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Free-Energy Barriers of Spin Glasses

Elmar Bittner, Andreas NuRbaumer, and Wolfhard Janke

Institut fur Theoretische Physik and Centre for Theoedtfciences (NTZ), Universitat Leipzig
Postfach 100 920, 04009 Leipzig, Germany
E-mail: wolfhard.janke@itp.uni-leipzig.de

The Ising spin glass in the Sherrington-Kirkpatrick (SK)andield and the three-dimensional
Edwards-Anderson (EA) nearest-neighbour formulatiomsimrestigated by means of Monte
Carlo simulations. To this end, we employ a combination efrthultioverlap algorithm with
parallel tempering methods. In this report we focus on thigefisize scaling behaviour of the
free-energy barriers which are visible in the probabilignsity of the Parisi overlap parameter.
Assuming that the mean barrier height diverges with the rmobspinsN as N, our data
for the SK model show good agreement with the theoreticaliption o = 1/3. We compare
the scaling behaviour to the data from the EA model.

1 Introduction

A major open problem in statistical physics is the naturéhef‘glassy” low-temperature
phase of finite-dimensional spin-glass systems. It is stilesolved whether the replica
symmetry-breaking theory or the phenomenological drgpileture yields the correct de-
scription (for reviews, see Refs. 1-4). Even at the mead-f@iel, only very recently
a mathematical prodfof Parisi’s replica solutichfor the Sherrington-Kirkpatrick (SK)
model was given.

In the thermodynamic limit the frozen phase of the mean fipld glass shows many
stable and metastable states. Such a feature is the consemfehe disorder and the frus-
tration characterising spin glasses in general, leadirg tagged free-energy landscape
with probable regions (low free energy) separated by raesvestates (high free energy).
But also for finite systems the free-energy landscape shavirgtigcate, corrugated struc-
ture. Therefore, it is hard to measure the free-energydrarby means of conventional
Monte Carlo simulations directly. The aim of this projectasstudy the free-energy bar-
riers of the SK mean field spin-glass model and the three+aineal Edwards-Anderson
(EA) nearest-neighbour modalsing a combination of the multioverlap Monte Carlo al-
gorithn? with parallel tempering metho#s By using this combined algorithm we are
able to perform simulations at much lower temperaturesHerBA model than in previ-
ous studie¥. This is necessary, because for temperatures close toithglsigs transition
significant deviations from the theoretical mean-field j&on were found in both the
three- and four-dimensional EA model. Since one possibfgagation for these devia-
tions are strong finite-size effects close to the spin-gi@sssition, by measuring at lower
temperatures these effects should become less pronounced.

2 Model and Simulation Techniques

The Hamiltonian of the Sherrington-Kirkpatrick mean-fiedddel reads
Hgk = — Z Jijsisj . 1)

1<j
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wheres; = +1,4 = 1,..., N, with N denoting the number of spins. The exchange
coupling constantd;; are quenched, independent random variables with a Gaudisian
tribution of zero mean and varian@é—'. The critical temperature of the infinite sys-
temisT, = 1. The SK model gives a mean-field formulation of spin glasadsle the
Edwards-Anderson model describes a finite-dimensional glaiss. Here, the sum in the
Hamiltonian runs only over nearest-neighbour pairs ofgspins,

HEA = — ZJijSiSj 5 (2)
(i5)

where we consider a simple cubic lattice with= L2 spins and periodic boundary con-
ditions. In the EA model we draw the exchange coupling caristtitom a symmetric
bimodal distribution such thaf;; = %1, with equal probability. The spin-glass transition
temperature in the three-dimensional EA model was foune@fb,bx 1.15.2

The fact that there is no explicit order parameter whichvedlone to exhibit the free-
energy barriers led us to use the Parisi overlap parafyeter

1 al (1) (2)
1 2
q= N E_l S 7S T (3)

where the spin superscripts label two independent (replicess for the same realization
of randomly chosen exchange coupling constahts {.J;;}. For given7 the probability
density ofq is denoted byP(q), and the functiorP(¢) is obtained as

P(g) = [Pr(@)]a = # S Pr(q), (4)
J

where]. . . ., symbolises the quenched average #&nktlis the number of realizations con-
sidered. For a given realization ¢f the nontrivial (i.e., away frong = +1) minima are
related to the free-energy barriers of this disorderecesysiWe are, therefore, interested
in the whole range of the probability densi®; (¢). Conventional, canonical Monte Carlo
simulations are not suited for such systems because thHébkel to generate the corre-
sponding rare-event configurations in the Gibbs canonitsémble is very small. This
problem can be overcome by non-Boltzmann sampfirtwith the multi-overlap weigtt

wy(q) =exp | BY gy (758 +57s7) + 550 (5)
ij

where the sum runs over all pairs of spins for the SK model amg over nearest-
neighbour pairs for the EA model. The two replicas are calipheS7(¢) in such a way
that a broad multi-overlap histografRi;"“(¢) over the entire accessible rangé < ¢ < 1

is obtained. When simulating with the multi-overlap weigtégnonical expectation values
of any quantity©® can be reconstructed by reweighting,

