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These lectures give an introduction to Monte Carlo simulations of classical
statistical physics systems and their statistical analysis. After briefly recalling
a few elementary properties of phase transitions, the concept of importance
sampling Monte Carlo methods is discussed and illustrated by a few standard
local update algorithms (Metropolis, heat-bath, Glauber). Then emphasis is
placed on thorough analyses of the generated data paying special attention to
the choice of estimators, autocorrelation times and statistical error analysis.
This leads to the phenomenon of critical slowing down at continuous phase
transitions. For illustration purposes, only the two-dimensional Ising model
will be needed. To overcome the slowing-down problem, non-local cluster al-
gorithms have been developed which will be discussed next. Then the general
tool of reweighting techniques will be explained. This paves the way to in-
troduce simulated and parallel tempering methods which are very useful for
simulations of complex, possibly disordered systems. Finally, also the impor-
tant alternative approach using multicanonical ensembles is briefly outlined.

5.1 Introduction

The statistical mechanics of complex physical systems poses many hard prob-
lems which are very difficult if not impossible to solve by purely analyti-
cal methods. Numerical simulation techniques will therefore be indispensable
tools on our way to a better understanding of systems such as (spin) glasses
and disordered magnets, or of the huge field of biologically motivated problems
such as protein folding, to mention only a few important classical problems.
Quantum statistical problems in condensed matter or the broad field of ele-
mentary particle physics and quantum gravity are other major applications.

The numerical tools commonly employed can be roughly divided into mole-
cular dynamics (MD) and Monte Carlo (MC) simulations. With the still ongo-
ing advances in computer technology – according to Moore’s law, since about
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1950, every 5 years a factor of 10 is gained in computing speed – both ap-
proaches can be expected to gain even more importance in the future than they
have already today. In the past few years the predictive power of especially
the MC approach was in addition considerably enhanced by the discovery
of greatly improved simulation algorithms. Not all of them are already well
enough understood to be applicable to really complex physical systems. But,
as a first step, it is gratifying to note that at least for relatively simple spin
systems, orders of magnitude of computing time can be saved by these refine-
ments. The purpose of these lecture notes is to give a concise introduction
to what is feasible today. For further reading, there are quite a few recent
textbooks [1–4] available which treat some of the material discussed here in
more depth. In particular, in these books one can also find recent applica-
tions to physically relevant systems which are purposely omitted in this short
introduction.

For illustration purposes, we shall rather confine ourselves to the simplest
spin models, the Ising and Potts models. From a theoretical point of view,
also spin systems are still of current interest since they provide the possibility
to compare completely different approaches such as field theory, series ex-
pansions, and simulations. They are also the ideal testing ground for general
concepts such as universality, scaling or finite-size scaling, where even today
some new features can still be discovered. And last but not least, they have
found a revival in slightly disguised form in quantum gravity and conformal
field theory, where they serve as idealized “matter” fields on Feynman graphs
or fluctuating manifolds.

The rest of these lecture notes is organized as follows. In Sect. 5.2, the
definitions of Ising and Potts models are recalled and some standard observ-
ables (specific heat, magnetization, susceptibility, correlation functions,. . . )
are briefly discussed. Next the most characteristic properties of phase tran-
sitions, scaling properties and the definition of critical exponents are sum-
marized. In Sect. 5.3, the basic method underlying all importance sampling
Monte Carlo simulations is described. The following Sect. 5.4 is first devoted
to a short discussion of the initial non-equilibrium period and ageing phenom-
ena, and then in Sect. 5.5 a fairly detailed account of statistical error analysis
in equilibrium is given which also includes temporal correlation effects. The
latter highlight the problems of critical slowing down at a continuous phase
transition and phase coexistence with exponentially large flipping times at a
first-order transition. One very successful solution of the former problem are
non-local cluster algorithms which are described in Sect. 5.6. In Sect. 5.7 we
discuss reweighting techniques which quite naturally lead to the tempering
update algorithms explained in Sect. 5.8. These algorithms may be viewed
as dynamical reweighting methods that can circumvent exponentially large
flipping times and proved to be very successful for the simulation of complex,
disordered systems. The alternative method of multicanonical ensembles is
only very briefly discussed in Sect. 5.9, with emphasis on similarities and
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differences to tempering methods. Finally, Sect. 5.10 contains a few conclud-
ing remarks.

5.2 Models and Phase Transitions

5.2.1 Models and Observables

Most of the simulation techniques introduced below can be illustrated for the
simple Ising spin model whose partition function is defined as [5]

Z =
∑

{σi}
exp(−H/kBT ) , (5.1)

with
H = −J

∑

〈ij〉
σiσj − h

∑

i

σi , σi = ±1 . (5.2)

Here T is the temperature and h is an external magnetic field, kB is Boltz-
mann’s constant, the spins σi are assumed (for simplicity) to live on the sites
i of a D-dimensional cubic lattice of volume V = LD, and the symbol 〈ij〉
indicates that the lattice sum runs over all 2D nearest-neighbor pairs. In all
examples discussed below, periodic boundary conditions will be assumed.

Standard observables are the internal energy per site, e = E/V , with
E = −d lnZ/dβ ≡ 〈H〉, and the specific heat,

C/kB =
de

d(kBT )
= β2

(
〈H2〉 − 〈H〉2

)
/V , (5.3)

where β ≡ 1/kBT . In the following we always use units in which kB ≡ 1
and J ≡ 1. On finite lattices the magnetization and susceptibility are usually
defined as

m = M/V = 〈|µ|〉 , µ =
∑

i

σi/V , (5.4)

χ = βV
(
〈µ2〉 − 〈|µ|〉2

)
. (5.5)

In the high-temperature phase one often employs the fact that the magneti-
zation vanishes in the infinite volume limit and considers

χ′ = βV 〈µ2〉 . (5.6)

Similarly, the spin-spin correlation function,

G(xi − xj) = 〈σi σj〉 − 〈σi〉 〈σj〉 , (5.7)

then simplifies to G(xi −xj) = 〈σi σj〉, where xi measures the position of the
lattice sites i which are numbered, say, in a lexicographical order. At large
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distances, G(x) ∝ exp(−|x|/ξ) decays exponentially. Its decay rate defines
the correlation length

ξ = − lim
|x|→∞

|x|/ lnG(x) , (5.8)

which strictly speaking depends on the (discrete) orientation of x. For def-
initeness we will hence always consider correlations along one of the main
lattice directions.

In vanishing external field the Ising model exhibits a continuous phase
transition in temperature for all dimensions D ≥ 2. The two-dimensional
(2D) model is self-dual, relating its behaviour for high temperatures T = 1/β
to that at T ∗ = 1/β∗ in the low-temperature phase, where

sinh(2β) sinh(2β∗) = 1 . (5.9)

Under the mild assumption of a single phase-transition point, this fixes already
the critical temperature to be

sinh(2βc) = 1 or βc = ln(1+
√

2)/2 = 0.440 686 . . . , Tc = 2.269 185 . . . .
(5.10)

The exact solution by Onsager [6–8] in 1944 yields the free energy, internal
energy, specific heat etc. in zero external field for the general case of anisotropic
couplings Jx, Jy. Also the exact result for the magnetization below Tc in zero
field (again for general Jx, Jy) was first announced by Onsager at a conference
in Florence 1949 [9]. The first published derivation was given three years later
by Yang [10] in 1952, for the special case Jx = Jy = J , and subsequently
generalized to arbitrary Jx, Jy by Chang [11] in the same year. Even the
correlation length in arbitrary directions is known analytically [7, 8]. Along
the coordinate axes of a square lattice, the formula takes a surprisingly simple
form,

ξd(β) =
1

2(β∗ − β)
(β < βc) , (5.11)

ξo(β∗) = ξd(β)/2 (β∗ > βc) , (5.12)

where β and β∗ are the dual couplings defined in (5.9). The susceptibility,
however, is still not exactly known, even though highly accurate approxi-
mations could be derived [7, 8, 12]. In 3D even for the simple Ising model,
no exact solutions are available. Numerical work, high-temperature series ex-
pansions and field-theoretical considerations provide, however, very precise
estimates. From 4D on, the so-called upper critical dimension, mean-field be-
haviour starts to be become qualitatively correct, albeit in 4D only up to
multiplicative logarithmic corrections. The critical temperature is for all fi-
nite dimensions D ≥ 3 only approximately known, approaching Tc = 2D in
the mean-field limit D → ∞.

A simple generalization of the Ising model is the q-state Potts model [13]
whose Hamiltonian in zero external field is given by
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HPotts = −J
∑

〈ij〉
δσiσj

, σi ∈ 1, . . . , q , (5.13)

which is equivalent to the Ising model for q = 2. The 2D Potts model is
exactly known from self-duality, (exp(β) − 1)(exp(β∗) − 1) = q, to exhibit at
βc = ln(1+

√
q) a second-order transition for q ≤ 4 and a first-order transition

for all q ≥ 5 [14,15]. At the transition point (but only there), a couple of exact
results are available for both types of transitions, including the free energy,
internal energy and specific heat [14,15] as well as the correlation length ξd in
the disordered phase and the related interface tension σod between the ordered
and disordered phase [16]. In 3D, numerical work suggests for all q ≥ 3 a first-
order transition which rapidly becomes stronger with increasing q.

5.2.2 Phase Transitions

The most interesting aspect of a system’s phase diagram is the region where
cooperation effects may cause a phase transition, e.g., from a disordered phase
at high temperatures to an ordered phase at low temperatures as in the para-
digmatic Ising model. To predict the properties of this most challenging region
of a phase diagram as accurately as possible is one of the major objectives of
all statistical mechanics approaches, including numerical computer simulation
studies. The theory of phase transitions is a very broad subject described com-
prehensively in many textbooks (see, e.g., Refs. [17–20]). Here we only roughly
classify them into first-order and second-order (or, more generally, continu-
ous) phase transitions, and give a very brief summary of those properties that
are most relevant for numerical simulations.

Some characteristic features of the thermodynamic behaviour at first- and
second-order phase transitions are sketched in Fig. 5.1. Most phase transitions
in Nature are of first order [21–24]. The best known example is the field-driven
transition in magnets at temperatures below the Curie point, while the par-
adigm of a temperature-driven first-order transition experienced every day is
ordinary melting [25,26]. Simple models sharing such a behaviour are the Ising
and Potts models defined in (5.2) and (5.13). In general, first-order phase tran-
sitions are characterized by discontinuities in the order parameter (the jump
∆m of the magnetization m in Fig. 5.1), or the energy (the latent heat ∆e),
or both. This reflects the fact that, at the transition temperature T0, two (or
more) phases can coexist. In the example of a magnet at low temperatures
the coexisting phases are the phases with positive and negative magnetiza-
tion, while at the melting transition they are the solid (ordered) and liquid
(disordered) phases. The correlation length in the coexisting pure phases is
usually finite. Consequently also the specific heat and the susceptibility do not
diverge in the pure phases. Mathematically there are, however, superimposed
delta-function like singularities associated with the jumps of e and m.

In these lecture notes we will mainly consider second-order phase transi-
tions, which are characterized by a divergent correlation length at the transi-
tion point. The growth of correlations as one reaches the critical region from
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Fig. 5.1. The characteristic behaviour of the magnetization, m, specific heat, C,
and susceptibility, χ, at first- and second-order phase transitions

high temperatures is illustrated in Fig. 5.2, where six typical spin configu-
rations of the 2D Ising model on a 100 × 100 lattice are shown. One clearly
observes the emerging larger and larger domains or clusters which eventu-
ally start percolating the system when the critical point is approached. While
this apparently gives an intuitive picture of what happens near criticality,
some care is necessary with the interpretation of such plots since the do-
mains or clusters visible in Fig. 5.2 are so-called geometrical clusters, whose
fractal and percolation properties do not encode the proper thermodynamic
critical behaviour. Rather, they carry information on a closely related tricrit-
ical point [27]. The proper Fortuin-Kasteleyn clusters encoding the critical
properties of the model can be constructed by a stochastic rule implied by
the Fortuin-Kasteleyn representation of Potts models. These clusters, which
are always smaller than the geometrical ones, form also the basis for cluster-
update algorithms discussed later in Sect. 5.6.
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Fig. 5.2. From high temperatures (upper left) to the critical region (lower right),
characterized by large spatial correlations. Shown are actual 2D Ising configurations
for a 100 × 100 lattice at β/βc = 0.50, 0.70, 0.85, 0.90, 0.95, and 0.98
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Temperature Scaling

For an infinite correlation length, thermal fluctuations are equally impor-
tant on all length scales, and one therefore expects power-law singularities in
thermodynamic functions. The leading singularity of the correlation length is
usually parameterized in the high-temperature phase as

ξ = ξ0+ |1 − T/Tc|−ν + . . . (T ≥ Tc) , (5.14)

where the . . . indicate sub-leading corrections (analytical as well as confluent).
This defines the critical exponent ν and the critical amplitude ξ0+ on the high-
temperature side of the transition. In the low-temperature phase one expects
a similar behaviour,

ξ = ξ0−(1 − T/Tc)−ν + . . . (T ≤ Tc) , (5.15)

with the same critical exponent ν but a different critical amplitude ξ0− �= ξ0+ .
An important feature of second-order phase transitions is that due to the

divergence of ξ the short-distance details of the Hamiltonian should not mat-
ter. This is the basis of the universality hypothesis which states that all (short-
ranged) systems with the same symmetries and same dimensionality should
exhibit similar singularities governed by one and the same set of critical ex-
ponents. For the amplitudes this is not true, but certain amplitude ratios are
also universal.

