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We review recent large-scale Monte Carlo simulations ofttiree-dimensionag-state Potts
ferromagnet withy = 2 and 4 subject to quenched, random bond dilution. For the isiadel

(¢ = 2) both finite-size and temperature scaling are investigatedder to estimate the critical
exponents associated with the disorder fixed point and tadelte the cross-over between pure,
disorder and percolation critical behaviour. For the 4esRotts model the rather strong first-
order phase transition of the pure system is found to pei@istmall dilutions, whereas for
larger dilutions the theoretically expected softening tmatinuous transition is confirmed and
quantified. The properties of the underlying disorder iistions of thermal observables are
discussed and illustrated with a few selected examples.

1 Introduction

Experiments on phase transitions in magnetic materialsisually subject to randomly
distributed impurities. At continuous phase transitiahespending on the temperature re-
solution and the concentration of the impurities, the disormay significantly influence
measurements of critical exponeht$o emphasize this effect, in some experiméntn-
magnetic impurities are introduced in a controlled way; Bige 1 for an example. Since
the mobility of impurities is usually much smaller than tipital time scale of spin fluctu-
ations, one may model the disorder effects in a completebzén”, so-called “quenched”
approximation. This limit is opposite to “annealed” diseravhich refers to the case where
the two relevant time scales are of the same order.

With the additional assumption that the quenched, randaiistyibuted impurities are
completely uncorrelated, Harfishowed a long time ago under which conditionsoa-
tinuoustransition of an idealised pure material is modified by digsrcoupling to the
energy of the system. Another interesting case are randdas‘fieoupling to the order
parameter which we shall not, however, consider here. Aliegrto this so-called Harris
criterion, the critical behaviour of the pure system arothmal transition temperaturg.
is stable against quenched disorder when the critical expiag,.. of the specific heat,
C x |T — T.|~@rue, is negative. In renormalization-group language the plation is
then “irrelevant” and the values of all critical exponents3, v, ... remain unchanged.
On the other hand, whem,... > 0, then quenched disorder should be “relevant” and the
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Figure 1. Neutron scattering measurements of the susdiptim Mng 75Zng.25F2 close to critical-
ity, governed by the disorder fixed point of the Ising modelerovhe reduced temperature interval
4x107% < |T/T. — 1| <2 x 1071, The solid lines show power-law fits with exponept= 1.364(76)
above and below’. (after Mitchellet al2).

renormalization-group flow approaches a new disorder fixaatgoverned by altered crit-
ical exponents. An example is the three-dimensional (3Dplsodel universality class
with apure = 0.110 > 0. The intermediate situatiom,... = 0 is a special, “marginal”

case where no easy predictions can be made. A typical exdmplbe latter situation

is the two-dimensional (2D) Ising model where quenchedrdisois known to generate
logarithmic modifications.

If the pure system exhibits first-order phase transition, quenched disorder always
leads to a softening effect and may even turn the transitibm a continuous ore In
two dimensions this is always the case, independent of theerdration (“strength”) of
the disordef. In three (and higher) dimensions, on the other hand, theesdration of
disorder does matter and at a finite concentration a tgatipoint may be observed which
separates “non-softened” first-order and “softened” séamnder regime’s®.

In 2D the scenarios sketched above have been confirmed egreelly for many dif-
ferent materials, and also for simple lattice models by aewanf different theoretical
methodologies, including field theoretic renormalizatgmoup analyses, transfer-matrix
studies, high-temperature series expansions and Monte §larulations, to mention the
most important onés In 3D an experimental verification of the qualitative infige of
disorder is shown in Fig. 1 where the measured critical egpbmn = 1.364(76) of the
susceptibilityy o« |T" — T.|~7 is clearly different from that of the pure 3D Ising model,
~Ypure = 1.2396(13). Theoretical results, on the other hand, remained relgta@rce in
3D until recently. Most analytical renormalization grougdacomputer simulation studies
focused on the Ising modél'L, usually assumingite dilution when working numerically.
Only quite recently thsite-diluted 3-state Potts modé] which exhibits a first-order phase
transition in the pure case, has been added to this short list
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This motivated us to set up a systematic Monte Carlo (MC) ageysimulation study
of the 3D 4-state Potts model withonddilution*®14 Since the pure model’s first-order
transition is much stronger than that of the 3-state modelistl in Ref. 12, we expected
that our choice would lead to a much more conclusive chaiaat®n of the tricritical
point. For a better overview and to gauge our simulationstea@ also considered the 3D
2-state (Ising) model, again withonddilution®®. Modelling the disorder by bond dilution
enabled us to test the expected universality with respebettype of disorder distribution
and in addition facilitates for both models a quantitatieenparison with recent high-
temperature series expansiéh¥.

