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Monte Carlo Simulation of Long Hard-Sphere Polymer
Chains in Two to Five Dimensions

Stefan Schnabel* and Wolfhard Janke*

Simulations are performed for long hard-sphere polymer chains using a
recently developed binary-tree based Monte Carlo method. Systems in two to
five dimensions with free and periodic boundary conditions and up to 107

repeat units are considered. The analysis is focused on scaling properties of
the end-to-end distance and the entropy and their dependence on the sphere
diameter. To this end new methods for measuring entropy and its derivatives
are introduced. By determining the Flory exponent 𝝂 and the weakly universal
amplitude ratio of end-to-end distance to radius of gyration we find that the
system generally reproduces the behavior of self-avoiding lattice walks in
strong support of universality.

1. Introduction

Research into the formation of nanopatterns of macromolecules
is key to an understanding of many of their properties. This
comprises single as well as entire assemblies of linear poly-
mers whose properties may range from flexible to semiflexi-
ble to rather stiff, providing internal constraints. The polymers
can be of synthetic or biological origin which often exhibit sim-
ilar behaviors. In both applications, they may be described by
generic coarse-grained bead-stick or bead-spring models with
Lennard–Jones-type interactions including excluded-volume re-
pulsion among the monomers or beads, but often also chemi-
cally realistic all-atom models are considered. The characteristic
polymer conformations governing the pattern formation process
are studied in bulk, in the presence of structuring surfaces or
under confinement conditions, acting as external constraints for
the structure formation. In numerical studies, depending on the
problem at hand, usually Monte Carlo (MC) or Molecular Dynam-
ics (MD) computer simulations are employed.
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One important focus of our own contri-
butions to this field was on nonequilibrium
pattern formation of polymers that are sud-
denly quenched from random-coil to glob-
ule conditions. Qualitatively this involves
distinguishing the “sausage”[1] and “pearl-
necklace”[2] pictures of the coarsening pro-
cess. More quantitatively we were interested
in characterising the kinetic scaling laws as-
sociated with this process and related ag-
ing properties. Our approach strongly relies
on an analogy with coarsening and aging of
particle and spin models[3–5] and is reviewed
in Ref. [6]. For generic models (in implicit
solvent) we consistently find in our MC sim-
ulations that the “pearl-necklace” picture is

clearly favored. This mechanism was also observed to govern the
pathway of the collapse of the polypetide backbone of a protein
in atomistic all-atom MD simulations of polyglycine (in explicit
water).[7] As preparation for including hydrodynamic effects we
conducted a study of dissipative dynamics of a single polymer in
solution using the Lowe–Andersen approach, belonging to the
class of dissipative particle dynamics (DPD) simulations.[8] While
for low viscosity the “pearl-necklace” scenario prevails we do ob-
serve a crossover to the “sausage” picture for sufficiently high
viscosities.[9]

In a related line of research we investigated flexible polymers
that are endowed with some kind of activity.[10–13] Here we em-
ployed Langevin simulations. The added activity introduces in-
trinsic nonequilibrium effects in the collapse kinetics at the coil-
globule transition and governs the steady-state properties of the
emerging globular state.

A particularly interesting motif of semiflexible polymer con-
formations are knots of various types that appear to characterize
(like an order parameter) stable phases of semiflexible polymers.
Extending our previous work, we studied this peculiar property
systematically by comparing bead-stick and bead-spring polymer
models in dependence on the polymer stiffness and the ratio of
the (average) bond length to the distance of the Lennard–Jones
potential minimum and thereby identified favorable conditions
for the formation of stable knots.[14]

Methodologically, we generalized the relatively new population
annealing method for MC[15–18] to population annealing molecu-
lar dynamics (PAMD) simulations.[19–21] For protein studies this
new method may turn out to be superior to the currently usu-
ally employed parallel tempering simulations, in particular when
implemented on massively parallel computer architectures (such
as graphics processing units (GPUs)[22,23]). A benchmark com-
parison for the B1 domain of protein G is in preparation.[24] We
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also introduced a nonflat histogram technique[25] that generalizes
the commonly employed flat multicanonical method[26–28] and
later adapted this idea also to Wang-Landau simulations[28,29] with
nonflat distributions.[30] While in Ref. [25] we first drew connec-
tion to recent work[31] and exemplified the method in a ground-
state study for the Edwards-Anderson spin-glass model, in the
latter paper[30] we explicitly demonstrated the usefulness of the
proposed method for unraveling the intriguing low-temperature
“crystal-like” patterns of Lennard–Jones polymers. Currently we
are employing this method for determining the ground-state pat-
terns of lattice peptides described by the HP model.[32]

Most relevant for the polymer study presented here is the re-
cent proposal of a MC algorithm that employs tree-like data struc-
tures of the polymer’s “internal” degrees of freedom in combina-
tion with a “parsimonious” Metropolis acceptance criterion.[33]

While preserving the standard Metropolis dynamics, this algo-
rithm speeds up simulations with power-law long-range interac-
tions significantly and hence allows the study of much longer
macromolecules than before. Subsequently, the general setup
of the method inspired another “external” variant that can deal
very efficiently with algebraically decaying long-range interac-
tions of particle and spin systems.[34] A first concrete application
to the coarsening kinetics of the conserved Ising model has just
appeared.[35]

Our new method for polymers[33] allows efficient simulations
of the collapse transition of polymers with untruncated Lennard–
Jones interactions.[36] As will be discussed below, it also gives
completely new possibilities for investigating seemingly simple
(athermal) hard-sphere polymers and enables novel observations
which would have been hardly possible with standard simula-
tion techniques.