The singularities of the specific heat, magnetization (for T < Tc), and
susceptibility are similarly parameterized by the critical exponents α, β, and
γ, respectively,

C = Creg + C0|1 − T/Tc|−α + . . . , (5.16)

m = m0(1 − T/Tc)β + . . . , (5.17)

χ = χ0|1 − T/Tc|−γ + . . . , (5.18)

where Creg is a regular background term, and the amplitudes are again in
general different on the two sides of the transition, cf. Fig. 5.1. Right at the
critical temperature Tc, two further exponents δ and η are defined through

m ∝ h1/δ , (5.19)

G(r) ∝ r−d+2−η . (5.20)

The critical exponents for the 2D and 3D Ising model and the 2D q-state
Potts model with q = 3 and 4 are collected in Table 5.1.

Finite-Size Scaling

For systems of finite size, as in any numerical simulation, the correlation
length cannot diverge, and also the divergences in all other quantities are
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Table 5.1. Critical exponents of the 2D q-state Potts model with q = 2, 3 and 4,
and the 3D Ising model. All 2D exponents are exactly known [14, 15], while for the
3D Ising model the “world-average” for ν and γ calculated in Ref. [28] is quoted.
The other exponents follow from the hyperscaling relation α = 2 − Dν, and the
scaling relations β = (2 − α − γ)/2, δ = γ/β + 1, and η = 2 − γ/ν

Model ν α β γ δ η

2D Ising 1 0 (log) 1/8 7/4 15 1/4
3D Ising 0.630 05(18) 0.109 85 0.326 48 1.237 17(28) 4.7894 0.036 39
2D q = 3 Potts 5/6 1/3 1/9 13/9 14 4/15
2D q = 4 Potts 2/3 2/3 1/12 7/6 15 1/2

then rounded and shifted [29–32]. This is illustrated in Fig. 5.3, where the
specific heat of the 2D Ising model on various L × L lattices is shown. The
curves are computed from the exact solution of Kaufman [33] for any Lx ×Ly

lattice with periodic boundary conditions (see also Ferdinand and Fisher [34]).
Near Tc the role of ξ in the scaling formulas is then taken over by the

linear size of the system, L. By rewriting

|1 − T/Tc| ∝ ξ−1/ν −→ L−1/ν , (5.21)

we see that at Tc the scaling laws (5.16)–(5.18) are replaced by the finite-size
scaling (FSS) Ansätze,

C = Creg + aLα/ν + . . . , (5.22)

m ∝ L−β/ν + . . . , (5.23)

χ ∝ Lγ/ν + . . . . (5.24)

In general these scaling laws are valid in the vicinity of Tc as long as the scaling
variable x = (1−T/Tc)L1/ν is kept fixed [29–32]. In particular this is true for
the locations Tmax of the (finite) maxima of thermodynamic quantities such as
the specific heat or susceptibility, which are expected to scale with the system
size as

Tmax = Tc(1 − xmaxL
−1/ν + . . . ) . (5.25)

In this more general formulation the scaling law for, e.g., the susceptibility
reads

χ(T,L) = Lγ/νf(x) . (5.26)

By plotting χ(T,L)/Lγ/ν vs the scaling variable x, one thus expects that the
data for different T and L fall onto a kind of master curve. This is a nice way
to demonstrate the scaling properties visually.

Similar considerations for first-order phase transitions show that also
the delta function like singularities, originating from phase coexistence, are
smeared out for finite systems [35–39]. They are replaced by narrow peaks
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Fig. 5.3. Finite-size scaling behaviour of the specific heat of the 2D Ising model on
L × L lattices. The critical point is indicated by the arrow on the top axis

whose height (width) grows proportional to the volume (1/volume) with a
displacement of the peak location from the infinite-volume limit proportional
to 1/volume [16,40–44].

5.3 The Monte Carlo Method

Let us now discuss how the expectation values in (5.3)–(5.7) can be computed
numerically. A direct summation of the partition function is impossible, since
already for the Ising model with only two possible states per site the number of
terms would be enormous: 22500 ≈ 10750 for a modestly large 50× 50 lattice!1

Also a naive random sampling of the spin configurations does not work. Here
the problem is that the relevant region in the high-dimensional phase space is
relatively narrow and hence too rarely hit by random sampling. The solution
to this problem is known since long: One has to use the importance sampling
technique [45].

5.3.1 Importance Sampling

The basic idea of importance sampling is that one does not pick configurations
at random, but draws them directly according to their Boltzmann weight,

P eq({σi}) ∝ exp (−βH({σi})) . (5.27)

1 For comparison, the estimated number of protons in the Universe is 1080.
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In more mathematical terms one sets up a Markov chain,

· · · W−→ {σi} W−→ {σ′
i}

W−→ {σ′′
i }

W−→ . . . ,

with a transition probability W satisfying the conditions

(a) W ({σi} −→ {σ′
i}) ≥ 0 for all {σi}, {σ′

i} , (5.28)

(b)
∑

{σ′
i}
W ({σi} −→ {σ′

i}) = 1 for all {σi} , (5.29)

(c)
∑

{σi}
W ({σi} −→ {σ′

i})P eq({σi}) = P eq({σ′
i}) for all {σ′

i} . (5.30)

From (5.30) we see that the desired Boltzmann distribution P eq is a fixed
point of W . A somewhat simpler sufficient condition is detailed balance,

P eq({σi})W ({σi} −→ {σ′
i}) = P eq({σ′

i})W ({σ′
i} −→ {σi}) . (5.31)

By summing over {σi} and using (5.29), the more general condition (5.30)
follows. After an initial equilibration period (cf. Sect. 5.4), expectation values
can then be estimated as an arithmetic mean over the Markov chain, e.g.,

E = 〈H〉 =
∑

{σi}
H({σi})P eq({σi}) ≈

1
N

N∑

j=1

H({σi}j) , (5.32)

where {σi}j denotes the spin configuration at “time” j. A more detailed ex-
position of the mathematical concepts underlying any Markov chain Monte
Carlo algorithm can be found in many textbooks and reviews [1–4,29,46,47].

5.3.2 Local Update Algorithms

The required Markov chain properties can be satisfied with many different
concrete update rules. These can be roughly divided into local and non-
local algorithms. While non-local algorithms such as multigrid schemes or
the cluster-update methods to be discussed later in Sect. 5.6 may consider-
ably improve the performance of the simulations, they are more specialized
and hence usually not automatically applicable to a given arbitrary physical
system. This is why the conceptually much simpler local algorithms continue
to be very important.

Metropolis Algorithm

The most flexible update prescription is the standard Metropolis algorithm
[48] where the Markov chain is realized by locally updating the degrees of free-
dom step by step. This works for discrete and continuously varying degrees
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of freedom, and for lattice and off-lattice formulations. Examples for lattice
formulations range from our simple, paradigmatic Ising model, over freely ro-
tating Heisenberg spins to field theories such as the Ginzburg-Landau model.
Also all kinds of lattice gauge theories and even non-perturbative formulations
of quantum gravity can be simulated with this method. Off-lattice formula-
tions cover a huge range of physical phenomena. Prominent examples are
simulations of fluids, polymers and proteins, to name only a few important
applications. Depending on the problem at hand, the degrees of freedom may
be spins, field values or gauge potentials, or particle positions in space. There
is also no principle restriction on the form of the interactions which may be
short- or long-ranged or even of mean-field type.

If E and E′ denote the energy before and after the proposed local update,
respectively, then the probability to accept this proposal is given by [48]

W ({σi} −→ {σ′
i}) =

{
1 E′ < E
exp [−β(E′ − E)] E′ ≥ E ,

(5.33)

where the proposed new spin configuration {σ′
i} differs from {σi} only by a

single flipped spin. More compactly, this may also be written as

W ({σi} −→ {σ′
i}) = min{1, exp [−β(E′ − E)]} . (5.34)

If the energy is lowered by the proposed update, it is thus always accepted.
On the other hand, when the energy would be increased for the new configu-
ration, the update has still to be accepted with a certain probability in order
to ensure the proper treatment of entropic contributions – in thermal equi-
librium, the free energy is minimized and not the energy. Only in the limit
of zero temperature, β −→ ∞, this probability tends to zero and the MC
algorithm degenerates to a minimization algorithm for the energy functional.
With some additional refinements, this is the basis of the simulated annealing
technique [49], which is often applied to hard optimization and minimization
problems.

To show that the detailed balance condition (5.31) is indeed satisfied, we
first consider the case that the proposed spin update lowers the energy, E′ <
E. In this case, the l.h.s. of (5.31) becomes exp(−βE)×1 = exp(−βE). On the
r.h.s. we have to take into account that the reverse move would increase the
energy, E > E′, with E now playing the role of the “new” energy. Hence now
the second line of (5.33) with E and E′ interchanged is relevant, such that the
r.h.s. of (5.31) becomes exp(−βE′)× exp(−β(E −E′)) = exp(−βE), proving
the equality of the two sides of the detailed balance condition. In the case that
the proposed spin update increases the energy, E′ < E, a similar reasoning
leads to exp(−βE) × exp(−β(E′ − E)) = exp(−βE′) = exp(−βE′) × 1.

Even though this “proof” looks rather like a tautology, it is indeed non-
trivial, as one can easily convince oneself by replacing the r.h.s. of the Metropo-
lis rule (5.33) by some general function f(E′ − E). The detailed balance
condition then reads exp(−βE)f(E′ − E) = exp(−βE′)f(E − E′). With
∆E ≡ E′ − E this can be recast into the form
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g(∆E) ≡ exp(β∆E/2)f(∆E) = exp(−β∆E/2)f(−∆E) = g(−∆E) , (5.35)

showing that g(∆E) ≡ exp(β∆E/2)f(∆E) can be quite a general function
which, however, must be even in ∆E, g(∆E) = g(−∆E). The simplest choice
g(∆E) = const., leads to f(∆E) = const. exp(−β∆E/2). While this would
satisfy detailed balance, it is still not a permissible choice because the r.h.s. of
(5.33) should admit the interpretation as a probability. For a given model, this
can often be repaired by considering the allowed range of ∆E and introducing
a suitable normalization factor [1]. Requiring thus that 0 ≤ f(∆E) ≤ 1, we see
that 0 ≤ g(∆E) ≤ exp(β∆E/2). Choosing just the upper bound, g(∆E) =
exp(β∆E/2) for ∆E < 0 and applying a (non-differentiable) symmetrization
to define g(∆E) for ∆E ≥ 0, we end up with

g(∆E) = exp(β∆E/2)min{1, exp(−β∆E)} =
{

exp(β∆E/2) ∆E < 0
exp(−β∆E/2) ∆E ≥ 0 ,

(5.36)
implying f(∆E) = min{1, exp(−β∆E)} – which is nothing but the Metropolis
rule (5.34).

How is the Metropolis update rule (5.33) implemented in practice? Since
the possible values of the transition probability W are restricted to values
between 0 and 1, one first draws a uniformly distributed random number
r ∈ [0, 1). Then, if W ≤ r, the proposed update is accepted, and otherwise it
is rejected and one continues with the next spin. In words this is easy to state.
In practice, however, “drawing a random number” in a computer program
is a pretty involved mathematical problem [50]. Since in most applications
a huge number of random numbers is required (for, say, 1 million sweeps
through a 2D Ising lattice of size 1000 × 1000 = 106 already 1012) and each
random number usually occupies 8 Bytes, it is neither practical nor feasible
to store physically generated, “truly” random (whatever that really means
. . . ) events on a hard disk. Also, reading them from the hard disk into the
computer memory would be far too slow. Therefore, one uses in MC computer
simulations so-called “pseudo-random number generators”, or short RNGs,
which use deterministic rules to produce (more or less) uniformly distributed
numbers, whose values are “very hard” to predict. In other words, given a
finite sequence of subsequent pseudo-random numbers, it should be almost
impossible to predict the next one or to even guess the deterministic rule
underlying their generation. The “goodness” of a RNG is thus measured by
the difficulty to derive its underlying deterministic rule. Related requirements
are the absence of trends (correlations) and a very long period. Furthermore,
a RNG should be portable among different computer platforms, and it should
yield reproducible results for testing purposes.

