results for other graph sizes are identical. 
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Table 2 
flSG for various Q-state Potts models on q~3 graphs 

Q 2 3 4 10 50 

/3SG 0.8814 1.5824 2.1226 3.6914 6.1943 
measured 0.88 ( ! ) 1.5 ( 1 ) 2.0( 1 ) 3.6 (4) 6.1 ( 1 ) 

4.  S i m u l a t i o n s :  P o t t s  m o d e l s  

For Q-state Potts models the overlap may be defined as 

1 n 
- Z ( Q t ~ , ~ , , ~ ,  - 1 ), 

q=n 
i=1 

(52) 

which is arranged to be zero in the uncorrelated case. The cumulants and P(q) may then 

be defined in an analogous fashion to the Ising model. There is, however, no longer the 

q ~ - q  symmetry in P(q) that is present in the Ising spin glass for Q/> 3 state Potts 
models. In all of  the simulations reported here we took P ( J )  = ½ (8( J - 1 ) + 6( J + 1 ) ). 

We simulated lattices of size 100, 250, 500 and 1000 for the Q = 3,4 state models, but 
only the three smaller lattice sizes for Q = 10, 50. The statistics and annealing schedules 

were identical to the Ising-model simulations. We are principally interested in observing 
the qualitative features of  the various Potts models, so our analysis concentrates less on 

serious finite-size scaling to extract the exponents than the Ising results. 

Mean-field theory (in the infinite-range model) suggests that Q ~> 3 Potts glasses are 

rather different in behaviour from the Ising spin glass as there is no longer continuous 
replica symmetry breaking. For Q = 3, 4 there are two consecutive transition tempera- 

tures f is t  and flsc2 to different glass phases and for Q > 4 the first has a discontinuity 

in the overlap q. For fist2 > fl > fls~ P(q) consists of a delta function at q = 0 and 
another delta function at finite q with no continuous features whereas for fl >/3sc2 the 
delta function at finite q splits in two with a continuous distribution between. The values 

of the transition temperature given by Eqs. (33), (41) are for flsc. Some features of 
the solution differ on the Bethe lattice [6], in particular an Ising-like solution appears 
to exist for coordination number three with a + J  bond distribution, and the t~ 3 random 
graph model might be expected to behave in this fashion too. 

If  we take the 3- and 4-state Potts models first, we can look at the cumulant crossing 

in a similar manner to the Ising model to attempt to pinpoint the phase transition. 

It is possible to extract crossing points at fl = 1.5(1) for Q = 3 and fl = 2.0(1) 
for Q = 4, which are in agreement with the values calculated from Eq. (33) shown 

below in Table 2. Our data points for the Q = 10, 50 state models are rather sparser 
but the cumulant crossing appears to become more clear cut with increasing Q, which 
offsets this. The quoted errors in Table 2 are the most conservative choice - the largest 
difference between the crossing points for the various lattice sizes - apart from Q = 3 
where the N = 100 data was dropped, as it failed to cross with the other lattice sizes. 
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Fig. 9. P(q) versus q for the 3-state Potts model at/~ = 3.5. Data from graphs with 500 and 1000 vertices 
are plotted. 

We  next  l o o k  at the  qua l i t a t ive  features  o f  the  l ow- t empera tu re  phase  in the  var ious  

P ( q )  to  see i f  the  mean- f i e ld  theory  expec ta t ions  are b o r n e  out.  Wi th  ou r  def in i t ions ,  

the  h i s t o g r a m s  o f  P ( q )  r a n g e  f rom - 1  to Q - 1 for  a Q-s ta te  Pot t s  m o d e l  w i th  the  

o r ig in  at zero  and  r o u g h l y  ha l f  o f  the  p robab i l i t y  dens i ty  in the  r ange  0 . . .  ( Q  - 1) ,  
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Fig. 10. P(q) versus q for the 4-state Potts model at/3 = 4.4. Data from graphs with 500 and 1000 vertices 
are plotted. 