The remainder of this mini-review is organised as follown. Sec. 2 we define the
models considered and briefly describe the simulation sefgxtion 3 is devoted to a
summary of our results, first for the Ising and then for theatesPotts model. Finally, in
Sec. 4 we close with our conclusions.

2 Mode and Simulation Setup

The 3D bond-diluted-state Potts model is defined by the Hamiltonian

H=-— Jij60i7o'j 5 O'iil,...,q, (1)
(i7)
where the sum extends over all nearest-neighbour pairs obia tattice of sizeL? with

periodic boundary conditions, and the couplingsare distributed according to the distri-
bution

o(Jij) =pd(Jij —J) + (1 —p)d(Jij) - 2)

The dilution parametep is thus the concentration of magnetic bonds in the system, i.
p = 1 corresponds to the pure case. Below the percolation thi¢’She = 0.248 812 6(5)
one does not expect any finite-temperature phase transithme without a percolating
(infinite) cluster of spins long-range order cannot develop

The model (1), (2) was studied by means of large-scale MC laiious using the
Swendsen-Wang (SW) cluster algoritthin the regime of second-order transitions, and
multibondic simulation®-22 in the regime where the first-order transition of the pure
4-state Potts model persists, i.e., at weak dilutions dlmge= 1. To arrive at final results,
for each dilution, temperature and lattice size, the MQestes(( ;) of thermodynamic
quantities) ;; for a given random distributiofi./ } of diluted bonds have to be averaged
over many different disorder realisations,

Q= (@) = ﬁ S Q). 3)
{J}

where#{J} is the number of realisations considered. Denoting the ecally deter-
mined distribution of Q¢ ;;) by P({(Qy})), this so-called quenched average can also be
obtained from

Q- / Do) Q) = / AQPUQU Qi) ()
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where a discretized evaluation of the integrals for figite/ } is implicitly implied. While
conceptually straightforward, the quenched average iis (8 mputationally very demand-
ing since the number of realisatiofq J } usually must be large, often of the order of a few
thousands. In fact, if this number is chosen too small one ohsgrvaypical rather than
average valuéd which may differ significantly when the distributid((Q; ;;)) exhibits

a long tail (which in general is hard to predict beforehand).

3 Results

3.1 3D Bond-Diluted Ising Model

Let us first discuss the Ising model where for all dilutioneabp,. second-order phase
transitions are expected. To get a rough overview of the midgrece of the susceptibil-
ity peaks on the dilution, we first performed fpor= 0.95,0.90,...,0.36 and moderate
system sizes SW cluster MC simulations withycs = 2500 MC sweeps (MCS) each.
By performing quite elaborate analyses of autocorreldtiars, this statistics was judged
to be reasonableNyics > 250 7). By applying histogram reweighting to each disorder
realisation and then averaging the curves @0 — 5 000 realisations we finally arrived
at the data shown in Fig. 2. From the locations of the maximaleré/ed the phase dia-
gram of the model in the — T plane which turned out to be in excellent agreement with a
single-bond effective-medium (EM) approximatfén
KN (p) = 1 [(L P — (A= p)] 5)
P —DPc
whereK (1) = J/kpT.(1) = 0.4433088(6) is the precisely known transition point of
the pure 3D Ising modé&l, so we can refrain from reproducing it here. As an independen
confirmation of (5), the phase diagram also coincides exhemvell with recent results
from high-temperature series expansidns
The quality of the disorder averages was judged by lookitigeadiistributions® (x 1 ;3 )
and computing running averages over the number of reaisataken into account. As can
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Figure 2. The average magnetic susceptibility.].v of the 3D bond-diluted Ising model versés = J/kgT
for several concentrationsand L = 8,10, 12, 14, 16, 18, and20. For each value op and each lattice sizg&,
the curves are obtained by standard histogram reweighfitteesimulation data at one value Af.
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Figure 3. Disorder distribution of the susceptibility fbet3D Ising and 4-state Potts model with a concentration
of magnetic bonds di.55 and0.56, respectively, af{.(L) (= 0.8649 resp.1.12945) for L = 64. In the latter
case, the concentratign= 0.56 belongs to the second-order regime. The running averagetlwesamples is
shown by the black line.

be seen in Fig. 3, the dispersion of the valueg of, is not very large and the fluctuations
in the running average disappear already after a few husdrealisations.