An even simpler fundamental model in statistical physics is
the self-avoiding lattice walk – a sequence of steps on a regular lat-
tice that is unable to visit any lattice site more than once. Not only
does this model serve as the most basic approximation for poly-
mers with repulsive interaction, it is also a realization of the O(n)
vector spin model with n = 0 and, therefore, its properties are
of interest also in higher dimensions. Self-avoiding walks have
been studied extensively both analytically and numerically[37,38]

and are generally well understood. Yet, research is still ongoing
and a powerful new MC method has recently been introduced.[39]

Through its application the scaling exponent 𝜈 in three dimen-
sions, which is not known analytically, could be determined up
to six digits[40] significantly improving earlier estimates. For a re-
cent high-precision numerical study of 4D self-avoiding walks see
Ref. [41].

The hard-sphere polymer considered here is the simplest gen-
eralization of a self-avoiding walk to an off-lattice geometry. Al-
though it can be understood as a walk, a sequence of steps of a
certain length in random directions where any new position must
be a distance d away from previous positions, the more common
picture is that of a linear chain of non-overlapping hard spheres
of diameter d that are connected by bonds of fixed length. The
universal aspects of the behavior of self-avoiding walks, for ex-
ample, scaling exponents, should, of course, apply to this model,
too. Particularities that arise from the lattice geometry on the
other hand are absent. Another important difference is that for
the hard-sphere polymer the strength of the repulsion can be in-
fluenced directly by the choice of the sphere diameter. For the lat-

tice walk this is only possible indirectly for instance by selecting
a particular lattice type or by allowing the walk to directly jump
to next-nearest neighbors of the currently occupied site as well.

Hard-sphere polymers have been investigated by means of MC
simulations some time ago,[42] but due to limits in hardware and
methods only chains of length 60 could be investigated. In an ear-
lier publication,[33] we adapted the aforementioned new lattice
algorithm to continuous degrees of freedom and are now able
to simulate polymers with millions of repeat units. This qualita-
tive difference in the size of the system leads to much smaller
corrections to scaling and the predicted behavior manifests itself
more clearly.

In this study, we simulate hard-sphere polymers in two to five
dimensions and compare the results with theory. We vary the
sphere diameter and test predictions for crossover scaling and
observe the resulting change in entropy.

The rest of the paper is organized as follows: In Section 2, we
first briefly define the model, discuss the observables we are in-
terested in, and then introduce the concept of periodic boundary
conditions for off-lattice polymers. This is followed in Section 3
by a short explanation of the MC methods we use in this study.
The first is the binary tree method[39] for the efficient implemen-
tation of the pivot algorithm[43] adapted to hard-sphere polymers
and the second is a novel specialized flat-histogram method that
allows the measurement of entropy. The main part of the paper
is Section 3 where we present the results. We first discuss geo-
metric quantities like the end-to-end distance and the radius of
gyration in two to five dimensions and then analyze the entropy
and its dependence on dimensionality and sphere diameter. We
close the paper with some conclusions in Section 4.

2. Model and Observables

2.1. Hard-Sphere Polymer

The model we consider in this study is the off-lattice version
of a self-avoiding walk (SAW). It is a fully flexible chain with N
monomers at positions X = (x1, …, xN) in D dimensions where
the monomers are connected by rod-like bonds of fixed length:

|xk − xk−1| = b (1)

In the following, we set b = 1, which is equivalent to expressing
all distances in units of b.

The monomers themselves are hard spheres with a diameter
d ⩽ 1:

|xi − xj| ≥ d for all i ≠ j (2)

2.2. Observables

Two geometric observables are commonly considered: The end-
to-end distance R = |xN − x1| and the squared radius of gyration

R2
gyr =

1
N

N∑
i=1

(
xi −

1
N

N∑
j=1

xj

)2

(3)
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Note that in this study we refer with N to the number of
monomers or beads while the number of bonds (or steps in the
context of SAWs) is labeled as L = N − 1.

Another important property of SAWs is the number of possi-
ble walks cL with L steps (bonds). On a lattice for finite L, cL is
an integer number that can at least in principle easily be deter-
mined simply by counting all walks. In the off-lattice case the sit-
uation is more complicated since the equivalent quantity is the
integral over the accessible state space which we denote eS im-
plicitly defining the chain’s entropy S. Formally it is:

eS = ∫
N∏

i=2

dxi

N∏
i=2

𝛿(|xi − xi−1| − b)
N−2∏
i=1

N∏
j=i+2

Θ(|xi − xj| − d) (4)

The restrictions of fixed bond length and excluded volume are
represented by delta-distributions 𝛿 and Heaviside functions
Θ, respectively, and the position of the first monomer x1 is
arbitrary due to the translational symmetry of the polymer as a
whole. For the pure random walk (d = 0) it is eS = N−1

D = L
D

with the surface area D of the D-dimensional sphere. Unfor-
tunately, Equation 4 is not particularly useful for measuring the
entropy in practice. Ways to determine S will be discussed in the
methods section below.

Finally, we also measure the minimal monomer-monomer dis-
tance

rmin := min
i≠j

(|xi − xj|) (5)

or its deviation from the monomer diameter 𝜌= rmin − d. Further
below we will show how 𝜌 is closely related to the entropy and can
be used to measure it.