so we have plotted only 0 . . .  (Q - 1), normalized to the range 0 . . .  1 for clarity in 

all our figures 7 . In all of  the models the high-temperature P(q)  look like skewed 

gaussians centred on the origin, whose sharpness increases with graph size indicating 

delta-function-like behaviour in the continuum limit. In Fig. 8 we have plotted P(q )  for 

the 3-state Potts model fo r /3  = 2.2 ( > / 3 s ~ ) .  This is clearly different from the Ising 

model: there is a strong peak at the origin that is increasing with graph size as well 

as smaller bump at around q = 0.7 which is also increasing with graph size and which 
might tentatively be identified with another peak in the continuum limit. In Ref. [ 16] 

simulations o f  the Potts antiferromagnet, where no spin-glass phase is expected, saw no 

signs o f  the structure at q = 0.7, with P(q )  remaining resolutely centred on the origin. 

Although the very large autocorrelation times that are encountered fo r /3  > /3SG make 

the interpretation o f  the low-temperature results a dangerous business we can press on 

deeper into the low-temperature region to look at P(q)  there and see if there is any 

evidence for the second transition. P(q)  is plotted a t /3  = 3.5 for the same three lattice 

sizes in Fig. 9, where we can see that there does, indeed, appear to be a second peak 

developing away from the origin at q = 0.2 as well as the bump at q = 0.7. 

The qualitative features o f  the above results are preserved in the Q = 4, 10, 50 state 

models that we also simulated: the histogram of  P(q)  broadens from a sharp peak at 

the origin at around /3SG and develops a secondary bump or shoulder. There is some 

evidence o f  further structure developing for even larger/3. From the numerical evidence 

7 It is also possible to extract a positive scalar order parameter for the spin-glass phase by going to a simplex 
representation for the Ports spins and using the radial component of the overlap matrix, but we stick with the 
canonical definition here. 
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Fig. 11. The specific heat for the Q -= 4 Ports spin glass. As the transition (determined from the Binder's 
cnmulant for q) lies above the specific heat peak the values for the larger lattices are only measured on this 
side. 

it would thus appear that the Q = 3 Potts spin glass with a + J  distribution of bonds lies 

above the critical Q value that separates Ising and Potts spin-glass behaviour, whereas 

the Bethe lattice calculation in Ref. [6] supports the opposite conclusion, although on 
the relatively small lattices simulated here it is difficult to distinguish between features 
that will be sharp in the continuum limit and continuous parts of P(q). A more detailed 
analysis of  the saddle-point equations may shed some light on this question analytically. 

For completeness in Fig. 10 we show P(q) for the Q = 4 model at fl = 4 .4 (>  flsG) to 
demonstrate the similarity with the Q = 3 results. 

The fits to the maxima of the Binder's cumulant to extract vd are rather poor for 
all the higher-state Potts models, but the specific heat curves for Q --- 3, 4 are similar 
in form to the Ising model, as can be seen for the Q = 4 Potts model in Fig. 11, 
indicating the continued presence of a cusp rather than a divergence. We therefore do 

not have a reliable value of vd to feed into the finite-size scaling relations, although 
the cusp suggests that vd _~ 3, at least for Q = 3, 4. Nonetheless, we can still fit to 

find the combinations fl/vd and y/vd at the estimated critical points for the various 
models. This gives fl/vd = 0.28(2), 0.31(5) for the Q = 3,4 state models respectively. 
The mean-field theory suggests that q becomes discontinuous at flSG for Q > 4. With 
the smaller lattices that we have for Q = 10, 50 this effect, if it exists, is masked by 
finite-size rounding but attempting to fit fl/vd does give larger values and much poorer 
fits than for Q = 3, 4 such as 0.45(5) for Q = 10. This could be construed as providing 
some evidence for a discontinuity. The data allowed fits to y/vd only for the Q = 3, 4 
models, where it gave 0.36(2),  0.40(7), respectively. 
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In summary, all the Potts P(q) are clearly qualitatively different from the Ising model, 
even though the two exponents fl/vd, y/vd we fitted for Q = 3, 4 are roughly similar. 
There is not sufficient data in the simulations reported here to reliably distinguish a 
discontinuous transition for Q > 4, though there are certainly indications (the fits to 
fl/vd) that this is the case. In all the cases, however, the values extracted for the spin- 
glass transition temperature by analysis of Binder's cumulant are in agreement with the 
predictions. 

