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Considering the present wide-spread use of path integrals {!) in field theory, elemen-
tary-particle physies, and collective phenomena () it is surprising how many standard
text book problems of quantum mechanies have not been solved within this framework.
Reeently, this gap was filled for the hydrogen atom (}). In this note we would like
to exhibit the path integration for a particle in a box (infinite square well). While in
Schrodinger theory this system has a frivial solution, a careful classification of paths
is needed belfore Feynman’s formula can be evaluated.

In the grated version in which the time-axis ig divided into N + 1 intervals via

=g+, 1=0,1,..., N+ 1, the problem consists in performing the infinite pro-
duct of integrals
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with the basis difficulty that the integral over the finite box ze(0, L), is not
completely Gaussian but would render error functions if done in the brute-force way.
In order to circumvent this we formally extend the range of integration to cover the
infinite interval @ € (— oo, oo). After this we develop a convenient procedure for sub-
fracting all amplitudes running through the physically inaccessible domain x> I,
0>ua.

In order to organize this program we construct an extended zone scheme by dividing
the x,t space into infinitely many strips at =0, 4 I, 4 2L, .... Consider all paths
running from a fixed initial point x, to a final point x, within the box. Let us compare
these with two more sets of paths: those going to new final end points z” which are
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displaced against x, by n multiples of 2L (n= 41, --2,..)),

(2) 2™ = 2, | 2nL

(the point x, itself may be considered as «”'), and those going to #" defined by

(3) M =, - 20l .

The point is now that at a fixed x,, summing paths over all end points 2™ and subtracting

them for all Z™ eliminates all paths which do not run completely within the physically
permitted potential well x € (0, L). In order to see this consider a path which touches

the upper (lower) wall o =TI (x==0) once at {, and is then reflected (see fig. 1). There
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Fig. 1. — A curve with one reflection on the upper wall of the box. Its contribution is eliminated

in the path integral by subtracting the path to z{ with the same action.

is a partner to this path in the extended-zone scheme arrives at T (Z)") and has exactly

the same action. By summing all paths to z, and subtracting those to ", (Zi") the
amplitude receives no contribution from single reflections on the upper (lower) wall.

The same procedure eliminates at the same time all paths with two or more suc-
cessive reflections at the upper (lower) wall (see fig. 2).

Consider now a path reflected once at the upper wall for ¢, and at the lower wall
for ¢, (see fig. 3). This path has three partners of equal action in the extended zone
scheme, namely those going to z”, 7, zV. Adding the paths to z,, 2", and subtracting
those to Y, ZV eliminates all paths reflected onece at the upper and afterwards at the
lower wall,

The same statement is true for multiple successive reflections first on the upper
and then on the lower wall for the same reason as before.

In order to generalize this procedure we classify all paths in the following way:
We count how often the path is reflected on the upper wall and on the lower wall in
alternative order. If the number # of the reflections is even, and the first reflection is
at the upper wall, we have to sum paths to a{l™™?, @2 ™ and subtract those
to LMD F@nD i (for the lower wall the end points are @i, ..., a{"*" and
oMY EMY). Tf the number of reflections is odd and first at the upper wall the
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Fig. 2. — A path which reflects successively on the upper wall is eliminated by the same subtraction
procedure as in fig. 1.
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Fig. 3. — A path which reflects once on the upper and then on the lower wall is eliminated by sum-
ming over all paths to »/Y and subtracting all paths to z z{".

end points are zi ™V | gl-1D) gng -GN FE0D) (for the lower wall:
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In this classification successive reflections on the same wall can be contracted and
counted as a single reflection, just as in the special case before.

The amplitude for a particle in a box can now be calculated by functionally

integrating over the whole space and summing all paths going to & =, - 2nJ, while
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subtracting all those going to Z™ =—ux, + 2nL
(4) <wb’ tb]wﬂd ta> = Z <wb + 2’"’-137 tbiwa’ ta>D—Z <...._. Ty + an’ tblmas ta>0 y
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where {w;, 1,|x,,,>° denotes the amplitude for the free particle in the full space which

is obtained by using f{dx; in formula (1). Now the integral is Gaussian and can be

integrated trivially to
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Performing the summation prescribed in eq. (4) gives

[o+]
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This result displays the well-known normalized wave functions
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