There are many different ways how the degrees of freedom to be updated
can be chosen. They may be picked at random or according to a random
permutation, which can be updated every now and then. But also a simple
fixed lexicographical (sequential) order is permissible. In lattice models one
may also update first all odd and then all even sites, which is the usual choice
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in vectorized codes. A so-called sweep is completed when on the average2 for
all degrees of freedom an update was proposed. The qualitative behaviour
of the update algorithm is not sensitive to these details, but its quantitative
performance does depend on the choice of update scheme.

The big merit of this simple algorithm is its flexibility which allows the
application to a great variety of physical systems. The main drawback of this
and most other local update algorithms (one exception is the overrelaxation
method [51–54]) is that it is plagued by large autocorrelation times which
severely limit the statistical accuracy achievable with a given computer budget
as will be explained in detail in Sect. 5.5.

Heat-Bath Algorithm

This algorithm is only applicable to lattice models and at least in its most
straightforward form only to discrete degrees of freedom with a few allowed
states. The new value of the selected variable at site i0 is determined by
testing all its possible states in the “heat-bath” of its (fixed) neighbors (i.e.,
4 on a square lattice and 6 on a simple-cubic lattice with nearest-neighbor
interactions):

W ({σi} −→ {σ′
i}) =

e−βH({σ′
i}

∑
σ′

i0
e−βH({σ′

i}
, (5.37)

which obviously satisfies the detailed balance condition (5.31) since

e−βH({σi} e−βH({σ′
i}

∑
σ′

i0
e−βH({σ′

i}
= e−βH({σ′

i} e−βH({σi}
∑

σi0
e−βH({σi}

. (5.38)

Due to the summation over all local states, special tricks are necessary
when each degree of freedom can take many different states, and only in
special cases the heat-bath method can be efficiently generalized to continuous
degrees of freedom. In the special case of the Ising model with only two states
per spin, (5.37) may be written more explicitly as

W ({σi} −→ {σ′
i}) =

e−βσ′
i0

Ei0

eβEi0 + e−βEi0
, (5.39)

where σi0Ei0 is the energy of the spin at site i0 in the state σi0 , that is
Ei0 = −J

∑
j σj − h, where j runs over all sites interacting with site i0 and h

is the external magnetic field. The energy difference ∆E = Enew − Eold can
be expressed as ∆E = (σ′

i0
−σi0)Ei0 , since by definition no other interactions

are affected by the spin value at site i0.
Let us now assume that before the update σi0 = +1. The probability that

the spin is flipped to σ′
i0

= −1 is then

2 This is only relevant when the random update order is chosen.
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W (σi0 −→ −σi0) =
eβEi0

eβEi0 + e−βEi0
. (5.40)

Since in this case ∆E = −2Ei0 , the flip probability can be equivalently written
as

W (σi0 −→ −σi0) =
e−β∆E/2

eβ∆E/2 + e−β∆E/2
. (5.41)

This is also true in the other case where initially σi0 = −1. The heat-bath
probability of a flip to σ′

i0
= +1 is then e−βEi0 /

(
eβEi0 + e−βEi0

)
, but since

the energy difference now reads ∆E = +2Ei0 , we again arrive at the flip
probability (5.41).

The order of updating the individual variables can be done as for the
Metropolis algorithm (random, sequential, . . . ).

Glauber Algorithm

This update procedure [55], named after the 2005 Nobel Laureate Roy J.
Glauber of Harvard University3, is conceptually similar to the Metropolis
algorithm in that one also here proposes locally a change for a single degree
of freedom and then accepts this update proposal with a certain probability.
For the Ising model with spins σi = ±1 this update rule is often written as

W (σi −→ −σi) =
1
2

[1 + σi tanh (βEi)] , (5.42)

where as before σiEi is the energy of the ith spin in the current “old” state,
that is Ei = −J

∑
j σj − h.

Since σi = ±1 and using the point symmetry of the tanh-function, one
may rewrite σi tanh (βEi) as tanh (σiβEi). In a local spin flip σi −→ −σi,
only the energy contributions collected in Ei are affected, and we obtain again
∆E = Enew −Eold = −2σiEi for the total energy change due to the proposed
flip. Hence we can rewrite (5.42) as

W (σi −→ −σi) =
1
2

[1 − tanh (β∆E/2)] . (5.43)

In this representation, the acceptance probability is explicitly seen to depend
only on the total energy change – similar to the Metropolis case. In this form
it is thus possible to generalize the Glauber update rule from the Ising model

3 Half of the Nobel Prize in Physics 2005 was awarded to Roy J. Glauber for his
outstanding theoretical contributions to what is called today “Quantum Optics”,
with his seminal papers dating back to the year 1963 [Phys. Rev. Lett. 10, 84
(1963); Phys. Rev. 130, 2529 (1963); ibid. 131, 2766 (1963)], when also his paper
[55] on dynamical properties of the Ising model appeared. The other half of the
2005 Prize is shared by John L. Hall of the University of Colorado and Theodor
W. Hänsch of Ludwig-Maximilians-Universität Munich.
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with only two states per spin to any general model that can be simulated with
the Metropolis procedure. Also detailed balance is straightforward to prove.

By using trivial identities for hyperbolic functions, (5.43) can be further
recast to read

W (σi −→ −σi) =
1
2

[
cosh(β∆E/2) − sinh(β∆E/2)

cosh(β∆E/2)

]

=
e−β∆E/2

eβ∆E/2 + e−β∆E/2
.

(5.44)
Notice that this agrees with the flip probability (5.41) of the heat-bath al-
gorithm for the Ising model, i.e., heat-bath updates for the special case of a
2-state model and the Glauber update algorithm are identical.

The Glauber (or equivalently heat-bath) update algorithm for the Ising
model is also of theoretical interest since in this case the MC (pseudo-) dy-
namics can be calculated analytically – albeit only in one dimension [55]. For
two and higher dimensions no exact solutions are known.

5.4 Initial Non-Equilibrium Period and Ageing

The initial equilibration or thermalization period, in general, is a non-trivial
non-equilibrium process which is of interest it its own right. Long suspected
to be a consequence of the slow dynamics of glassy systems only, the phe-
nomenon of ageing for example has also been found in the phase-ordering
kinetics of simple ferromagnets such as the Ising model. To study this effect
numerically, we only need the methods introduced so far since most theoret-
ical concepts assume a local spin-flip dynamics as realized by one the three
update algorithms discussed above. Similarly to the concept of universality
classes in equilibrium, all three algorithms should yield qualitatively similar
results, being representatives of what is commonly referred to as dynamical
Glauber universality class.

Let us assume that we pick as the initial configuration of the Markov
chain a completely disordered state. If the simulation is run at a temperature
T > Tc, equilibration will, in fact, be fast and nothing spectacular happens.
If we choose instead to do the simulation right at Tc or at a temperature
T < Tc, the situation is, however, quite different. In the latter two cases
one speaks of a “quench”, since the starting configuration is in a statistical
sense far away from a typical equilibrium configuration at temperature T .
This is easiest to understand for temperatures T < Tc, where the typical
equilibrium state consists of homogeneously ordered configurations. After the
quench, local regions of parallel spins start forming domains or clusters, and
the non-equilibrium dynamics of the system is governed by the movement
of the domain walls. In order to minimize their surface energy, the domains
grow and straighten their surface. This mechanism is illustrated in Fig. 5.4
for the 2D Ising and 3-state Potts model, showing the time evolution after a
quench to T < Tc from an initially completely disordered state. This leads
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Fig. 5.4. Phase-ordering with progressing MC “time” (from top to bottom) of
initially disordered spin configurations for the 2D Ising model at T = 1.5 ≈ 0.66 Tc

(left) and the 2D 3-state Potts model at T = 0.4975 ≈ Tc/2 (right) (from Ref. [75])
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to a growth law for the typical correlation length scale of the form ξ ∼ t1/z,
where t is the time (measured in units of sweeps) elapsed since the quench.
In the case of a simple ferromagnet like the Ising- or q-state Potts model
with a non-conserved scalar order parameter, the dynamical exponent can be
found exactly as z = 2 [56], according to diffusion or random-walk arguments.
Right at the transition temperature, critical dynamics (for a recent review,
see Ref. [57]) plays the central role and the dynamical exponent takes the
somewhat larger non-trivial value z ≈ 2.17 [58]. To equilibrate the whole
system, ξ must approach the system size L, so that the typical relaxation
time for equilibration scales as

τrelax ∼ Lz . (5.45)

Note that this implies in the infinite-volume limit L → ∞ that true equilib-
rium can never be reached.

Since 1/z < 1, the relaxation process after the quench happens on a grow-
ing time scale. This can be revealed most clearly by measurements of two-
time quantities f(t, s) with t > s, which no longer transform time-translation
invariantly as they would do for small perturbations in equilibrium, where f
would be a function of the time difference t−s only. Instead, in phase-ordering
kinetics, two-time quantities depend non-trivially on the ratio t/s of the two
times. The dependence of the relaxation on the so-called “waiting time” s is
the notional origin of ageing: older samples respond more slowly.

Commonly considered two-time quantities are the two-time autocorrela-
tion function (in q-state Potts model notation)

C(t, s) =
1

q − 1

(
q

V

V∑

i=1

[
δσi(t),σi(s)

]
av

− 1

)

(5.46)

and the two-time response function

R(t, s) =
δ[σi(t)]av
δh(s)

∣
∣
∣
∣
h=0

, (5.47)

where h(s) is the amplitude of a small spatially random external field which is
switched off after the waiting time s and [. . . ]av denotes an average over differ-
ent random initial configurations (and random fields in (5.47)). In computer
simulation studies it is more convenient to consider the integrated response
or thermoremanent magnetization (TRM) [59],

ρ(t, s) = T

∫ s

0

duR(t, u) =
T

h
MTRM(t, s) . (5.48)

Dynamical scaling arguments predict the scaling forms (for reviews see, e.g.,
Refs. [60,61])

C(t, s) = s−bfC(t/s) , R(t, s) = s−1−afR(t/s) , (5.49)
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with scaling functions fC and fR which approach for large values of the scaling
variable x ≡ t/s the power-law behaviour

fC(x) → x−λC/z , fR(x) → x−λR/z (x � 1) . (5.50)

In phase-ordering kinetics after a quench to T < Tc, b = 0 and z = 2 [56]. As
the other exponents depend on the dimensionality of the considered system,
we shall focus here on two dimensions only, where for the Ising model, it is
commonly accepted that λC = λR = 5/4. The value of the remaining exponent
a, however, is more controversial [62]. In the literature there are strong claims
for a = 1/z = 1/2 [60,63], but also a = 1/4 [64] has been conjectured.

Extending the symmetry considerations to local scale invariance in analogy
to conformal invariance [65], even the explicit form of the scaling function
fR(x) has been predicted [66,67],

fR(x) = r0x
1+a−λR/z(x− 1)−1−a , (5.51)

where r0 is a normalization constant. The integration over the response func-
tion in (5.48) leads for the thermoremanent magnetization to the scaling
form [64,68–70]

ρ(t, s) = r0s
−afM (t/s) + r1s

−λR/zgM (t/s) , (5.52)

where some care is necessary in dealing with cross-over effects leading to the
second term which can be argued to take the explicit form gM (x) ≈ x−λR/z.
The first term follows directly from the integration over the explicit expression
for fR(x) in (5.51) which results in a hypergeometric function [67,69],

fM (x) = x−λR/z
2F1(1 + a, λR/z − a;λR/z − a+ 1; 1/x) . (5.53)

Due to the linear combination of scaling functions in (5.52) with s-dependent
prefactors, the scaling properties cannot be tested easily. One therefore usually
subtracts first the correction term ∝ gM (x) and then considers fM (x). While
the two-time autocorrelation function C(t, s) is conceptually and in particular
computationally the much simpler quantity, local scale invariance predictions
are much harder to derive for C(t, s) than for R(t, s). The expression for fC(x)
contains combinations of hypergeometric and incomplete Gamma functions,
depending on three additional undetermined constants apart from a normal-
ization factor [71].