5. Conclusions 

The novel analytical approach offered by using techniques borrowed from matrix 
models in the manner of Ref. [8] to look at spin models on random graphs allows 
one to rederive results for transition temperatures and order parameters that are less 
transparent in previous replica calculations, or only arrived at by analogy with the Bethe 
lattice. Indeed, results from bifurcation theory enabled us to calculate the hessians for 
bifurcations from the symmetric solution (which may not be dominant all the way to 
the bifurcation point, as is seen in the k = 3,4 . . . .  solutions) in k-replica Ising or Potts 
models for any k and P ( J ) .  The number of putative spin-glass solutions bifurcating at 
f12 appeared to behave as in the infinite-range model. In essence the investigation of a 
spin glass on a z-regular random graph is reduced to looking at the solutions to the 

equation 

limk=--,0 f p(j) ®k KdJ4,Z-i (53) 4, 

Further work along these lines is clearly both desirable and possible for the Ising and 
other Potts models, with the nature of replica symmetry breaking in this short-range 
(but still mean-field) model being perhaps the most important question. We have made 
no attempt here to follow the various solution branches that bifurcate at f12, for instance, 
which would shed light on the low-temperature phase, particularly if calculations for 
arbitrary k were still possible. An understanding of the role of the first-order solutions 
that appear for k > 2 and their failure to influence the k --~ 0 limit is also still missing. 
We emphasize again that the transitions in the thin-graph model appear to be identical 
with those in the Ising replica magnet where it is the k = 2 transition that marks the 
boundary between first-order transitions and the behaviour seen in the quenched model 
at k = 0 .  

We investigated the models numerically in some detail. Quantitatively, transition tem- 
peratures were in agreement with those calculated for all the models. The extraction of 
the critical exponents for the Ising model showed clear mean-field behaviour, and the p 
independence of the spin-glass transition temperature was also apparent. Qualitatively, 
the P(q) measured in the various models backed up the mean-field picture of the phase 
transition with a continuous distribution for the Ising model and sharper features for 

Q > 3 .  
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In summary, spin glasses on thin graphs offer a promising arena for the application 
of ideas from matrix models, large-n calculations in field theory and bifurcation theory. 
The tensor (or near-tensor) product of the inverse propagator allows some quite general 
expressions to be derived for the hessian in the saddle-point equations and offers a 
powerful line of attack on questions such as replica symmetry breaking. As a subject 
for numerical simulations they offer the great advantage of mean-field results with no 
infinite-range interactions and no boundary problems. 

It is worth remarking in closing that one is not limited to the mean-field theory with 
the current methods. It is possible to "fatten" the graphs analytically by increasing the 
size of the matrices in the saddle-point equations N = 2, 3 . . . .  as has already been done 
with some success for Ising models coupled to two-dimensional gravity [ 19], which is 
equivalent to looking at the models on an annealed ensemble of planar (fat) graphs. 
This reduces the fractal dimension of the graphs from infinity in the mean-field case 
to more realistic values. Numerical simulations of the ferromagnetic transition [20] 
and possible spin-glass transition [16] have already been carded out on a quenched 
ensemble of such planar graphs and in the spin-glass case P(q) still presents a mean- 
field-like appearance. It would be very interesting to say something analytically about 
the nature of the low-temperature phase in such a non-mean-field spin glass. 
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