In order to study the critical behaviour in more detail, weoentrated on the three
particular dilutiongy = 0.7, 0.55, and0.4. In a first set of simulations we focused on the
finite-size scaling (FSS) behaviour for lattice sizes up te 96. From previous FSS stud-
ies it is known that ratios of critical exponents are veryikinfor the pure and disordered
model, e.g.;y/v = 1.966(6) (pure’®) and~/v = 1.963(5) (disordered’). The only dis-
tinguishing quantity is the correlation length exponemthich can be extracted, e.g., from
the derivative of the magnetisation versus inverse tenperdd In m /dK |, o< L'/, at
K. or the locations of the susceptibility maxima. Using thégiatinbiased option and per-
forming least-square fits including data frdm,;, to L,.x = 96 we obtained the effective
critical exponents shown in Fig. 4. For the dilution clogeghe pure model(= 0.7), the
system is influenced by the pure fixed point withy = 1.5863(33). On the other hand,
when the bond concentration is small£ 0.4), the vicinity of the percolation fixed point
wherel/v ~ 1.12 induces a decrease dfv below its expected disorder value. The dilu-
tion for which the cross-over effects are the least is arguad).55 which suggests that the
scaling corrections should be rather small for this spedifigion. For the exponents ratios
we obtained?/v = 0.515(5),0.513(5), and0.510(5), and~y/v = 1.965(10), 1.977(10),
and2.000(10), for p = 0.7,0.55, and0.4, respectively.

The main problem of the FSS study is the competition betwéféereint fixed points
(pure, disorder, percolation) in combination with cori@es-to-scaling termsx L~
which we found hard to control for bond dilution. In contrastrecent claims for the
site-diluted model that = 0.4, we were not able to extract a reliable estimate)dfom
our data.

In the second set of simulations we examined the temperatatang of the magneti-
sation and susceptibility for lattice sizes upto= 40. From this data one can directly
extract the exponents and~ whose relative deviation from the pure model is compara-
ble to that ofv, e.g.y = 1.2396(13) (pure®) andy = 1.342(10) (disordered’). The
results for the susceptibility and= 0.7 are shown in Fig. 5. We see that for the greatest
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Figure 4. Effective exponentd /v).g as a function ofl / L,y,;, for p = 0.4, 0.55, and0.7.

sizes, the effective critical exponemig(|t|) = —dIn[x]ay/dIn |¢| is stable around.34
when|t| = |K — K| is not too small, i.e., when the finite-size effects are notstwong.
The plot ofy.g(|t|) vs. the rescaled variable!/” |t| shows that the critical power-law be-
haviour holds in different temperature ranges for the difffit sizes studied. As expected,
the size-effects are more sensitive when the lattice sigmall and the critical behaviour
is better described when the size increases.
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Figure 5. Variation of the temperature dependent effeatiitical exponenty.g (|t|) = —dln[x]av/dIn|¢|

in the low-temperature phase of the 3D bond-diluted Isingdehdor p = 0.7 and several lattice sizes
L =10, 14, 18, 22, 30, 35, 40 as a function of the reduced temperatitie(top left) andL/¥|t| (bottom).
The horizontal dashed and solid lines indicate the pure #ediButed values ofy. The susceptibility vs. the
coupling strengtt’ = J/kgT in the ordered phase is shown in the upper right plot.
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3.2 3D Bond-Diluted 4-State Potts M odel

Let us now turn to the 4-state Potts model which exhibits laerastrong first-order phase
transition in the pure case. In order to map out the phaseatiagf the diluted model
we considered all concentratiops$n the interval[0.28, 1] in steps 0f0.04 and determined
again the locations of the maxima of the susceptibility fagieen lattice sizeL. The
resulting phase diagram is again in very good agreementthitteffective-medium ap-
proximation (5), here with K.(1) = 0.62863(2), and estimates from high-temperature
series expansiohs

In a second step, the order of the phase transitions wastigats]. To satisfy our
criterion Nyics > 250 7, here the number of MC sweeps had to be increased to much
larger values (up ta5 000 — 30 000) than in the Ising case. In fact, a first indication for
a crossover between first- and second-order transitiomsdeitreasing dilutiop could be
derived from the autocorrelation times. In the first-orégsime we performed multibondic
simulationg® and estimated the interface tension from