In computer simulations one proceeds as follows. One prepares many inde-
pendent disordered start configurations of the order of a few hundred to a few
thousand and monitors for each of them the time evolution after the quench to
T < Tc or, in critical relaxation [57], to T = Tc. Here it is important to make
sure that the time evolutions are statistically independent of each other. In
practice this means that different random number sequences have to be used
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for each sample.4 The final result (for each time s and t) is then an average
over these samples.

For the 2D and 3D Ising model, extensive numerical tests of the scaling
predictions have been performed by Henkel, Pleimling and collaborators [69–
71], showing a very good agreement with the almost parameter-free analytical
expressions. To check the generality of the scaling arguments, we extended this
work in a recent MC study [75,76] to more general q-state Potts models in two
dimensions. Figures 5.5 and 5.6 compare our numerical results for the 2D Ising
(q = 2) and 3-state Potts model after a quench to T = 1.5 ≈ 0.66Tc (in Ising
model normalization) and T = 0.4975 ≈ Tc/2, respectively (assuming in both
cases λC = λR with λC ≈ 1.25 [75, 76] and a = 1/z = 1/2). We see that the
two models behave very similarly during ageing, i.e., also for the 3-state Potts
model the scaling predictions (5.49) are well satisfied. Moreover, the explicit
analytical predictions for fM (t/s) in (5.53) and (the more complicated one)
for C(t, s) as given in Ref. [71] relying on local scale invariance are both in
excellent agreement with the MC data. For details of the numerical set-up,
see Refs. [75, 76], where also additional simulations of the 2D 8-state Potts
model are described that give similarly good results.

5.5 Statistical Analysis of Monte Carlo Data

About a decade ago most of the statistical analysis methods discussed in this
section were still quite cumbersome since due to disk-space limitations they
usually had to be applied “on the flight” during the simulation. In particular
dynamical aspects of a given model are usually not easy to predict beforehand
such that the guess of reasonable analysis parameters was quite difficult. The
situation has changed dramatically when it became affordable to store hun-
dreds of megabytes on hard-disks. Since then a simulation study can clearly
be separated into “raw data generation” and “data analysis” parts. The in-
terface between these two parts should consist of time series of measurements
of the relevant physical observables taken during the actual simulations. In
principle there are no limitations on the choice of observables O which could
be, for example, the energy H or the magnetization µ. Once the system is
in equilibrium (which, in general, is non-trivial to assure), we simply save
Oj ≡ O[{σi}j ] where j labels the measurements. Given these data files one
can perform detailed error analyses; in particular adapting parameters to a
specific situation is now straightforward and very fast.

4 If the same sequence of random numbers, i.e., the same dynamics, would be
used for all samples with different start configurations, then one would study the
phenomenon of “damage spreading” [72–74], where one basically asks how likely
it is that two initially different configurations merge after some time into the same
state when evolving under exactly the same dynamics.
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5.5.1 Estimators

If the time series data result from an importance sampling MC simulation,
the expectation value 〈O〉 can be estimated as a simple arithmetic mean over
the Markov chain,

O =
1
N

N∑

j=1

Oj , (5.54)

where we assume that the time series collects, after an appropriate equili-
bration period, a total of N measurements. Conceptually it is important to
distinguish between the expectation value 〈O〉 and the mean value O, which
is an estimator for the former. While 〈O〉 is an ordinary number and repre-
sents the exact thermal average (which is only for very few models known),
the estimator O is still a random number, fluctuating around the theoretically
expected value. Of course, in practice this is a “virtual” concept as one does
not probe the fluctuations of the mean value directly since this would require
repeating the whole MC simulation many times. However, one can estimate
its variance,

σ2
O = 〈[O − 〈O〉]2〉 = 〈O2〉 − 〈O〉2 , (5.55)

from the statistical properties of individual measurements Oj in a single MC
run.

5.5.2 Uncorrelated Measurements and Central-Limit Theorem

For simplicity, let us first make the unrealistic assumption that the N sub-
sequent measurements Oj are all completely uncorrelated (as would be true
only in simple sampling). Then the relation between the two variances would
simply be

σ2
O = σ2

Oj
/N , (5.56)

where σ2
Oj

= 〈O2
j 〉 − 〈Oj〉2 is the variance of the individual measurements. A

further, milder assumption is, of course, that the simulation is already in equi-
librium so that time-translation invariance over the Markov chain is satisfied.
Equation (5.56) is true for any distribution P(Oj) of the Oj . For the energy
or magnetization the latter distributions are often plotted as physically di-
rectly relevant histograms (see, e.g., Fig. 5.14(b) below) whose squared width
(= σ2

Oj
) is proportional to the specific heat or susceptibility, respectively.

Whatever form the distribution P(Oj) assumes (which, in fact, is already
often close to Gaussian because the Oj are usually lattice averages over many
degrees of freedom), by the central limit theorem the distribution of the mean
value is Gaussian, at least for uncorrelated data in the asymptotic limit of
large N . The variance of the mean, σ2

O, is the squared width of this (N
dependent) distribution which is usually taken as the “one-sigma” squared
error, ε2O ≡ σ2

O, and quoted together with the mean value O. Under the
assumption of a Gaussian distribution for the mean, the interpretation is that
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about 68% of all simulations under the same conditions would yield a mean
value in the range [O − σO,O + σO]. For a “two-sigma” interval which also
is sometimes used, this percentage goes up to about 95.4%, and for a “three-
sigma” interval which is rarely quoted, the confidence level is higher than
99.7%.

5.5.3 Correlated Measurements and Autocorrelation Times

In “real life” things become more involved since when using importance sam-
pling update algorithms subsequent measurements are necessarily correlated
in time [77–79]. Inserting (5.54) into (5.55), one obtains

σ2
O = 〈O2〉 − 〈O〉2 =

1
N2

N∑

i,j=1

〈OiOj〉 −
1
N2

N∑

i,j=1

〈Oi〉〈Oj〉 , (5.57)

and by collecting diagonal and off-diagonal terms one arrives at

σ2
O =

1
N2

N∑

i=1

(
〈O2

i 〉 − 〈Oi〉2
)

+
1
N2

N∑

i�=j

(〈OiOj〉 − 〈Oi〉〈Oj〉) . (5.58)

The first term is identified as the variance of the individual measurements
multiplied with 1/N . In the second sum we first use the symmetry i ↔ j to
reduce the summation to

∑N
i�=j = 2

∑N
i=1

∑N
j=i+1. Reordering the summation

and using time-translation invariance (assuming that equilibrium has already
been reached, cf. the previous Sect. 5.4) we finally get

σ2
O =

1
N

[

σ2
Oi

+ 2
N∑

k=1

(〈O1O1+k〉 − 〈O1〉〈O1+k〉)
(

1 − k

N

)]

, (5.59)

where, due to the last factor, the k = N term may trivially be kept in the
summation. Factoring out σ2

Oi
, this can be written as

ε2O ≡ σ2
O =

σ2
Oi

N
2τ ′O,int , (5.60)

where we have introduced the (proper) integrated autocorrelation time

τ ′O,int =
1
2

+
N∑

k=1

A(k)
(

1 − k

N

)

, (5.61)

with

A(k) =
〈OiOi+k〉 − 〈Oi〉〈Oi〉

〈O2
i 〉 − 〈Oi〉〈Oi〉

(5.62)

denoting the normalized autocorrelation function (A(0) = 1).
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For large time separations k the autocorrelation function decays exponen-
tially (a = const.),

A(k) k→∞−→ ae−k/τO,exp , (5.63)

which defines the exponential autocorrelation time τO,exp. Since in any mean-
ingful simulation study N � τO,exp, A(k) in (5.61) is already exponentially
small before the correction term in parentheses becomes important. For sim-
plicity this correction is hence usually omitted (as is the “prime” of τ ′O,int in
(5.61)) and one employs the following definition for the integrated autocorre-
lation time:

τO,int =
1
2

+
N∑

k=1

A(k) . (5.64)

The notion “integrated” derives from the fact that this may be interpreted as
a trapezoidal discretization of the (approximate) integral τO,int ≈

∫ N

0
dkA(k).

Notice that, in general, τO,int (and also τ ′O,int) is different from τO,exp. In fact,
one can show [80] that τO,int ≤ τO,exp in realistic models. Only if A(k) is a
pure exponential, the two autocorrelation times, τO,int and τO,exp, coincide
(up to minor corrections for small τO,int, see Eq. (5.86) below) [79].

Close to a critical point, the autocorrelation time scales for an infinite
system typically as

τO,int ∝ τO,exp ∝ ξz , (5.65)

where z is the dynamical critical exponent. For local algorithms, z ≈ 2, which
can be understood by a random-walk argument. Since ξ ∝ |T − Tc|−ν → ∞
when T → Tc, also τ diverges when the critical point is approached. This leads
to the phenomenon of critical slowing down at a continuous phase transition.
In a finite system with extent L, ξ is basically replaced by L and

τO,int ∝ τO,exp ∝ Lz . (5.66)

Non-local update algorithms such as multigrid schemes or in particular the
cluster methods discussed later in Sect. 5.6 can reduce the value of the dy-
namical critical exponent z significantly, albeit in a model-dependent fashion.

At a first-order phase transition the “slowing-down” problem is even more
severe, but the mechanism is completely different. Here, a finite system close
to the (pseudo-) transition point can flip between the coexisting pure phases
by crossing a two-phase region. Relative to the weight of the pure phases, this
region of state space is strongly suppressed by an additional Boltzmann factor
exp(−2σLd−1), where σ denotes the interface tension between the coexisting
phases, Ld−1 is the (projected) “area” of the interface and the factor 2 ac-
counts for periodic boundary conditions, which enforce for simple topological
reasons always an even number of interfaces [16]. Whatever update algorithm
is used, the time spent for crossing this highly suppressed rare-event region
scales proportional to the inverse of this interfacial Boltzmann factor, i.e., the
autocorrelation time behaves as
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τ ∝ e2σLd−1
. (5.67)

This exponential increase of autocorrelations with system size at a first-order
phase transition is often described in the literature as supercritical slowing
down (even though, strictly speaking, nothing is “critical” here). This type of
slowing-down problem can be overcome in part by means of tempering and
multicanonical methods also discussed later in Sects. 5.8 and 5.9.

As far as the accuracy of MC data is concerned, the important point
of Eq. (5.60) is that due to temporal correlations of the measurements the
statistical error εO ≡

√
σ2
O on the MC estimator O is enhanced by a factor

of
√

2τO,int. This can be rephrased by writing the statistical error similar to

the uncorrelated case as εO =
√
σ2
Oj
/Neff , but now with a parameter

Neff = N/2τO,int ≤ N , (5.68)

describing the effective statistics. This shows more clearly that only every
2τO,int iterations the measurements are approximately uncorrelated and gives
a better idea of the relevant effective size of the statistical sample. In view of
the scaling behaviour of the autocorrelation time in (5.65) or (5.66) respec-
tively (5.67), it is obvious that without extra care this effective sample size
may become very small close to a continuous or first-order phase transition.
Since some quantities (e.g., the specific heat or susceptibility) can severely be
underestimated if the effective statistics is too small [81], any serious simula-
tion should therefore provide at least a rough order-of-magnitude estimate of
autocorrelation times.

5.5.4 Bias

For a better understanding of the latter point, let us consider as a specific
example the specific heat, C = β2V

(
〈e2〉 − 〈e〉2

)
= β2V σ2

ei
. The standard

estimator for the variance is

σ̂2
ei

= e2 − e2 = (e− e)2 =
1
N

N∑

i=1

(ei − e)2 . (5.69)

What is the expected value of σ̂2
ei

? To answer this question, we subtract and
add 〈e〉2,

〈σ̂2
ei
〉 = 〈e2 − e2〉 = 〈e2〉 − 〈e〉2 −

(
〈e2〉 − 〈e〉2

)
, (5.70)

and then use the previously derived result: The first two terms on the r.h.s.
of (5.70) just give σ2

ei
, and the second two terms in parentheses yield σ2

e =
σ2

ei
2τe,int/N , as calculated in (5.60). Combining these two results we arrive at

〈σ̂2
ei
〉 = σ2

ei

(

1 − 2τe,int

N

)

= σ2
ei

(

1 − 1
Neff

)

�= σ2
ei
. (5.71)



232 W. Janke

The estimator σ̂2
ei

as defined in (5.69) thus systematically underestimates the
true value by a term of the order of τe,int/N . Such an estimator is called weakly
biased (“weakly” because the statistical error ∝ 1/

√
N is asymptotically larger

than the systematic bias; for medium or small N , however, also prefactors need
to be carefully considered).