(0)F" = (Oexp(=57)) g /{exp(=57))7 - (6)
Ideally the weight functioiV; = exp(S7) should satisfy

P7"(q) = PF"W 5 = const. , @
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i.e., should give rise to a completely flat multi-overlap lpbility density P7"(¢). Of
course,P$"(q) is a priori unknown and one has to proceed by iteration. Awiefii way
to construct the weight functiol/; is to use an accumulative recursion, in which the
new weight factor is computed from all available data acdated so fat> 6. The multi-
overlap algorithm combined with this recursion allows an@dt automatic simulation.
The efficiency of the multi-overlap algorithm decreasesotvering the temperature,
and since we are mainly interested in the low-temperaturedieur of the spin-glass mod-
els we had to seek for suitable algorithmic improvementsa Aessult of this investigation,
we developed a combination of the multi-overlap algorithwith the parallel tempering
(PT) update schem& where configurations simulated at different temperataresried to
be exchanged via a Monte Carlo process that typically faltve Metropolis acceptance
rules!” This renders the combined algorithm particularly suitedagarallel computer
such as JUMP at NIC Julich. For the PT procedure we used & $ét eemperature val-
ues in the rang&,.,;, < T. < Twax. Once for each temperature the entire range whs
covered, the accumulative recursion for the weight fumgizvas stopped. Due to large
differences in the free-energy landscape for differemdier realizations7, the number
of recursion steps varied for differefit After the weight functions were constructed, they
were kept fixed and we took our measurements. Thereby, wededdime series of the
overlap parameterand the canonicaP; (¢) distribution for all temperature values, for an
EA example see Fig. 1.

3 Analysis Method

To analyse the low temperature behaviour we computed thiebautocorrelation time}
for each of these samplg&by employing the same method as Betgl ! used for the EA
Ising spin-glass model. For clarity, we recall the basi@itlere. The free-energy barrier
F} for a givenP;(q) is defined through the autocorrelation time of a one-dinverai
Markov process which has the canonida}(q) distribution as equilibrium state. The
transition probabilitieq’; ; are given by

1-— w21 wi,2 0
wo1 1—wio— w32 w23
T = 0 w3, 2 1-— W23 —W4,3 --- , (8)
0 0 W43

wherew; ; (i # j) is a probability & la Metropolis to jump from stage= ¢; to g = ¢;
(¢i=i/N,i€[-N,—N+2,...,+N]),

lInin(l, Pj(qi)) . 9
Py(q;)

The transition matrix” fulfills the detailed balance condition (witR7), and as a con-

sequence it has only real eigenvalues. The largest eigen\aljual to one) is non-

degenerate, and the second largest eigenvalugetermines the autocorrelation time of

the Markov chain,

wij =

1

~ Nlog(\1) (10)

q9 _
Tp =
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The associated free-energy barrier for realizatiois defined as
FL =1In(1}) . (11)

Note that the definition of the autocorrelation time (10psknly barriers i into account,
but not other barriers which may well exist in the multidirsemal configuration space.

4 Numerical Details and Results

Let us start with the SK model where we studied systems With 32, 64, 128, 256,512,
and1024 spins and used a set 82 temperature values in the rangle= 1/3 — 1.6 for all
of our systems apart from the largest, where we ugkettmperature values for the same
temperature interval. We took abalt0 000 measurements, with five sweeps between the
measurements. A sweep consistedvospin flips with the multioverlap algorithm and one
parallel tempering update. To average over the disordersed 1900 realizations of the
disorder forN < 512 and100 for N = 1024.

For the EA model we studied systems with= 43,63, 83,103, and123 spins within
a temperature range @ = 0.5 — 1.5. Upto N = 10% we usedll equally spaced
temperature values and for the largest system the spading fie= 1 was halved, leading
to 16 replicas. Due to the larger autocorrelation times for theriddel we took at least
10” measurements and for the disorder average we used morgth@realizations.

For each temperature value we performed least-squared fit dinite-size scaling
(FSS) ansat#}, = ¢cN* which corresponds to the exponential FSS behaviour

Th N (12)

The results for the SK mod€ldepicted in Fig. 2 are consistent with previous results in
the literaturé®26using analytical and different numerical methods. Thezuwnial line in
Fig. 2 indicates the theoretical prediction= 1/3 of Ref. 24. The figure shows fits with
different lower bound$v,,,;,, of the fit range, while the upper bound was always our largest
systemN = 1024. From these fits we observe a strong finite-size effecifor 7. = 1.