2.3. Boundary Conditions

Although ring-like polymers are also frequently investigated the
majority of research focuses on standard chains with two ends.
Monomers close to one of the two termini typically experience a
different environment than monomers in the center; the system
can be considered to possess free boundary conditions (FBC).
The resulting inhomogeneity is, however, sometimes undesir-
able. For instance, if the average of properties like bond-bond
correlations or internal distances is considered, it is preferable
that these quantities do not depend on the position in the chain
the measurement is taken at. It would also be interesting to see
how the magnitude of the corrections to scaling differ between
homogeneous and inhomogeneous systems.

We create a system with periodic boundary conditions (PBC)
by taking a copy of the chain, rotating it and displacing it so
that the image of x1 can be attached to xN using a new bond bN
(Figure 1). For any such operation it is always possible to define
a transformation 
x′ =  x = T x + dT (6)

where T is a rotation matix and dT a displacement vector and
which fulfills

| x1 − xN| = b (7)

Figure 1. A configuration and its first image for D = 2 and L = 1023 with
PBC. Although some monomers (e.g., x165 and x1867 in the marked circle)
overlap, the configuration is valid since their separation along the chain
exceeds the chain length (1867 − 165 > L).

We can write

x′i ≡ xN+i =  xi (8)

The condition in Equation 2 needs to be modified for use with
PBC. We choose

|xi − xj| ≥ d if 0 < |i − k| < N (9)

meaning that a monomer only “sees” N − 1 other monomers
in either direction. It may overlap with its own copy and with
monomers that are further away along the chain. This condi-
tion is equivalent to demanding that any segment of N adjacent
monomers in the chain does not overlap with itself.

To motivate the designation “periodic boundary conditions” it
is convenient to imagine the polymer configuration expressed
not in Cartesian coordinates, but rather by bond and torsion an-
gles (𝛽 i, 𝜏 i) as pairs of local coordinates at each joint specifying
the position of the next monomer based on the three previous
ones:

xi+1 = 𝜒(𝛽i, 𝜏i, xi, xi−1, xi−2) (10)

It is then not difficult to imagine that the chain is extended to in-
finity by simply repeating the existing sequence of pairs of angles
over and over[44] leading to

x′1 ≡ xN+1 := 𝜒(𝛽N, 𝜏N, xN, xN−1, xN−2) (11)

x′2 ≡ xN+2 := 𝜒(𝛽1, 𝜏1, x1, xN, xN−1) (12)

x′3 ≡ xN+3 := 𝜒(𝛽2, 𝜏2, x2, x1, xN) (13)

etc.
In the past similar ideas have been used for theoretical

considerations and periodic walks have been enumerated on
lattices,[45] however, to our knowledge in this study such bound-
ary conditions are applied for the first time in the context of
MC simulations.
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Figure 2. In the binary tree a) each node represents a group of monomers and stores the parameters of a sphere b) containing them. (Although individual
monomers are drawn as yellow circles with finite size, the respective spheres have radii of zero.)

3. Methods

3.1. Conformational Updates and Transformations

In order to explore the state space of the polymers we performed
MC simulations. To modify the configuration the pivot move was
used,[43] which randomly selects a monomer xk as a fulcrum and
rotates all monomers on one side around it, for example:

x′i = pxi = pxi + dp for i > k (14)

with a random rotation matrix p and the vector dp = xk −pxk.
Of course, the update is only accepted if none of the moved
monomers overlaps with the ones that keep their position. The
side to be rotated can be freely chosen, due to the overall rota-
tional symmetry of the system. In our simulations always the
smaller one was picked, that is, x1, …, xk − 1 if k ⩽ N/2 and xk + 1,
…, xN otherwise.

A bond-rotation update was also implemented, although its ap-
plication was only necessary for D = 2. For this update a bond
vector bk = |xk + 1 − xk| is randomly selected and assigned a new
direction : bk → b′

k. Since this implies

x′i = xi − bk + b′
k for i > k (15)

the update can also trivially be expressed in the form of a trans-
formation of the type used in Equations 6 and 14:

x′i = bxi = xi + db for i > k (16)

with the identity matrix  and db = b′
k − bk.

3.2. Binary Tree Method

A few years ago Clisby[39,40,46] introduced a powerful new
method for the simulation of self-avoiding walks. In a recent
publication,[33] we adapted this technique in order to be able to
investigate the system at hand. Without it, chains with L ≈ 106

as considered in this study could not be simulated. Here, only
a brief overview of the main elements of the algorithm will be
given. For details, Ref. [33] should be consulted. Central to the
method is a binary tree whose leaves correspond to individual
monomers and whose inner nodes store collective information
describing all monomers of the subtree to which they are root.
This information contains two essential parts:

First, the node stores the parameters of a sphere that contains
all monomers in the subtree (Figure 2). This allows one to test
whether the distance of two nodes’ spheres exceeds d. If it does
none of the monomers in one node can possibly overlap with a
monomer in the other, while a distance smaller than d or inter-
section of the spheres leaves the matter undecided. In the latter
case, one proceeds by replacing one node by its children and tests
for the resulting two pairs of spheres. In this manner, a recursive
algorithm that determines whether monomers from two distinct
groups overlap can be implemented.

The second important element that is stored in a node is
a transformation representing the aggregate of all MC moves
that are yet to be applied to all nodes in the subtree. As one
main design feature of the algorithm the polymer data is always
accessed at a level as coarse grained, that is, as high up the tree,
as possible. This strategy is followed while reading the polymer’s
configuration when testing for overlaps, but it can also be
employed while actively modifying the state of the chain. When
a group of monomers is to be moved, instead of updating every
monomer’s position, only the sphere in the highest possible
node is moved and the respective transformation stored in that
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node. It is applied to lower levels in the tree only when this
becomes necessary, that is, if tests for overlap can not be resolved
higher up and coordinates from these nodes need to be accessed.
If the node in which a transformation a is to be stored already
contains a transformation b, it is easily possible to calculate
their product c = a◦b and store it instead.