We thus see that for large autocorrelation times or equivalently small ef-
fective statistics Neff , the bias may be quite large. Since τe,int scales quite
strongly with the system size for local update algorithms, some care is neces-
sary in choosing the run time N . Otherwise the FSS of the specific heat and
thus the determination of the static critical exponent α/ν could be completely
spoiled by the temporal correlations!

As a side remark we note that even in the completely uncorrelated case the
estimator (5.69) is biased, 〈σ̂2

ei
〉 = σ2

ei
(1 − 1/N), since with our conventions in

this case τe,int = 1/2 (some authors use a different convention in which τ more
intuitively vanishes in the uncorrelated case; but this has certain disadvantages
in other formulas). In this case one can (and usually does) define a bias-
corrected estimator,

σ̂2
ei,corr =

N

N − 1
σ̂2

ei
=

1
N − 1

N∑

i=1

(ei − e)2 , (5.72)

which obviously satisfies 〈σ̂2
ei,corr〉 = σ2

ei
. For the squared error on the

mean value, this leads to the error formula ε2e = σ̂2
e,corr = σ̂2

ei,corr/N =
1

N(N−1)

∑N
i=1 (ei − e)2, i.e., to the celebrated replacement of one of the 1/N -

factors by 1/(N −1) “due to one missing degree of freedom”. Note that in the
case of correlated data, a similar construction is at best approximately possi-
ble since the bias in (5.71) depends on the a priori unknown autocorrelation
time τe,int.

5.5.5 Numerical Estimation of Autocorrelation Times

The above considerations show that not only for the error estimation but
also for the computation of static quantities themselves it is important to
have control over autocorrelations. Unfortunately, it is very difficult to give
reliable a priori estimates, and an accurate numerical analysis is often too
time consuming. As a rough estimate it is about ten times harder to get
precise information on dynamic quantities than on static quantities like critical
exponents. A (weakly biased) estimator Â(k) for the autocorrelation function
is obtained by replacing in (5.62) the expectation values (ordinary numbers)
by mean values (random variables), e.g., 〈OiOi+k〉 by OiOi+k. With increasing
separation k the relative variance of Â(k) diverges rapidly. To get at least an
idea of the order of magnitude of τO,int and thus the correct error estimate
(5.60), it is useful to record the “running” autocorrelation time estimator
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τ̂O,int(kmax) =
1
2

+
kmax∑

k=1

Â(k) , (5.73)

which approaches τO,int in the limit of large kmax where, however, its statistical
error increases rapidly. As a compromise between systematic and statistical
errors, an often employed procedure is to determine the upper limit kmax

self-consistently by cutting off the summation once kmax ≥ 6τ̂O,int(kmax),
where A(k) ≈ e−6 ≈ 10−3. In this case an a priori error estimate is available
[79,82,83],

ετO,int = τO,int

√
2(2kmax + 1)

N
≈ τO,int

√
12
Neff

. (5.74)

For a 5% relative accuracy one thus needs at least Neff ≈ 5 000 or N ≈
10 000 τO,int measurements. As an order of magnitude estimate consider the
2D Ising model with L = 100 simulated with a local update algorithm. The
integrated autocorrelation time for this example is of the order of L2 ≈ 1002

(ignoring an priori unknown prefactor of “order unity” which depends on the
considered quantity), thus implying N ≈ 108. Since in each sweep L2 spins
have to be updated and assuming that each spin update takes about 0.1 µsec,
we end up with a total time estimate of about 105 seconds ≈ 1 CPU-day to
achieve this accuracy.

Another possibility is to approximate the tail end of A(k) by a single
exponential as in (5.63). Summing up the small k part exactly, one finds [84]

τO,int(kmax) = τO,int − ce−kmax/τO,exp , (5.75)

where c is a constant. The latter expression may be used for a numerical
estimate of both the exponential and integrated autocorrelation times [84].

5.5.6 Binning Analysis

It should be clear by now that ignoring autocorrelation effects can lead to
severe underestimates of statistical errors. Applying the full machinery of
autocorrelation analysis discussed above, however, is often too cumbersome.
On a day by day basis the following binning analysis is much more convenient
(though somewhat less accurate). By grouping the N original time-series data
into NB non-overlapping bins or blocks of length k (such that5 N = NBk),
one forms a new, shorter time series of block averages,

O(B)
j ≡ 1

k

k∑

i=1

O(j−1)k+i , j = 1, . . . , NB , (5.76)

5 Here we assume that N was chosen cleverly. Otherwise one has to discard some
of the data and redefine N .
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which by choosing the block length k � τ are almost uncorrelated and can
thus be analyzed by standard means. The mean value over all block averages
obviously satisfies O(B) = O and their variance can be computed according to
the unbiased estimator (5.72), leading to the squared statistical error of the
mean value,

ε2O ≡ σ2
O = σ2

B/NB =
1

NB(NB − 1)

NB∑

j=1

(O(B)
j −O(B))2 . (5.77)

By comparing with (5.60) we see that σ2
B/NB = 2τO,intσ

2
Oi
/N . Recalling the

definition of the block length k = N/NB , this shows that one may also use

2τO,int = kσ2
B/σ

2
Oi

(5.78)

for the estimation of τO,int. Estimates of τO,int obtained in this way are often
referred to as “blocking τ” or “binning τ”.

5.5.7 Jackknife Analysis

But even if the data are completely uncorrelated in time, one still has to
handle the problem of error estimation for quantities that are not directly
measured in the simulation but are computed as a non-linear combination of
“basic” observables. This problem can either be solved by error propagation
or by using the Jackknife method [85,86] where instead of considering rather
small blocks of length k and their fluctuations as in the binning method, one
forms NB large Jackknife blocks O(J)

j containing all data but the j’th block
of the previous binning method,

O(J)
j =

NO − kO(B)
j

N − k
, j = 1, . . . , NB . (5.79)

Each of the Jackknife blocks thus consists of N−k data, i.e., it contains almost
as many data as the original time series. When non-linear combinations of
basic variables are estimated, the bias is hence comparable to that of the total
data set (typically 1/(N − k) compared to 1/N). The NB Jackknife blocks
are, of course, trivially correlated because one and the same original data
enter in NB − 1 different Jackknife blocks. This trivial correlation caused by
re-using the original data over and over again has nothing to do with temporal
correlations. As a consequence the Jackknife block variance σ2

J will be much
smaller than the variance estimated in the binning method. Because of the
trivial nature of the correlations, however, this reduction can be corrected by
multiplying σ2

J with a factor (NB − 1)2, leading to

ε2O ≡ σ2
O =

NB − 1
NB

NB∑

j=1

(O(J)
j −O(J))2 . (5.80)
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To summarize this section, any realization of a Markov chain, i.e., MC up-
date algorithm, is characterized by autocorrelation times which enter directly
in the statistical errors of MC estimates. Since temporal correlations always
increase the statistical errors, it is a very important issue to develop MC up-
date algorithms that keep autocorrelation times as small as possible. This is
the reason why cluster and other non-local algorithms are so important.

5.5.8 A Simplified Model: The Bivariate Gaussian Time Series

A useful “gauge model” for all the statistical analysis tools discussed so far
is the bivariate Gaussian time series which allows for fairly simple exact solu-
tions. Once the numerical routines reproduce the exact answers for this arti-
ficial time series, it is almost certain that they also work properly for “true”
time series generated by a MC simulation. The bivariate Gaussian time series
is generated by the recursion

e0 = e′0 ,

ei = ρei−1 +
√

1 − ρ2e′i , i ≥ 1 , (5.81)

where 0 ≤ ρ < 1 and the e′i are independent, identically distributed (often
abbreviated as “i.i.d.”) Gaussian random variables satisfying 〈e′i〉 = 0 and
〈e′ie′j〉 = δij . By iterating the recursion (5.81) it is then easy to see that
〈ei〉 = 0, 〈e2i 〉 = 1 and

ek = ρek−1 +
√

1 − ρ2e′k = ρke0 +
√

1 − ρ2

k∑

l=1

ρk−le′l , (5.82)

so that
A(k) = 〈e0ek〉 = ρk ≡ e−k/τexp . (5.83)

In this simplified model the autocorrelation function is thus a pure exponential
with an exponential autocorrelation time given by

τexp = −1/ ln ρ . (5.84)

It should be stressed that in realistic situations a purely exponential decay can
only be expected asymptotically for large k where the slowest mode dominates.
For smaller time separations usually also many other modes contribute whose
autocorrelation time is smaller.

The visual appearance of uncorrelated and correlated data with τexp = 10
and 50 is depicted in Figs. 5.7(a)–(c) where in each case one percent of the
total “MC time” evolution consisting of 100 000 consecutive “measurements”
according to the rule (5.81) is shown. Despite the quite distinct temporal
evolutions, histogramming the time series leads to the same Gaussian dis-
tribution within error bars, as it should, cf. Fig. 5.7(d). The corresponding
autocorrelation functions A(k) are shown in Fig. 5.8(a).
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Fig. 5.7. “MC time” evolution according to the bivariate Gaussian process (5.81)
(only the first percent shown) in (a) the uncorrelated case, (b) with τexp = 10, and
(c) with τexp = 50. All three time evolutions with a total of 100 000 consecutive
“measurements” lead to the same Gaussian histogram shown in (d)

0 20 40 60 80 100
k

0.0

0.5

1.0

A
(k

)

 τexp=10
 τexp=50
 exact

(a)

0 20 40 60 80 100
kmax

0

2

4

6

8

10

τ in
t(k

m
ax

)

 τexp=10
exact

(b)

Fig. 5.8. (a) Autocorrelation functions and (b) integrated autocorrelation time for
τexp = 10 on the basis of 100 000 “measurements” in comparison with exact results
for the bivariate Gaussian model shown as the solid lines
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The integrated autocorrelation time can also be calculated exactly,

τint =
1
2

+
∞∑

k=1

A(k) =
1
2

1 + ρ

1 − ρ
=

1
2
cth(1/2τexp) (5.85)

= τexp

[

1 +
1

12τ2
exp

+ O(1/τ4
exp)

]

. (5.86)

This shows that for a purely exponential autocorrelation function to a very
good approximation, τint ≈ τexp, which would immediately follow from τint ≈∫∞
0

dkA(k) = τexp.
As explained in the last section, one usually truncates the summation in

(5.85) self-consistently at about kmax = 6τint (≈ 6τexp) since A(k) becomes
very noisy for large time separations. Observing that (5.85) is nothing but a
geometric series, also the resulting correction can be calculated exactly,

τint(kmax) ≡
1
2

+
kmax∑

k=1

A(k) =
1
2
cth(1/2τexp)

[

1 − 2e−(kmax+1)/τexp

1 + e−1/τexp

]

(5.87)

= τint

{
1 − [1 − tanh(1/2τexp)]e−kmax/τexp

}
(5.88)

≈ τint

[

1 −
(

1 − 1
2τexp

)

e−kmax/τexp

]

(τexp � 1) , (5.89)

showing that with increasing kmax the asymptotic value of τint ≡ τint(∞)
is approached exponentially fast. This is illustrated in Fig. 5.8(b) for the
bivariate Gaussian time series with τexp = 10. Here we also see that for too
large kmax the estimate for τint(kmax) can deviate quite substantially from the
exact value due to its divergent variance. The usually employed self-consistent
cutoff would be around 6τexp = 60 where τint(kmax) ≈ 9.89.

Let us now turn to the binning analysis by decomposing as in (5.76) the
total number of measurements N into NB non-overlapping blocks of length k
(N = NBk). In our simple example, the expected value of the block averages
is, of course, zero, 〈eB,n〉 = 1

k

∑k
i=1〈e(n−1)k+i〉 = 0. The variance of the block

variables is hence just the expectation value of e2B,n,

σ2
B = 〈e2B,n〉 =

1
k2

k∑

i,j=1

ρ|i−j| =
1
k2



k + 2
k∑

i=1

i−1∑

j=1

ρi−j





=
1
k

[

1 +
2ρ

1 − ρ
− 2ρ

k

1 − ρk

(1 − ρ)2

]

. (5.90)

Recalling (5.85) this can be rewritten as

kσ2
B = 2τint

[
1 − τint

k

(
1 − e−k/τexp

)
/ cosh2(1/2τexp)

]
(5.91)

≈ 2τint

[
1 − τexp

k

(
1 − e−k/τexp

)]
(τexp � 1) , (5.92)
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Fig. 5.9. Binning analysis of 100 000 “measurements” in the bivariate Gaussian
model with τexp = 10. The solid line shows the exact result

showing that with increasing block length k the asymptotic value 2τint is
approached according to a power law. For an illustration see Fig. 5.9.