At lower temperatures we find a linearly increasing deviafiom the theoretical value.
This is presumably also a finite-size effect, because thgestd the deviation becomes
flatter when increasing the lower bound of the fit range ancdeti®no physical reason
for a change of behaviour of the barrier autocorrelatioretimthe glassy phase. Using
ansatz (12) for the EA model, the value of the exporeraries from0.49 to 0.46 in the
intervalT,. > T > 0.8, but the quality of the fits is unacceptably low. Only for timesdlest
temperatures the goodness-of-fit paramétes significantly larger then zero, c.f. Fig. 2.
We therefore performed power-law fits as in Ref. 11,

Th =cN®, (13)

which corresponds to a fit of the fori} = log(c) + alog(N). The@-values for these
fits are much closer to unity, see Fig. 2. Our data favour theomgly over the exponential
finite-size scaling behaviour (12), which confirms previcesult$! for 7' = 1 and extends
them to considerably lower temperatures.

One possible explanation for this deviation from the thecatvalue is the lack of self-
averaging of the finite volume Parisi overlap parameteriistion P; in the SK modef’
This has been confirmed numerically for the SK métlas well as for the EA mod#l.
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Figure 1. EA model: The logarithm of the canonié|q) distribution for a83 lattice as a function of temperature
for a typical disorder realisation.
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Figure 2. SK model (left plot): Dependence of the exporenh the lower bound of the fit rand&V,,in, 1024]
as a function of temperature. The horizontal line indic#éitestheoretical valuer = 1/3. EA model (right plot):
Goodness-of-fit parameté€} as a function of temperature for different types of fits.

We already mentioned that the distribution of the free-gnbarriers becomes broader
for low temperatures. In recent work Dayetl al. have found that the tunnelling times
of their flat-histogram sampling simulations of the 20 Ising spin glass are distributed
according to the Fréchet extreme-value distributiondtitéiled distributions® In general,
extreme-value statistics can be classified into differentarsality classe&€ 3, depending
on whether the tails of the original distribution are fatadi(algebraic), exponential, or thin
tailed (decaying faster then exponential). Assuming thatttinnelling times respectively
free-energy barriers are distributed according to an mérgalue distribution, we use the
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Figure 3. SK model (left plot): Distribution of free-energwrierng for N = 256 at different temperatures.
The inset shows the distribution fa@f = 1/3 for different numbers of spins. EA model (right plot): Thersa
graph as for the SK model fav = 42 at different temperatures and the inset shows the disipib@ior 7 = 0.8
for different lattice sizes.

integrated probability density of the generalized extramleie distribution (GEV),

RN
Fe; s o(2) = exp | — (1+§T) (14)

for 1 + &(x — pu)/o > 0, to fit our data. We find that the free-energy barriers show fat
tails for 7' < T, with shape parameter > 0, i.e., a Fréchet distribution. In Fig. 3 we
plot the resulting distribution for the SK model for diffettemperatures below the spin-
glass transition and find that the tails become fatter artdrfas the temperature goes to
zero. The histograms for low temperatures show deviatimrs the Fréchet distribution
for small values off'}, so a much larger number of disorder realizations would leeleé

to determine both tails of the distribution properly. Weeatatined the parametess u
and¢ for different temperatures and found thatgrows linearly andu logarithmically
with inverse temperature/T’, whereas stays more or less constantéate 0.33. As an
example we show in Fig. 4 the results fir= 512. If we keep the temperature fixed and
look at the size dependence of the distribution, we find tbaaflarger number of spins
the distribution becomes broader, c.f. the inset of Fig. 8.qWiantify this behaviour we
use the scaling relations oc N*(®) andy o« N, which lead toa(c) ~ 0.25 and
a(p) = 0.31 for our lowest temperatures, see the inset of Fig. 4. We firehgpéerature
dependence of the exponents ) anda(u) with negative and positive slope for increasing
T, respectively. For the EA model we also find fat-tailed dlsttions, but the broadening
of the distribution with increasing number of spins is muasaker than for the SK model,
see Fig. 3.

5 Conclusion

We found that the free-energy barriers of the SK model aresadiraveraging and dis-
tributed according to the Fréchet extreme-value distidiou These particular features were
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Figure 4. SKmodel: Temperature dependence of the parasweted,. of the Fréchet distribution faW = 512.
The inset shows the size dependence ahdy for T = 0.394, indicated by the arrows.

also found for the EA nearest-neighbour model and suchaiitids support the position
that the Parisi replica symmetry breaking solution of the i8&del is the limit of the
short-range model on a lattice in dimensi@mhend — oo, with a proper rescaling of
the strength of the Hamiltonian. On the other hand, we alsadahat the free-energy
barriers diverge with the theoretically predicted value= 1/3, which is in contrast to
our results for the EA model in three dimensions and previmaings for the three- and
four-dimensional EA modét.
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