It is convenient to store and update additional data in the
nodes that are not required by the algorithm but facilitate mea-
surements during the simulation. The center of mass ca =∑k+na−1

i=k xi∕na of a node’s na monomers xk,… , xk+na−1 is a natural
choice. If it is available for the children of a node it can easily
be calculated for the node itself. For each node the squared ra-
dius of gyration g2

a =
∑k+na−1

i=k (xi − ca)2∕na is tracked. Again, the
goal is to recursively calculate g for increasingly large groups of
monomers:[40] If gl, gr were known for the children l and r of a
parent node p it is

g2
p = (nl(g

2
l + (cl − cp)2) + nr(g

2
r + (cr − cp)2))∕np (17)

In the following, simulations are discussed where the diameter
d is allowed to vary at run-time in order to measure the entropy.
To judge whether an increase by a certain amount is possible it is
required to keep track of the minimal monomer-monomer dis-
tance rmin (Equation 5) for the entire chain. This can also be fa-
cilitated by storing the respective value for each node. Now, how-
ever, obtaining the value for a parent node is more complicated,
albeit thanks to the binary tree still reasonably efficient. In addi-
tion to the values from the child nodes it is required to determine
the minimum distance between the two groups and not just the
minimum distance between the two spheres.

3.3. Measuring Entropy

For self-avoiding walks there are two strategies for measuring the
number of possible walks cL = eS. For smaller L all walks can be
enumerated. For D = 3 the state-of-the-art is L = 36[47] while for
D = 2 in Ref. [48] the author improved their own record[49] from L
= 71 to L = 79. For longer walks one simulates two smaller walks
of length L independently and every now and then tests whether
the two walks connected by a random bond vector produce a valid
self-avoiding walk of length 2L + 1.[50,51] If the combination is
valid with probability pc(L) than

c2L+1 = pcc
2
Lz (18)

where z is the coordination number of the lattice, that is, the
number of choices for the connecting vector.

The second method can be used for the model used in this
study as well and the results suggested a non-trivial dependence
of the entropy S on d, that is, on the strength of the excluded-
volume interaction. To study this dependency in more detail, we
introduce a new simulation technique, that allows the system to
change the monomer diameter d during the simulation, while
fulfilling detailed balance. Its goal is to determine the relative sta-
tistical weight of the set of all configurations for different d and in
particular relating it to the known value S = L ln for the pure
random walk (d = 0). Just like with standard flat-histogram MC
methods,[27,29] a weight function W(d) that defines the acceptance

probability for a suggested change d → d′ is used. Provided that d′

− d < 𝜌, meaning that the new configuration is valid, the update
is accepted with probability Pacc(d → d′) = min (1, W(d′)/W(d)).
The goal is a constant (flat) distribution of samples as a func-
tion of d meaning that W(d) = exp(−S(d)). If the argument of the
weight function is continuous as it is here, the interval is typically
divided into sub-intervals of equal width on each of which W is
constant (binning). We decided to follow a different approach and
allow only distinct values of the diameter d ∈ {0, h, 2h, …, 1 − h,
1} where h = 1/1024 was chosen. For chains longer than those
that were simulated with this method in this study it will become
necessary to use smaller values. This discretization is an option
because of the direct control over the possible changes of d, while
in standard MC simulation changes of the respective quantity—
the energy—can only be controlled indirectly.

The standard method of obtaining a flat distribution involves
either an iterative process of several simulations where the pro-
duced histograms are used to successively improve W(d) or a
Wang–Landau-like procedure that constantly modifies W with
the changes becoming smaller over time. In the present case,
however, one can meassure the probability that an increase in
diameter is at all possible, that is, the probability Pkh(𝜌 > h) that
𝜌 > h. Since given that S((k + 1)h) < S(kh) implies W((k + 1)h) >
W(kh) such a change should always be accepted, detailed balance
demands that for a flat distribution the inverse move should be
accepted with the same probability. Therefore,

W((k + 1)h)
W(kh)

= Pacc((k + 1)h → kh) = Pkh(𝜌 > h) (19)

It turned out that measuring Pkh(𝜌 > h) and updating W simul-
taneously does allow the simulation to sample all values of d. It
should be noted that by adjusting W at runtime detailed balance
is violated and in order to avoid systematic errors it is good prac-
tice to perform a final production run with fixed W throughout
which all data used in the analysis are obtained.

3.4. Derivatives of Entropy

In the previous subsection, it has become clear that the quan-
tity 𝜌, the maximal amount by which the diameter d can be in-
creased for a given configuration, is intimately related to the en-
tropy S of the system. This relationship can be exploited to gain
additional useful information. It will become clear that there are
simple equations that link the moments of the distribution of 𝜌
to the derivatives of S(d).