5.5.9 Applications to the 2D Ising Model

In this section the autocorrelation and error analysis is illustrated for the
2D Ising model which albeit still very simple exhibits already some effects
also seen in more complicated systems. The simulations are done with the
Metropolis update algorithm for a 16×16 square lattice with periodic bound-
ary conditions at the infinite-volume critical point βc = ln(1 +

√
2)/2 ≈

0.440 686 793 4 . . . . The spins were updated in sequential order by propos-
ing always a spin flip6 and accepting or rejecting this proposal according to
(5.33). The raw data of the simulation are collected in a time-series file, stor-
ing 1000000 measurements of the energy and magnetization taken after each
sweep over the lattice, after discarding (quite generously) the first 200000
sweeps to equilibrate the system.

The last 500 sweeps of the time evolution of the energy are shown in
Fig. 5.10(a), which should be compared with the Gaussian model time se-
ries in Figs. 5.7(b) and (c). Using the complete time series the autocorrelation
functions were computed according to (5.62). The only difference to the analy-
sis of the simplified model is that instead of using the Gaussian data one now
reads in the Ising model time series – the analysis program is exactly the

6 If the spins are updated in sequential order, but a spin flip is proposed with only
50% probability, the temporal correlations are much larger (τe,int ≈ 27) [87]. This
quite unusual update procedure was (inadvertently) chosen in Ref. [87], because
always proposing a spin flip with sequential update order does not work properly
for the 1D model with its only two nearest neighbours.
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Fig. 5.10. (a) Part of the time evolution of the energy e = E/V for the 2D Ising
model on a 16× 16 lattice at βc and (b) the resulting autocorrelation function. The
inset shows the same data on a logarithmic scale, revealing the fast initial drop for
very small k and the noisy behaviour for large k. The solid lines show a fit to the
ansatz A(k) = a exp(−k/τe,exp) in the range 10 ≤ k ≤ 40 with τe,exp = 11.3 and
a = 0.432

same. The result for the energy autocorrelations is shown in Fig. 5.10(b). On
the linear-log scale of the inset we clearly see the asymptotic linear behaviour
of lnA(k). A linear fit of the form (5.63), A(k) = a exp(−k/τe,exp), in the
range 10 ≤ k ≤ 40 yields an estimate for the exponential autocorrelation time
of τe,exp ≈ 11.3. Apart from the noise for large k, which is also present in
the simplified model for finite statistics, the main difference to the artificial
data of the simplified model lies in the small k behaviour. For the Ising model
we clearly notice an initial fast drop, corresponding to faster relaxing modes,
before the asymptotic behaviour sets in. This is, in fact, the generic behaviour
of autocorrelation functions in realistic models.

Once the autocorrelation function is known, it is straightforward to sum
up the integrated autocorrelation time. The result for the energy is depicted
in Fig. 5.11(a), yielding an estimate of τe,int ≈ 5.93. The binning analysis
shown in Fig. 5.11(b) gives a consistent result as it should. Note that due to
the initial fast drop of A(k) the exponential autocorrelation time τe,exp ≈ 11.3
is much larger than the integrated autocorrelation time τe,int ≈ 5.93, which is
in accord with the general inequality [80] quoted above.

5.6 Cluster Algorithms

The main drawback of local update algorithms is their pronounced critical
slowing down at a continuous phase transition where temporal correlations di-
verge (thermodynamic limit) or become very large (finite-size scaling region):
τ ∝ ξz or ∝ Lz with z ≈ 2. Since excitations on all length scales become
important at Tc, it is intuitively clear that some sort of non-local updates
should alleviate this problem. While it was clear since long that clusters or
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Fig. 5.11. (a) Integrated autocorrelation time approaching τe,int ≈ 5.93 for large
upper cutoff kmax and (b) binning analysis for the energy of the 2D Ising model on
a 16 × 16 lattice at βc. The horizontal line in (b) shows 2τe,int with τe,int read off
from (a)

droplets should play a central role in such an update, it took until 1987 before
Swendsen and Wang [88] proposed a legitimate cluster update procedure for
Potts models. Soon after Wolff [89] discovered the so-called single-cluster vari-
ant and developed a generalization to O(n)-symmetric spin models. By now
cluster updates have been derived for many other models as well [90], but they
are still less general applicable than local update algorithms of the Metropolis
type. We therefore start again with the Ising model where (as for more general
Potts models) the prescription for a cluster-update algorithm can be easily
read off from the equivalent Fortuin-Kasteleyn representation [91–94],

Z =
∑

{σi}
exp



β
∑

〈ij〉
σiσj



 (5.93)

=
∑

{σi}

∏

〈ij〉
eβ
[
(1 − p) + pδσiσj

]
(5.94)

=
∑

{σi}

∑

{nij}

∏

〈ij〉
eβ
[
(1 − p)δnij ,0 + pδσiσj

δnij ,1

]
, (5.95)

with
p = 1 − e−2β . (5.96)

Here the nij are bond variables which can take the values nij = 0 or 1,
interpreted as “deleted” or “active” bonds. In the first line of this derivation
we used the trivial fact that the product σiσj of two Ising spins can only
take the two values ±1, so that exp(βσiσj) = x+ yδσiσj

can easily be solved
for x and y. And in the second line we made use of the “deep” identity
a+ b =

∑1
n=0 (aδn,0 + bδn,1).
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Fig. 5.12. Illustration of the bond variable update. The bond between unlike spins
is always “deleted” as indicated by the dashed line. A bond between like spins is only
“active” with probability p = 1 − exp(−2β). Only at zero temperature (β −→ ∞)
stochastic and geometrical clusters coincide

Swendsen-Wang Cluster

According to (5.95) a cluster update sweep then consists of alternating updates
of the bond variables nij for given spins with updates of the spins σi for a
given bond configuration. In practice one proceeds as follows:

1. Set nij = 0 if σi �= σj , or assign values nij = 1 and 0 with probability p
and 1 − p, respectively, if σi = σj , cp. Fig. 5.12.

2. Identify clusters of spins that are connected by “active” bonds (nij = 1).
3. Draw a random value ±1 independently for each cluster (including one-site

clusters), which is then assigned to all spins in a cluster.

Technically the cluster identification part is the most complicated step, but
there are by now quite a few efficient algorithms available which can even be
used on parallel computers. Vectorization, on the other hand, is only partially
possible.

Notice the difference between the just defined stochastic clusters and
geometrical clusters whose boundaries are defined by drawing lines through
bonds between unlike spins. In fact, since in the stochastic cluster definition
also bonds between like spins are “deleted” with probability p0 = 1 − p =
exp(−2β), stochastic clusters are on the average smaller than geometrical
clusters. Only at zero temperature (β −→ ∞) p0 approaches zero and the
two cluster definitions coincide. As described above, the cluster algorithm
is referred to as Swendsen-Wang (SW) or multiple-cluster update [88]. The
distinguishing point is that the whole lattice is decomposed into stochastic
clusters whose spins are assigned a random value +1 or −1. In one sweep one
thus attempts to update all spins of the lattice.

Wolff Cluster

Shortly after the original discovery of cluster algorithms, Wolff [89] proposed
a somewhat simpler variant in which only a single cluster is flipped at a time.
This variant is therefore sometimes also called single-cluster algorithm. Here
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Fig. 5.13. Illustration of the Wolff cluster update, using actual simulation results
for the 2D Ising model at 0.97×βc on a 100×100 lattice. Upper left: Initial configu-
ration. Upper right: The stochastic cluster is marked. Lower left: Final configuration
after flipping the spins in the cluster. Lower right: The flipped cluster

one chooses a lattice site at random, constructs only the cluster connected
with this site, and then flips all spins of this cluster. A typical example is
shown in Fig. 5.13. In principle, one could also here choose for the new spin
value +1 or −1 at random, but then nothing at all would be changed if one
hits the current value of the spins.

Here a sweep consists of V/〈|C|〉 single cluster steps, where 〈|C|〉 denotes
the average cluster size. With this definition autocorrelation times are directly
comparable with results from the Metropolis or Swendsen-Wang algorithm.
Apart from being somewhat easier to program, Wolff’s single-cluster variant
is usually more efficient than the Swendsen-Wang multiple-cluster algorithm,
especially in 3D. The reason is that with the single-cluster method, on the
average, larger clusters are flipped.
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Figure 5.13 also nicely illustrates the difference between geometrical and
stochastic FK clusters as already pointed out in Sect. 5.2 in connection with
Fig. 5.2. In the upper right configuration plot one clearly sees that the sto-
chastic cluster is much smaller than the underlying black geometrical one. It is
worth to emphasize again that only the stochastic FK clusters encode in their
fractal and percolation properties the critical behaviour of the thermodynamic
system. In the 3D Ising model, geometrical clusters do not even percolate at
the proper critical temperature (but already at a about 2% smaller temper-
ature). This is one of the reasons why early attempts to construct “cluster
updates” (working with geometrical clusters) were not successful. In 2D, also
geometrical clusters do percolate at Tc, but they are still not useful for algo-
rithmic purposes because their fractal properties are not directly related to the
critical behaviour of the thermodynamic system at hand. Rather they encode
the properties of a tricritical point in a related model (the diluted q = 1 Potts
model) [27]. For instance, while at the end of this section it will be shown that
the average FK cluster size 〈|C|〉FK is a so-called improved estimator for the
Ising susceptibility, 〈|C|〉FK = χ′/β ∝ Lγ/ν , and hence scales in 2D with the
proper Ising model exponents γ = 7/4 = 1.75 and ν = 1, one finds for the
average geometrical cluster size 〈|C|〉geo ∝ Lγgeo/νgeo with the exact exponent
ratio γgeo/νgeo = 91/48 = 1.8958 . . . . Note that both cluster quantities can
be measured in the same MC simulation run [27].

Performance for the Ising Model

The advantage of cluster algorithms is most pronounced close to criticality
where excitations on all length scales occur. A convenient performance mea-
sure is thus the dynamical critical exponent z (even though one should always
check that the proportionality constant in τ ∝ Lz is not exceedingly large,
but this is definitely not the case here [95]). Some results on z are collected
in Table 5.2, which allow us to conclude:

(1) Compared to local algorithms with z ≈ 2, z is dramatically reduced for
both cluster variants in 2D and 3D.

(2) In 2D, Swendsen-Wang and Wolff cluster updates are equally efficient,
while in 3D, the Wolff update is clearly favourable.

(3) In 2D, the scaling with system size can hardly be distinguished from a
very weak logarithmic scaling. Note that this is consistent with the Li-
Sokal bound [96] for the Swendsen-Wang cluster algorithm of τSW ≥ C
(= C0 +A lnL for the 2D Ising model), implying zSW ≥ α/ν (= 0 for the
2D Ising model).

(4) Different observables (e.g., energy E and magnetization M) may yield
quite different values for z when defined via the scaling behaviour of the
integrated autocorrelation time.
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Table 5.2. Dynamical critical exponents z for the 2D and 3D Ising model (τ ∝
Lz). The subscripts indicate the observables and method used (“exp” resp. “int”:
exponential resp. integrated autocorrelation time, “rel”: relaxation, “dam”: damage
spreading)

Algorithm 2D 3D Observable Authors

Metropolis 2.1667(5) – zM,exp Nightingale and Blöte [58]
– 2.032(4) zdam Grassberger [97]
– 2.055(10) zM,exp Ito et al. [98]

Swendsen-Wang cluster 0.35(1) 0.75(1) zE,exp Swendsen and Wang [88]
0.27(2) 0.50(3) zE,int Wolff [95]
0.20(2) 0.50(3) zχ,int Wolff [95]
0(log L) – zM,exp Heermann and Burkitt [99]
0.25(5) – zM,rel Tamayo [100]

Wolff cluster 0.26(2) 0.28(2) zE,int Wolff [95]
0.13(2) 0.14(2) zχ,int Wolff [95]
0.25(5) 0.3(1) zE,rel Ito and Kohring [101]

Embedded Clusters

While it is quite easy to generalize the derivation (5.93)–(5.96) to q-state Potts
models (because as in the Ising model each contribution to the energy, δσiσj

,
can take only two different values), for O(n) spin models with Hamiltonian

H = −J
∑

〈ij〉
σi · σj ; σi = (σi,1,σi,2, . . . ,σi,n) ; |σi| = 1 (5.97)

one needs a new strategy for n ≥ 2 [89, 102–104] (the case n = 1 degenerates
again to the Ising model). Here the basic idea is to isolate Ising degrees of
freedom by projecting the spins σi onto a randomly chosen unit vector r,

σi = σ
‖
i + σ⊥

i ; σ
‖
i = ε |σi · r| r; ε = sign(σi · r) . (5.98)

If this is inserted in the original Hamiltonian one ends up with an effective
Hamiltonian

H = −
∑

〈ij〉
Jijεiεj + const , (5.99)

with positive random couplings Jij = J |σi ·r||σj ·r| ≥ 0, whose Ising degrees
of freedom εi can be updated with a cluster algorithm as described above.