1 Prax
Ood = m log Pmin )

whereP,,. is the maximum of the probability density reweighted to #maperature where
the two peaks are of equal height, aRg;, is the minimum in between, see Fig. 6. The
linear extrapolations af .4 in 1/ L in the lower part of Fig. 6 imply non-vanishing interface
tensions only fop = 0.84 and above. Fop < 0.76, 0,4 Seems to vanish in the infinite-
volume limit, being indicative of the expected softeningteecond-order phase transition.
The tricritical point would thus be located aroume: 0.76 — 0.84, in good agreement with

(6)
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Figure 6. Probability density of the energy of the 3D bonididd 4-state Potts model reweighted to equal peak
height forp = 0.56 (top left) andp = 0.84 (top right). Interface tension versus inverse lattice §ixdtom).
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Figure 7. Time series and histogram of the magnetisatign -at 0.36 (L = 16). The upper part shows the
time evolution for a rare event with high susceptibility @hd lower one a typical event where the magnetisation
fluctuations are reduced. On the right part the resultingr(tial) probability distributions are shown.

the estimate o = 0.80 derived from our analysis of autocorrelation times.

Below this concentration, the system exhibits a seconé+drdnsition. This can be
illustrated qualitatively by typical single-peak ordearpmeter probability distributions at
the transition temperature as shown in Fig. 7. To confirm tfeesing to second-order
phase transitions fop < 0.76 we performed a detailed F&Sstudy atp = 0.56 with
lattice sizes ranging up tb = 96 and the number of realisations varying between 2 000
and 5000. As can be inspected in Fig. 3, the variance of the measurements is some-
what larger than in the Ising model and the distribution bithia long tail towards large
susceptibilities, reflecting the first-order like signabdew rare-events such as that shown
in the upper part of Fig. 7.

The choice ofp = 0.56 is motivated by our observation that in this range of dilu-
tions the corrections to asymptotic FSS of the effectivedition points are minimal. The
log-log plot for [x]av.max IN Fig. 8 indeed suggests that for this quantity the coroesti
become quite small above= 30, and fits of the formu, L7/¥ starting atl,,;, > 30 yield
~v/v = 1.50(2). Using the data fol. < 30 only, on the other hand, we obtained perfect
fits assuming percolation exponelifsy/v ~ 2.05, cf. Fig. 8. Similarly, the FSS of the
quantity[(dInm/dK) g, Jaw < LY gives for Ly, > 30 an estimate of the exponent
1/v = 1.33(3), consistent with the stability conditiéh1 /v < D/2 = 1.5 at the disorder
fixed point. The same procedure was applied to the magrietigat g, |, o« L~7/7,
but here the associated critical exponent turned out to beyetostable. We therefore
also considered the FSS behaviour of higher (thermal) mtsneinthe magnetisation,
[(1™)]av, Which should scale with an exponen/v. The results for the first moments
exhibit, however, again much stronger corrections to sgatian we observed fgx].., or
[dInm/dK]ay, leading to quite a conservative final estimatggp = 0.65(5). We never-
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diluted 4-state Potts model at= 0.56 (with vertical offsets added for the sake of clarity). Thealsgy behaviour
for small lattice sizes below a crossover length scale isypmably governed by the percolation fixed point.

theless note that our results do not fit satisfactorily thedngcaling laveg/v = D —~/v.
The reason could be strong corrections-to-scaling at dwder fixed point which are hard
to cope with for medium-sized systetis

4 Conclusions

By performing large-scale Monte Carlo simulations we hawvestigated the influence of
bond dilution on the critical properties of the 3D Ising andtdte Potts models. In the
3D Ising case the universality class of the disordered mdedodified by disorder but
its precise characterisation turned out be difficult beeaafgshe competition between the
different fixed points which induce crossover effects, elagmelatively large lattice sizes.

Applying similar techniques to the 3D 4-state Potts modebbtined clear evidence
for softening to a continuous transition at strong disordéth estimates for the critical
exponents of = 0.752(14), v = 1.13(4), and( = 0.49(5) atp = 0.56. The analysis of
both the autocorrelation time and the interface tensioadéathe conclusion of a tricritical
point aroundy = 0.80.
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