It is trivial that for any configuration the monomer diameter
d can always be reduced without creating any violation of Equa-
tion 2, that is, no overlaps of monomers. However, increasing d
is not always allowed and the probability of a possible increase
from d0 to d0 + 𝜖 is

Pd0→d0+𝜖 = Pd0
(𝜌 > 𝜖) = eS(d0+𝜖)−S(d0) (20)

In other words, eS(d0+𝜖)−S(d0) denotes the fraction of configura-
tions for d0 that are still valid for d0 + 𝜖 or for which 𝜌 > 𝜖. For
very long chains the possible changes will become very small 𝜖
≪ 1 and the distribution for 𝜌 at d0 denoted as pd0

(𝜌) will be very
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Figure 3. a) Scaling of end-to-end distance for D = 2. The diameter d decreases from top to bottom. Errors are smaller than the line width. b) The
coefficients of the correction terms for FBC (solid) and PBC (dashed). Note that L−3 = L−2Δ implies that the parameters a3 and b2 cannot be distinguished.

similar to the distribution for 𝜌 at d0 + 𝜖 since d0 and d0 + 𝜖 are
very similar. It is, therefore, justified to use the Ansatz

pd0
(𝜌) ∝ e𝛽𝜌+𝛾𝜌

2+… (21)

Taking the derivative with respect to 𝜖 of

Pd0
(𝜌 ≥ 𝜖) = ∫

∞

𝜖

pd0
(𝜌) d𝜌 = eS(d0+𝜖)−S(d0) (22)

we get

−pd0
(𝜖) = S′(d0 + 𝜖)eS(d0+𝜖)−S(d0) (23)

and

−e𝛽𝜖+𝛾𝜖
2+… ∝ S′(d0 + 𝜖)eS(d0)+S′(d0)𝜖+ 1

2
S′′(d0)𝜖2+⋯−S(d0)

= S′(d0 + 𝜖)eS′(d0)𝜖+ 1
2

S′′(d0)𝜖2+…

= S′(d0)
(

1 +
S′′(d0)
S′(d0)

𝜖 +
S′′′(d0)
2S′(d0)

𝜖2 +…
)

eS′(d0)𝜖+ 1
2

S′′(d0)𝜖2+… (24)

Since S(𝜌) and its derivatives diverge linearly with L the ratios
S″/S′, S‴/S′, … converge and S′, S″, … can be identified with 𝛽,
2𝛾 , …. The latter can also be expressed in terms of moments of 𝜌
leading for long chains or small 〈𝜌〉 to

𝜕S
𝜕d

≈ − 1⟨𝜌⟩ (25)

and

𝜕2S

𝜕d2
≈

⟨𝜌2⟩ − 2⟨𝜌⟩2

2⟨𝜌⟩4
(26)

with equality in the limit L → ∞.

4. Results and Discussion

With the described method it is possible to simulate very long
chains, although the efficiency depends strongly on the number

of dimensions D and the monomer diameter d. While for D = 2,
3 and not too small diameters chain length of L ≈ 106 are easily
accessible, for D = 4, 5 or small diameters, that is, if the behavior
of the chain is close to a random walk, L ≈ 104 can already be
challenging. We also simulated the pure random walk (d = 0),
in order to verify that the algorithm produces correct results and
that statistical errors are reasonable.

Since the behaviors of the end-to-end distance and the radius
of gyration are very similar we are not going to treat the latter in
detail here. Rather we focus mainly on the end-to-end distance
and in Section 4.4 we discuss the weakly universal ratio of the
two length measures.

4.1. Scaling and Crossover of the End-To-End Distance
for D = 2, 3

For D< 4 the mean squared end-to-end distance of a self-avoiding
walk on a lattice is expected to behave like

⟨R2⟩ = AL2𝜈

(
1 +

a1

L
+

a2

L2
+⋯ +

b1

LΔ +
b2

L2Δ +…
)

(27)

with additional correction terms arising from the lattice geome-
try. Here, 𝜈 is the Flory exponent and Δ the exponent of confluent
corrections to scaling, both of which are universal. This scaling
also applies to the hard-sphere polymer (d > 0) in continuous
space where lattice corrections are absent.

For D = 2 the values of the exponents are known exactly: 𝜈 =
3/4 and Δ = 𝜔𝜈 = 3/2, which means that the leading correction
is of order L−1. In Figure 3a, we show 〈R2〉/L2𝜈 for different
diameters d and L ⩽ 106. Note that for the random walk (d =
0) the choice of boundary conditions is irrelevant and the two
curves coincide, while the linear scaling of 〈R2〉 with L leads to
〈R2〉/L2𝜈∝L−1/2. In contrast, for d > 0 the curves become linear
for small L−1 indicating that the leading correction is of this
order. For larger diameters the boundaries have a dramatic influ-
ence not only on the amplitudes A; switching from FBC to PBC
even changes the sign of the first correction. The amplitudes
of the first four correction terms obtained through fitting are
shown in Figure 3b. One interesting observation is that close

Macromol. Theory Simul. 2023, 2200080 2200080 (6 of 13) © 2023 The Authors. Macromolecular Theory and Simulations published by Wiley-VCH GmbH
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Figure 4. a) Scaling of end-to-end distance for D = 3. The diameter d decreases from top to bottom. b) Amplitude A and first correction b1.

Table 1. Values of the universal exponents 𝜈, 𝛾 , and Δ.

D 𝜈 𝛾 Δ

2 3/4 43/32 3/2

3 ≈0.5875970 ≈1.156953 ≈0.528

4 0.5 1

5 0.5 1

to d = 0.45 for FBC the higher-order corrections become very
small, meaning that the curve in Figure 3a is close to a straight
line. We also observe that for most values of d the corrections to
scaling for PBC are indeed smaller than for FBC.