Improved Estimators

A further advantage of cluster algorithms is that they lead quite naturally
to so-called improved estimators which are designed to further reduce the
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statistical errors. Suppose we want to measure the expectation value 〈O〉 of
an observable O. Then any estimator Ô satisfying 〈Ô〉 = 〈O〉 is permissible.
This does not determine Ô uniquely since there are infinitely many other
possible choices, Ô′ = Ô + X̂ , where the added estimator X̂ is assumed to
have zero expectation, 〈X̂ 〉 = 0. The variances of the estimators Ô′, however,
can be quite different and are not necessarily related to any physical quantity
(contrary to the standard mean-value estimator of the energy whose variance
is proportional to the specific heat). It is exactly this freedom in the choice of
Ô which allows the construction of improved estimators.

For the single-cluster algorithm an improved “cluster estimator” for the
spin-spin correlation function in the high-temperature phase, G(xi − xj) ≡
〈σi · σj〉, is given by [104]

Ĝ(xi − xj) = n
V

|C|r · σi r · σj ΘC(xi)ΘC(xj) , (5.100)

where r is the normal of the mirror plane used in the construction of the
cluster of size |C| and ΘC(x) is its characteristic function (=1 if x ∈ C and
0 otherwise). For the Fourier transform, G̃(k) =

∑
x G(x) exp(−ik · x), this

implies the improved estimator

ˆ̃G(k) =
n

|C|





(
∑

i∈C

r · σi cos kxi

)2

+

(
∑

i∈C

r · σi sinkxi

)2


 , (5.101)

which, for k = 0, reduces to an improved estimator for the susceptibility χ′

in the high-temperature phase,

ˆ̃G(0) = χ̂′/β =
n

|C|

(
∑

i∈C

r · σi

)2

. (5.102)

For the Ising model (n = 1) this reduces to χ′/β = 〈|C|〉, i.e., the improved es-
timator of the susceptibility is just the average cluster size of the single-cluster
update algorithm. For the XY and Heisenberg model one finds empirically that
in two as well as in three dimensions 〈|C|〉 ≈ 0.81χ′/β for n = 2 ( [102, 108])
and 〈|C|〉 ≈ 0.75χ′/β for n = 3 ( [104,109]), respectively.

It should be noted that by means of the estimators (5.100)–(5.102) a sig-
nificant reduction of variance should only be expected outside the FSS region
where the average cluster size is small compared to the volume of the system.

5.7 Reweighting Techniques

Even though the physics underlying reweighting techniques [110, 111] is ex-
tremely simple and the basic idea has been known since long (see the list
of references in Ref. [111]), their power in practice has been realized only
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relatively late in 1988. The important observation by Ferrenberg and Swend-
sen [110,111] was that the best performance is achieved near criticality where
histograms are usually broad. In this sense reweighting techniques are com-
plementary to improved estimators.

5.7.1 Single-Histogram Technique

The single-histogram reweighting technique [110] is based on the following
very simple observation. If we denote the number of states (spin configura-
tions) that have the same energy E by Ω(E), the partition function at the
simulation point β0 = 1/kBT0 can always be written as7

Z(β0) =
∑

{s}
e−β0H({s}) =

∑

E

Ω(E)e−β0E ∝
∑

E

Pβ0(E) , (5.103)

where we have introduced the unnormalized energy histogram (density)

Pβ0(E) ∝ Ω(E)e−β0E . (5.104)

If we would normalize Pβ0(E) to unit area, the r.h.s. would have to be divided
by
∑

E Pβ0(E) = Z(β0), but the normalization will be unimportant in what
follows. Let us assume we have performed a Monte Carlo simulation at inverse
temperature β0 and thus know Pβ0(E). It is then easy to see that

Pβ(E) ∝ Ω(E)e−βE = Ω(E)e−β0Ee−(β−β0)E ∝ Pβ0(E)e−(β−β0)E , (5.105)

i.e., the histogram at any point β can be derived, in principle, by reweighting
the simulated histogram at β0 with the exponential factor exp[−(β − β0)E].
Notice that in reweighted expectation values,

〈f(E)〉(β) =
∑

E

f(E)Pβ(E)/
∑

E

Pβ(E) , (5.106)

the normalization of Pβ(E) indeed cancels. This gives for instance the energy
〈e〉(β) = 〈E〉(β)/V and the specific heat C(β) = β2V [〈e2〉(β) − 〈e〉(β)2], in
principle, as a continuous function of β from a single MC simulation at β0,
where V = Ld is the system size.

As an example of this reweighting procedure, using actual Swendsen-Wang
cluster simulation data (with 5000 sweeps for equilibration and 50 000 sweeps
for measurements) of the 2D Ising model at β0 = βc = ln(1 +

√
2)/2 =

0.440 686 . . . on a 16× 16 lattice with periodic boundary conditions, the spe-
cific heat C(β) is shown in Fig. 5.14(a) and compared with the curve obtained
from the exact Kaufman solution [33,34] for finite Lx×Ly lattices. This clearly

7 For simplicity we consider here only models with discrete energies. If the energy
varies continuously, sums have to be replaced by integrals, etc. Also lattice size
dependences are suppressed to keep the notation short.
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Fig. 5.14. (a) The specific heat of the 2D Ising model on a 16 × 16 square lattice
computed by reweighting from a single MC simulation at β0 = βc, marked by the
filled data symbol. The continuous line shows for comparison the exact solution of
Kaufman [33,34]. (b) The corresponding energy histogram at β0, and reweighted to
β = 0.375 and β = 0.475. The dashed lines show for comparison the exact histograms
obtained from Beale’s [112] expression

demonstrates that, in practice, the β-range over which reweighting can be
trusted is limited. The reason for this limitation are unavoidable statistical
errors in the numerical determination of Pβ0 using a MC simulation. In the
tails of the histograms the relative statistical errors are largest, and the tails
are exactly the regions that contribute most when multiplying Pβ0(E) with
the exponential reweighting factor to obtain Pβ(E) for β values far off the
simulation point β0. This is illustrated in Fig. 5.14(b) where the simulated
histogram at β0 = βc is shown together with the reweighted histograms at
β = 0.375 ≈ β0 − 0.065 and β = 0.475 ≈ β0 + 0.035, respectively. Here
the quality of the histograms can be judged by comparing with the curves
obtained from Beale’s [112] exact expression for Ω(E).

As a rule of thumb, the range over which reweighting should produce ac-
curate results can be estimated by requiring that the peak location of the
reweighted histogram should not exceed the energy value at which the input
histogram had decreased to about one half or one third of its maximum value.
In most applications this range is wide enough to locate from a single simu-
lation, e.g., the specific-heat maximum by employing standard maximization
routines to the continuous function C(β). This is by far more convenient, ac-
curate and faster than the traditional way of performing many simulations
close to the peak of C(β) and trying to determine the maximum by spline or
least-squares fits.

For an analytical estimate of the reweighting range we now require that
the peak of the reweighted histogram is within the width 〈e〉(T0) ± ∆e(T0)
of the input histogram (where a Gaussian histogram would have decreased to
exp(−1/2) ≈ 0.61 of its the maximum value),
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|〈e〉(T ) − 〈e〉(T0)| ≤ ∆e(T0) , (5.107)

where we have made use of the fact that for a not too asymmetric histogram
Pβ0(E) the maximum location approximately coincides with 〈e〉(T0). Recalling
that the half width ∆e of a histogram is related to the specific heat via (∆e)2 ≡
〈(e − 〈e〉)2〉 = 〈e2〉 − 〈e〉2 = C(β0)/β2

0V and using the Taylor expansion
〈e〉(T ) = 〈e〉(T0)+C(T0)(T −T0)+ . . . , this can be written as C(T0)|T −T0| ≤
T0

√
C(T0)/V or

|T − T0|
T0

≤ 1√
V

1
C(T0)

. (5.108)

Since C(T0) is known from the input histogram this is quite a general estimate
of the reweighting range. For the example in Fig. 5.14 with V = 16×16, β0 =
βc ≈ 0.44 and C(T0) ≈ 1.5, this estimate yields |β − β0|/β0 ≈ |T − T0|/T0 ≤
0.04, i.e., |β − β0| ≤ 0.02 or 0.42 ≤ β ≤ 0.46. By comparison with the exact
solution we see that this is indeed a fairly conservative estimate of the reliable
reweighting range.

If we only want to know the scaling behaviour with system size V = LD,
we can go one step further by considering three generic cases:

i) Off-critical , where C(T0) ≈ const., such that

|T − T0|
T0

∝ V −1/2 = L−D/2 . (5.109)

ii) Critical , where C(T0) � a1 +a2L
α/ν , with a1 and a2 being constants, and

α and ν denoting the standard critical exponents of the specific heat and
correlation length, respectively. For α > 0, the leading scaling behaviour
becomes |T−T0|/T0 ∝ L−D/2L−α/2ν . Assuming hyperscaling (α = 2−Dν)
to be valid, this simplifies to

|T − T0|
T0

∝ L−1/ν , (5.110)

i.e., the typical scaling behaviour of pseudo-transition temperatures in
the finite-size scaling regime of a second-order phase transition [113]. For
α < 0, C(T0) approaches asymptotically a constant and the leading scaling
behaviour of the reweighting range is as in the off-critical case.

iii)First-order transitions, where C(T0) ∝ V . This yields

|T − T0|
T0

∝ V −1 = L−D , (5.111)

which is again the typical finite-size scaling behaviour of pseudo-transition
temperatures close to a first-order phase transition [16].



5 Introduction to Simulation Techniques 249

If we also want to reweight other quantities such as the magnetization
〈m〉 we have to go one step further. The conceptually simplest way would
be to store two-dimensional histograms Pβ0(E,M) where M = V m is the
total magnetization. We could then proceed in close analogy to the preceding
case, and even reweighting to non-zero magnetic field h would be possible,
which enters via the Boltzmann factor exp(βh

∑
i si) = exp(βhM). However,

the storage requirements may be quite high (of the order of V 2), and it is
often preferable to proceed in the following way. For any function g(M), e.g.,
g(M) = Mk, we can write

〈g(M)〉 =
∑

{s}
g(M({s}))e−β0H/Z(β0) =

∑

E,M

Ω(E,M)g(M)e−β0E/Z(β0)

=
∑

E

∑
M Ω(E,M)g(M)
∑

M Ω(E,M)

∑

M

Ω(E,M)e−β0E/Z(β0) . (5.112)

Recalling that
∑

M Ω(E,M)e−β0E/Z(β0) = Ω(E)e−β0E/Z(β0) = Pβ0(E)
and defining the microcanonical expectation value of g(M) at fixed energy
E (sometimes denoted as a “list”),

〈〈g(M)〉〉(E) ≡
∑

M Ω(E,M)g(M)
∑

M Ω(E,M)
, (5.113)

we arrive at
〈g(M)〉 =

∑

E

〈〈g(M)〉〉(E)Pβ0(E) . (5.114)

Identifying 〈〈g(M)〉〉(E) with f(E) in Eq. (5.106), the actual reweighting pro-
cedure is precisely as before. Mixed quantities, e.g. 〈EkM l〉, can be treated
similarly. One caveat of this method is that one has to decide beforehand which
“lists” 〈〈g(M)〉〉(E) one wants to store during the simulation, e.g., which pow-
ers k in 〈〈Mk〉〉(E) are relevant. An example for computing 〈〈|M |〉〉(E) and
〈〈M2〉〉(E) using the data of Fig. 5.14 is shown in Fig. 5.15.

An alternative and more flexible method is based on time series. Suppose
we have performed a MC simulation at β0 and stored the time series of N
measurements E1, E2, . . . , EN and M1,M2, . . . ,MN . Then the most general
expectation values at another inverse temperature β can simply be obtained
from

〈f(E,M)〉 =
N∑

i=1

f(Ei,Mi)e−(β−β0)Ei/

N∑

i=1

e−(β−β0)Ei , (5.115)

i.e., in particular all moments 〈EkM l〉 can be computed. Notice that this can
also be written as

〈f(E,M)〉 = 〈f(E,M)e−(β−β0)E〉0/〈e−(β−β0)E〉0 , (5.116)
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Fig. 5.15. Microcanonical expectation values for (a) the absolute magnetization
and (b) the magnetization squared obtained from the 2D Ising model simulations
shown in Fig. 5.14

where the subscript 0 refers to expectation values taken at β0. Another very
important advantage of the last formulation is that it works without any
systematic discretization error also for continuously distributed energies and
magnetizations.

As nowadays hard-disk space is no real limitation anymore, it is advisable
to store time series in any case. This guarantees the greatest flexibility in the
data analysis. As far as the memory requirement of the actual reweighting code
is concerned, however, the method of choice is sometimes not so clear. Using
directly histograms and lists, one typically has to store about (6 − 8)V data,
while working directly with the time series one needs 2N computer words.
The cheaper solution (also in terms of CPU time) thus obviously depends on
both, the system size V and the run length N . It is hence sometimes faster to
generate from the time series first histograms and the required lists and then
proceed with reweighting the latter quantities.

5.7.2 Multi-Histogram Technique

The basic idea of the multi-histogram technique [114] can be summarized as
follows:

i) Perform m MC simulations at β1, β2, . . . , βm with Ni, i = 1, . . . ,m, mea-
surements,

ii) reweight all runs to a common reference point β0,
iii) combine at β0 all information by computing error weighted averages,
iv) reweight the “combined histogram” to any other β.

Here we shall assume that the histograms Pβi
(E) are “naturally” nor-

malized,
∑

E Pβi
(E) = Ni, such that the statistical errors for each of the

histograms Pβi
(E) are approximately given by

√
Pβi

(E). By choosing as ref-
erence point β0 = 0 and working out the error weighted combined histogram
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one ends up with

Ω(E) =
∑m

i=1 Pβi
(E)

∑m
i=1 NiZ

−1
i e−βiE

, (5.117)

where the unknown partition function values Zi ≡ Z(βi) are determined self-
consistently from

Zi =
∑

E

Ω(E)e−βiE =
∑

E

e−βiE

∑m
k=1 Pβk

(E)
∑m

k=1 NkZ
−1
k e−βkE

, (5.118)

up to an unimportant overall constant. A good starting point for the recursion
is to fix, say, Z1 = 1 and use single histogram reweighting to get an estimate
of Z2/Z1 = exp[−(F̂2 − F̂1)], where F̂i = βiF (βi). Once Z2 is determined,
the same procedure can be applied to estimate Z3 and so on. In the limit of
infinite statistics, this would already yield the solution of (5.118). In realistic
simulations the statistics is of course limited and the (very few) remaining
recursions average this uncertainty to get a self-consistent set of Zi. In order to
work in practice, the histograms at neighbouring β-values must have sufficient
overlap, i.e., the spacings of the simulation points must be chosen according
to the estimates (5.109)–(5.111).

Multiple-histogram reweighting has been widely applied in many different
applications. Some problems of this method are that autocorrelations cannot
properly be taken into account when computing the error weighted average
(which is still correct but no longer optimized), the procedure for computing
mixed quantities such as 〈EkM l〉 is difficult to justify (even though it does
work as an “ad hoc” prescription quite well), and the statistical error analysis
becomes quite cumbersome.

As an alternative one may compute by reweighting from each of the m sim-
ulations all quantities of interest as a function of β, including their statistical
error bars which now also should take care of autocorrelations as discussed
in Subsect. 5.5.3. In this way one obtains, at each β-value, m estimates, e.g.
e1(β)±∆e1, e2(β)±∆e2, . . . , em(β)±∆em, which may be optimally combined
according to their error bars to give e(β) ±∆e. If the relative error ∆e/e(β)
is minimized, this leads to [109]

e(β) =

(
e1(β)
(∆e1)

2 +
e2(β)
(∆e2)

2 + · · · + em(β)
(∆em)2

)

(∆e)2 , (5.119)

with
1

(∆e)2
=

1
(∆e1)

2 +
1

(∆e2)
2 + · · · + 1

(∆em)2
. (5.120)

Notice that in this way the average for each quantity can be individually
optimized.
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5.8 Tempering Methods

Loosely speaking, tempering methods may be characterized as “dynamical
multi-histogramming”. Similarly to the static reweighting approach, in “sim-
ulated” as well as in “parallel” tempering one considers m simulation points
β1 < β2 < · · · < βm which here, however, are combined already during the
simulation in a specific, dynamical way.

5.8.1 Simulated Tempering

In simulated tempering simulations [115,116] one starts from a joint partition
function (expanded ensemble)

ZST =
m∑

i=1

egi

∑

{s}
e−βiH({s}) , (5.121)

where gi = βif(βi) and the inverse temperature β is treated as an additional
dynamical degree of freedom that can take the values β1, . . . , βm. Employing
a Metropolis algorithm, a proposed move from β = βi to βj takes place
with probability min [1, exp[−(βj − βi)H({s})] + gj − gi]. Similar to multi-
histogram reweighting (and also to multicanonical simulations), the free-
energy parameters gi are a priori unknown and have to be adjusted iteratively.
To assure a reasonable acceptance rate for the β-update moves (usually be-
tween neighbouring βi-values), the histograms at βi and βi+1, i = 1, . . . ,m−1,
must overlap. An estimate for a suitable spacing δβ = βi+1 − βi of the simu-
lation points βi is hence immediately given by the results (5.109)–(5.111) for
the reweighting range,

δβ ∝






L−D/2 off-critical ,
L−1/ν critical ,
L−D first-order .

(5.122)

Overall the simulated tempering method shows some similarities to the “avoid-
ing rare events” variant of multicanonical simulations briefly discussed in the
next section.

5.8.2 Parallel Tempering

In parallel tempering (exchange Monte Carlo, multiple Markov chain Monte
Carlo) simulations [117, 118] the starting point is the product of partition
functions (extended ensemble),

ZPT =
m∏

i=1

Z(βi) =
m∏

i=1

∑

{s}i

e−βiH({s}i) , (5.123)
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and all m systems at different simulation points β1 < β2 < · · · < βm are
simulated in parallel, using any legitimate update algorithm (Metropolis,
cluster,. . . ). This freedom in the choice of update algorithm is a big advan-
tage of the parallel tempering method. After a certain number of sweeps,
exchanges of the current configurations {s}i and {s}j are attempted (equiv-
alently, the βi may be exchanged, as is done in most implementations).
Adapting the Metropolis criterion (5.34) to the present situation, the pro-
posed exchange will be accepted with probability W = min(1, e∆), where
∆ = (βj − βi)[E({s}j) − E({s}i)]. To assure a reasonable acceptance rate,
usually only “nearest-neighbour” exchanges (j = i±1) are attempted and the
βi should again be spaced with the δβ given in (5.122). In most applications,
the smallest inverse temperature β1 is chosen in the high-temperature phase
where the autocorrelation time is expected to be very short and the system
rapidly decorrelates. Conceptually this approach follows again the “avoiding
rare events” strategy.

Notice that in parallel tempering no free-energy parameters must be ad-
justed. The method is thus very flexible and moreover can be almost trivially
parallelized.

5.9 Multicanonical Ensembles

To conclude this introduction to simulation techniques, at least a very brief
outline of multicanonical ensembles shall be given. For more details, in par-
ticular on practical implementations, see the recent reviews [4,119–122]. Sim-
ilar to the tempering methods of the last section, multicanonical simulations
may also be interpreted as a dynamical multi-histogram reweighting method.
This interpretation is stressed by the notation used in the original papers by
Berg and Neuhaus [123,124] and explains the name “multicanonical”. At the
same time, this method may also be viewed as a specific realization of non-
Boltzmann sampling [125] which has been known since long to be a legitimate
alternative to the more standard MC approaches [126]. The practical signifi-
cance of non-Boltzmann sampling was first realized in the so-called “umbrella
sampling” method [127], but it took many years before the introduction of
the multicanonical ensemble [123, 124] turned non-Boltzmann sampling into
a widely appreciated practical tool in computer simulation studies of phase
transitions. Once the feasibility of such a generalized ensemble approach was
realized, many related methods and further refinements were developed.

Conceptually the method can be divided into two main strategies. The first
strategy can be best described as “avoiding rare events” which is close in spirit
to the alternative tempering methods. In this variant one tries to connect the
important parts of phase space by “easy paths” which go around suppressed
rare-event regions which hence cannot be studied directly. The second ap-
proach is based on “enhancing the probability of rare event states”, which is
for example the typical strategy for dealing with the highly suppressed mixed-
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phase region of first-order phase transitions [16,122]. This allows a direct study
of properties of the rare-event states such as, e.g., interface tensions or more
generally free energy barriers, which would be very difficult (or practically
impossible) with canonical simulations and also with the tempering methods
discussed in Sect. 5.8.

In both multicanonical versions, the canonical Boltzmann distribution

Pcan(φ) ∝ exp(−βH(φ)) (5.124)

is replaced by an auxiliary distribution

Pmuca(φ) ∝ W ({Qi}) exp(−βH(φ)) ≡ exp(−βH(φ) − f({Qi(φ)})) , (5.125)

where φ denotes generically the degrees of freedom and Qi stands for a macro-
scopic observable such as the energy or magnetization. With a suitably chosen
reweighting factor W ({Qi}), the probability distribution Pmuca({Qi}) of the
macroscopic variables {Qi} can be tuned to take any desired form. Canonical
expectation values can always be recovered exactly by inverse reweighting,

〈O〉can = 〈OW−1({Qi})〉muca/〈W−1({Qi})〉muca , (5.126)

similar to Eq. (5.116).
The Monte Carlo sampling of Pmuca(φ) proceeds in the usual way by com-

paring βH(φ)+ f({Qi(φ)}) before and after a proposed update move of φ. In
most applications local update algorithms have been employed, but for certain
classes of models also non-local multigrid methods are applicable [84,128]. A
combination with non-local cluster update algorithms, on the other hand, is
not straightforward. Only by making direct use of the random-cluster repre-
sentation as a starting point, a multibondic variant [129–131] has been devel-
oped.

The performance of the simulation depends, however, in the first place on
the choice of {Qi} and the reweighting factor W ({Qi}), since for instance in
the special case W ≡ 1 the troublesome canonical ensemble is recovered. The
proper identification of the relevant set of Qi’s requires considerable physical
intuition and insight into the specific system under study. While for disor-
dered complex systems this may be a serious problem, in studies of first-
order phase transitions the proper choice is clear since typically the energy E
(temperature-driven transition) or magnetization M (field-driven transition)
are the relevant variables. In both cases, the reweighting factor is usually cho-
sen such that the multicanonical probability density Pmuca = WPcan is ap-
proximately flat between the two peaks of the canonical distribution. The most
important technical point is the procedure for constructing the multicanonical
weights, for which iterative procedures have been developed [4, 119–122].

If Pmuca was completely flat and the MC update moves would perform
an ideal random walk, one would expect that after V 2 local updates the sys-
tem has travelled on average a distance V in energy or magnetization. Since
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one lattice sweep consists of V local updates, the autocorrelation time should
scale in this idealized picture as τ ∝ V . Numerical tests for various mod-
els with a first-order phase transition have shown that in practice the data
are at best consistent with a behaviour τ ∝ V α, with α ≥ 1. While for the
temperature-driven transitions of 2D Potts models the multibondic variant
seems to saturate the bound [129–131], employing local update algorithms,
typical fit results are α ≈ 1.1−1.3, and due to the limited accuracy of the
data even a weak exponential growth cannot really be excluded. In fact, at
least for the field-driven first-order transition of the 2D Ising model, it has been
demonstrated recently [132, 133] that even for a perfectly flat multicanonical
distribution a “hidden” free energy nucleation barrier leads to an exponen-
tial growth of τ , which is, however, much weaker than in the corresponding
canonical simulation.

5.10 Concluding Remarks

The intention of these lecture notes was to give an elementary introduction to
the basic concepts of modern Monte Carlo simulations and to illustrate their
usefulness by applications to the very simple Ising lattice spin model. The
basic Monte Carlo methods based on local update rules are straightforward
to apply to all models with discrete degrees of freedom and with some extra
care also to continuous variables and off-lattice models. Some generalizations
of cluster update methods have already been indicated. Also other models
may be efficiently simulated by this non-local method, but there is no guar-
antee that for a given model a cluster update procedure can be developed.
The statistical error analysis part is obviously completely general, and also
reweighting, tempering and multicanonical methods can be adapted to almost
every problem at hand.
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