For D = 3 (Figure 4a) the dominant correction term for long
chains is of order L−Δ ≈ L−0.5 and displaying 〈R2〉/L2𝜈 accord-
ingly again leads to linear curves for large L and d > 0. There
is some uncertainty with regard to the value of Δ. While field-
theoretic methods predict values close to or slightly below 𝜔 =
Δ/𝜈 = 0.85,[52,53] implying Δ close to or slightly below 0.5, recent
MC simulations[40] produced values of 𝜈 = 0.58759700(40) and Δ
= 0.528(8) which means 𝜔 = 0.90(1). For the analysis of our data
we use the latter value, since it is closer to our own estimates.
The values of the relevant universal exponents are compiled in
Table 1. Unfortunately, with 2Δ≈ 1 there are two correction terms
of similar but different order which makes it difficult to obtain
the parameters a1 and b2. We only get good values for b1 shown
in Figure 4b. We find again that |b1| is slightly smaller for PBC
although the difference is marginal.

We also see in Figure 4b for both FBC and PBC and D = 3 that
b1, that is, the first correction to scaling vanishes for d ≈ 0.43.
This can be exploited to determine the exponent 𝜈. We simulated
particularly long chains up to L ≈ 107 for d = 0.43225. From
fitting the data we obtain a value 𝜈* = 0.587604(8) as shown in
Figure 5, where we also display the respective data for the radius
of gyration.

The above representation notwithstanding for long chains
〈R2〉 should not depend on two parameters—the chain length
and the range of repulsion—but on a combination of the two.
Using the bead diameter d for the latter it should be

⟨R2⟩∕L = f (LdD∕𝜙) (28)

Figure 5. Squared end-to-end distance and radius of gyration divided by
L2𝜈∗ in D = 3 for d = 0.43225 with 𝜈* = 0.587604.

in the limit of large L with the crossover exponent ϕ = (4 − D)/2.
Since eventually Equation 27 should be true for all d > 0 it follows
that f(x) = Bx2𝜈 − 1 for x → ∞. As can be seen in Figure 6 this de-
scription is generally valid for D = 2 and 3 and the exponents
describe the asymptotic scaling correctly. However, the data do
not collapse perfectly and we observe a variation of B depending
on both the boundary conditions which is expected, but surpris-
ingly also on the monomer diameter d with a maximum in the
proximity of d = 0.5. Assuming that this is a direct result of the
non-trivial way the excluded volume depends on d (see Figure 7)
we used a parameter d̃ proportional to the square root (for D = 2)
of the excluded volume per monomer instead of d, however, this
did not lead to a constant B(d̃).

4.2. End-To-End Distance for D = 4

For D = 4 the self-avoiding walk has the same exponent as the
random walk 𝜈 = 1/2, but there are logarithmic corrections[54]

due to D = 4 being the upper critical dimension:

⟨R2⟩∕L = A
[
ln(L∕𝜆)

]1∕4
[

1 −
17 ln(4 ln(L∕𝜆)) + 31

64 ln(L∕𝜆)
+…

]
(29)

Macromol. Theory Simul. 2023, 2200080 2200080 (7 of 13) © 2023 The Authors. Macromolecular Theory and Simulations published by Wiley-VCH GmbH

 15213919, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ats.202200080 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [27/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.mts-journal.de

Figure 6. Crossover scaling for a) D = 2 and b) D = 3. The insets show the amplitudes B of the asymptotic scaling. For D = 3 and small diameters d it
becomes difficult to reliably determine B(d) through fitting since x ≪ 1 for all available values of L.

Figure 7. The excluded volume (red/blue) around the monomer chain
(black) that is inaccessible for other parts of the chain. While if d ⩽ 0.5
(top) this volume for each monomer is a sphere and therefore propor-
tional to dD, for d > 0.5 (bottom) the spheres overlap and the excluded
volume per monomer grows more slowly with d.

Previous studies have been performed on lattice walks with
FBC[55,56] and although the exponent 1/4 was not confirmed
to complete satisfaction, agreement with the prediction is good
if the walks are long enough (>106). Here, we managed to

Figure 8. Scaling of end-to-end distance for D = 4 with a) FBC and b) PBC.

simulate chains with up to L = 3 × 105. Fitting the data for the
longer chains led to values of 𝜆 and A displayed in the insets of
Figure 8 and to the rescaled data points in the main plots. Since
the correction term in Equation 29 has a fixed amplitude, it is
𝜆 that specifies the magnitude of the correction corresponding
to the curvature in the predicted curve in Figure 8. We observe
that for larger L the data collapse nicely, although higher-order
corrections are manifest for smaller chains. There is a substan-
tial difference between FBC and PBC. The values for 𝜆 are larger
for PBC by a factor of ≈40 for d = 0.95 to many orders of mag-
nitude for smaller diameters implying that the logarithmic cor-
rections given in Equation 29 are smaller for PBC. Furthermore,
higher-order corrections indicated by deviations from the dashed
line in Figure 8 are smaller for PBC as well. Field theory[52] pre-
dicts 𝜈−1 = 2 − 𝜖/4 + … for small 𝜖 = 4 − D. With Equation 28
this suggests A∝ d which is in good agreement with our results.

4.3. End-To-End Distance for D = 5

Above the upper critical dimension D > 4 “the puzzles of finite-
size scaling are still not fully resolved”.[57] Although there is only
the one Gaussian fixed point it has been argued[58] that the way
excluded volume impacts scaling should still be quantifiable by
the crossover exponent ϕ = (4 − D)/2 and that the leading-order

Macromol. Theory Simul. 2023, 2200080 2200080 (8 of 13) © 2023 The Authors. Macromolecular Theory and Simulations published by Wiley-VCH GmbH
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Figure 9. a) Scaling of end-to-end distance in five dimensions. Detail for small d shown in the inset. The diameter d decreases from top to bottom.
Note that results for d = 0.1 are within our statistical errors numerically and visually (see inset) indistinguishable from the pure random walk d = 0. b)
Amplitude A and coefficient a1 of the first correction ∝L−1/2.

Figure 10. Amplitude ratios ⟨R2⟩∕⟨R2
gyr⟩ for D = 2 and 3 and different di-

ameters d.

correction to scaling for D= 5 should, therefore, be of order L−1/2.
In the same study this conjecture is well supported by numeri-
cal data for the end-to-end distance of 5D SAWs on a hypercubic
lattice. Our data shown in Figure 9 confirms this now also for
hard-sphere polymers; we point out, however, that it is not pos-
sible to find a single scaling function as in Equation 28 since in
the thermodynamic limit 〈R2〉/L converges to different values for
different diameters d.

4.4. Amplitude Ratios

We also want to discuss the ratio of amplitudes gD = AR∕ARgyr
cor-

responding to the thermodynamic limit limL→∞(⟨R2⟩L∕⟨R2
gyr⟩L).

They are thought of as being of weak universality: they depend
on dimensionality, but in the case of SAW do not change with
the lattice type. They are, however, different for linear walks and
closed polygons. From our simulations for D = 2 and D = 3 we
obtain the amplitude ratios shown in Figure 10 whose asymp-
totic limits for large L are listed in Table 2 and agree for FBC with
values from the literature on SAWs, for example, g2 = 7.129(4)[59]

and g3 = 6.25353(1).[40] Our value for g3 with FBC was obtained
from the simulations of particularly long chains up to L ≈ 107

Table 2. Ratio of amplitudes gD for different D and boundary conditions.

D FBC PBC

2 7.1278(2) 8.1356(2)

3 6.25352(2) 6.606(1)

with d = 0.43225 where the correction of lowest order is close
to zero. Therefore, the statistical uncertainty is smaller for this
value. For PBC we observe larger values for the ratio, once more
showing that gD is only weakly universal. Regardless of the num-
ber of dimensions for the random walk it is gD = 6 which conse-
quently is also the limiting ratio we observe for the hard-sphere
polymer with D = 4 and D = 5. In general, the difference gD −
6 can be considered a quantitative measure for how strongly the
chain or walk deviates from the random walk. It is no surprise
that we observe a greater value for PBC, since for FBC both ends
of the chain experience a less crowded environment than the cen-
ter (or any part of the chain for PBC) and they are, therefore, less
affected by the excluded-volume repulsion.

4.5. Entropy

As discussed earlier, one method to evaluate the entropy of a sys-
tem with FBC is to measure the probability pc(L) that two in-
dependent chains of length L can be connected to form a non-
overlapping chain of length 2L + 1. This probability relates to the
volume of accessible state space eS(L) according to

pc(L) = eS(2L+1)

De2S(L)
(30)

where we replaced in Equation 18 the coordination number z by
the surface of the D-sphere D. Assuming that the scaling law for
the number of SAWs cL describes the behavior of eS(L) as well

eS(L) = CL𝛾−1𝜇L

(
1 + a

L
+ b

LΔ +…
)

(31)

Macromol. Theory Simul. 2023, 2200080 2200080 (9 of 13) © 2023 The Authors. Macromolecular Theory and Simulations published by Wiley-VCH GmbH
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Figure 11. Probability pc to successfully connect two chains of length L divided by (L/2)1−𝛾 for a) D = 2 and b) D = 3 as function of 1/L and 1/LΔ,
respectively, with FBC. Here, the diameter d increases from top to bottom. Except for the pure random walk (d = 0) the curves converge for L → ∞,
confirming the expected scaling.

and ignoring the corrections it is

pc(L) = 𝜇

DC

(L
2

)1−𝛾
(32)

Here, 𝛾 is another independent universal exponent (cf. Table 1).
We measured pc for D = 2 and D = 3 with FBC. The results are
shown in Figure 11 and the fact that pc/(L/2)1 − 𝛾 converges for L
→ ∞ demonstrates that the expected scaling from Equation 32
and in particular the values of 𝛾 [50] in Table 1 are correct for hard-
sphere polymers, too. We also see that the corrections are of the
same order as for the end-to-end distance. Interestingly, there
seems to be a change in behavior close to d = 0.5: For both D
= 2 and D = 3 the six lower curves which belong to values d ∈

{0.5, 0.6, 0.7, 0.8, 0.9, 1.0} are grouped together and are on a loga-
rithmic scale very close to equidistant for all values of 1/L or 1/LΔ

respectively. For lower values of d we observe greater changes and
as expected divergence for d = 0.

To understand the dependence on the diameter d better, we de-
cided to measure the entropy directly using the newly developed
method described above. It samples the state space for many dif-
ferent values of d at the same time and allows to determine its
volume by relating it to the known value for d = 0. Unfortunately,
with this algorithm the systems we are able to simulate within
reasonable time are smaller than for fixed d. Here, we present
data for N ⩽ 1024 and FBC.

In Figure 12 the entropy per bond S/L is displayed for several
chain lengths and D = 2, 3, 4, 5. From the MC simulation, we
only get relative weights and the normalization constant has to
be externally provided. Luckily, the values for d = 0 are known to
be S(d)|d=0 = L ln with the surface of the D-sphere . We ad-
just the normalization by vertically shifting the curves such that
this condition is fulfilled. We observe that with increasing length
S/L decreases slightly, but as expected the curves approach a lim-
iting envelope.

Next we compare in Figure 13 the numerically obtained deriva-
tive S′(d)/L to the approximation −〈𝜌〉−1/L according to Equa-
tion 25. For L = 15 there are considerable discrepancies which
as expected diminish with increasing L until for L = 1023 the
curves are almost identical. We find that the statistical uncertain-

Figure 12. Entropy per bond S/L for D = 2, 3, 4, 5 and L ∈ {7, 15, 31, 63,
127, 255, 511, 1023} with L increasing from top to bottom.

ties are smaller for the approximation. Note that the earlier choice
of normalization has no impact here, since it is an added constant
to S/L.

The approximation of S″(d)/L given in Equation 26 is shown in
Figure 14. Unfortunately, there is a lot of noise and since we did
not get good results for L = 1023 we only show data for L ⩽ 511.

For all values of D we observe a signal at d = 1/2, the value
that separates the cases where a monomer can be placed in

Macromol. Theory Simul. 2023, 2200080 2200080 (10 of 13) © 2023 The Authors. Macromolecular Theory and Simulations published by Wiley-VCH GmbH
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Figure 13. Numerical derivative of the entropy per bond S′(d)/L and its
approximation −〈𝜌〉−1/L.

Figure 14. Approximation of S″(d)/L.

between to bonded ones and those cases where this is no longer
possible. For D = 2 the first derivative has a discontinuity with
the associated peak in the second derivative diverging like L3/2

(Figure 15). For D = 3 it is the second derivative that becomes
discontinuous. The same appears to happen for D = 4 although
the signal is less pronounced and finally for D = 5 it looks like
the third derivative might be discontinuous, however, statistical
uncertainties are substantial. There are two other features of
interest: if D = 2 the first derivative of S shows a local maximum
at d ≈ 0.36, a value whose significance is not clear to us, and for

Figure 15. Scaling plot of the peak for D = 2 in Figure 14.

D = 3 the second derivative appears to change its slope at d ≈

0.7, that is, close to the value of d = 2−1/2 where the chain ceases
to be able to cross itself. We would expect that this value would
play a more important role for D = 2 where it separates values
of d for which loops can be formed from those for which this is
impossible, but we observe no impact and indeed loops become
extremely rare already for diameters smaller than d = 2−1/2.

The fact that the dominant signals appear to be localized at d =
1/2 strongly implicates the excluded volume as the direct cause.
As illustrated in Figure 7 for d < 1/2 it grows like dD while for d
> 1/2 the exponent decreases toward D − 1. For D = 2 in partic-
ular the boundary of the excluded volume and therefore the rate
of its growth actually decreases for d > 1/2. Of course, looking at
an individual configuration only offers limited insight, since with
increasing diameter the chain stretches and different configura-
tions dominate the ensemble. The overlap of spheres of excluded
volume of beads that are not directly adjacent in the chain will
be affected as a consequence. We have to conclude that the di-
ameter of the beads can only serve as a rough approximation of
the strength of the excluded-volume interaction. This behavior
should vanish or at least to be much less pronounced if beads
with a softer repulsive potential are used.

Given that the anomalies in the crossover scaling (insets in Fig-
ure 6) are maximal in the proximity of d = 1/2 we find it justified
to conclude that they are a secondary effect of the irregularities
of S(d) we just discussed.

5. Conclusion

We investigated hard-sphere polymers in two to five dimensions
for the full range of possible sphere diameters. Thanks to the so-
phisticated MC methods that we employed it was possible to sim-
ulate very long chains with L ≲ 107. As expected we found that the
scaling behavior known from self-avoiding walks is reproduced
in detail by the hard-sphere polymers. In particular the univer-
sal exponent 𝜈 and also the weakly universal ratios of amplitudes
of end-to-end distance and radius of gyration for free boundary
conditions appear to be the same, thus supporting universality.
And while we have not explicitly estimated the exponents Δ and
𝛾 , using the values established for SAWs during the analysis of
our data led to a consistent picture.

Macromol. Theory Simul. 2023, 2200080 2200080 (11 of 13) © 2023 The Authors. Macromolecular Theory and Simulations published by Wiley-VCH GmbH
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We demonstrated that periodic boundary conditions for poly-
mers can be applied within the framework of MC simulations.
While universal exponents are unaffected, the coefficients of cor-
rection terms are reduced, and new modified values for the (only
weakly universal) amplitude ratios are obtained for D = 2 and 3.

It is established knowledge that microscopic details do not
matter for the asymptotic scaling behavior of polymers. This is, of
course, the case here as well; for all systems and non-zero sphere
diameters we observe the scaling of self-avoiding walks with the
appropriate exponents and corrections. However, at finite chain
length the choice of the sphere diameter is relevant. According
to theory for long enough chains the scaling behavior should not
depend on length and strength of the repulsive interaction sepa-
rately, but on a combination of both variables. We found this pre-
diction to be generally true for D = 2 and 3, however, deviations
that cannot be explained by finite size occur and are strongest
for diameters d ≈ 1/2. We suspect that the sphere diameter is an
imperfect measure for the strength of the repulsive interaction
and as a consequence we lack the correct argument for the scal-
ing function.

For the first time the entropy and its derivatives of hard-sphere
polymers were measured to confirm this assumption. In fact, we
found discontinuities localized again at d = 1/2 for any num-
ber of dimensions. These are clearly a result of the specific ge-
ometry of the model and their persistence for increasing length
now much more convincingly shows the inadequacy of the mi-
croscopic sphere diameter as a descriptor of macroscopic behav-
ior which warrants further research in the future.
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