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The p-state mean-field Potts glass with bimodal bond distribution ( ± J ) is
studied by Monte Carlo simulations, both for p = 3 and p = 6 states, for system
sizes from N = 5 to N= 120 spins, considering particularly the finite-size scaling
behavior at the exactly known glass transition temperature Tc. It is shown that
for p = 3 the moments q(k) of the spin-glass order parameter satisfy a simple
scaling behavior, q(k) oc N-k/3 fk{ N1/3(1 - T / T C ) } , k = 1, 2, 3,..., fk being the
appropriate scaling function and T the temperature. Also the specific heat
maxima have a similar behavior, cmax oc const- N-1/3, while moments of the
magnetization scale as m( k ) oc N- k / 2 . The approach of the positions Tmax of
these specific heat maxima to Tc as N -> x is nonmonotonic. For /; = 6 the
results are compatible with a first-order transition, q(k) - » ( q j u m p ) ( k ) as N -> x, but
since the order parameter qjump at Tc is rather small, a behavior q(k) oc N-k/3

as N-» oo also is compatible with the data. Thus no firm conclusions on the
finite-size behavior of the order parameter can be drawn. The specific heat
maxima cmax behave qualitatively in the same way as for p = 3, consistent with
the prediction that there is no latent heat. A speculative phenomenological dis-
cussion of finite-size scaling for such transitions is given. For small N ( N < 1 5
for p = 3, N <12 for p = 6) the Monte Carlo data are compared to exact parti-
tion function calculations, and excellent agreement is found. We also discuss
ratios Rx= [(<X>T- [ < X > T ] a v ) 2 ] a v / [ < X > T ] 2 v , for various quantities X, to
test the possible lack of self-averaging at Tc.
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1. INTRODUCTION

Spin glasses are model systems to elucidate the role of quenched disorder
in condensed matter systems and the new types of phase transition
phenomena that such materials may show.(1-4)

Most theoretical research was concerned with the Ising spin glasses,
where spins Si = ± 1 interact with randomly chosen pairwise exchange
interactions Jij. In the present paper, however, we are concerned with the
Potts glass,(5-8) a generalization of the Ising spin glass model to a model
with p discrete states, Si e {1, 2,...,p}, p being an integer. An exchange
energy Jij d s s j between these Potts spins is nonzero only if the considered
pair (i, j) of sites is in the same state, and the value of this energy does not
depend on which of the p states the two sites are in, and again Jij is treated
as a randomly quenched variable.

The Potts glass is a crude model for anisotropic orientational
glasses, (9-11) if we associate the p discrete states with p orientations of an
uniaxial molecule in a diluted molecular crystal. (Just as spin glasses result
from random dilution of magnetic materials with atoms that carry no
magnetic moment, orientational or quadrupolar glasses result from random
dilution of molecular crystals with atoms that carry no electric quadrupole
moment, e.g., N2 diluted with Ar.(12)). Thus, p = 3 if the molecules can align
only along the x, y, z axes of a cubic crystal, p = 6 if they can only align
along the face diagonals, etc.

The main interest in the Potts glass is not due to applications to these
materials, however, but rather due to the fact that the Potts glass is a
generic model to learn about the concepts of phase transitions and order-
ing phenomena in spin glasses, and perhaps in glassy materials in general,
similarly as the nearest neighbor Potts ferromagnet is one of the "work
horses" for the theory of standard phase transitions.(13) The infinite-range
version of the Potts glass has particularly intriguing properties: the tran-
sition from the disordered phase to the glass phase is of second order for
p < 4, but of first order for p> 4. Although in the latter case the glass order
parameter at the transition temperature Tc jumps discontinuously from
zero to a nonzero value qjump there is no latent heat,(6) unlike standard
first-order transitions. In addition, at a lower temperature T2 a second
transition to a different kind of low temperature spin glass phase occurs,
for a certain range of values for the first moment of the bond distribution.
Finally, the dynamic version of the mean-field theory of Potts glasses(14,15)

exhibits striking similarities to the mode coupling theory of the glass tran-
sition.(16)

Of course, it is a challenging question which of these puzzling prop-
erties also occur for short range Potts glasses, and for which spatial
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dimensions d. Since for spin glass systems the upper critical dimension du,
above which mean-field theory holds qualitatively, is commonly believed to
be du = 6,(1,10) a rather different behavior is expected for physically relevant
dimensionalities. But a Monte Carlo study(17) of a nearest neighbor Potts
glass with p=3 states has been interpreted in d = 4 dimensions as being
compatible with a first-order glass transition of similar type as in the
infinite-range model. However, only extremely small lattice sizes were
accessible in that work,(17) which hence was plagued with finite-size effects,
which are not well understood. A systematic study of finite-size effects for
such unconventional phase transitions is clearly required before one can
meaningfully interpret results as those of ref. 17. In addition, the study of
finite-size effects on phase transitions is interesting in its own right , (18,21)

and has contributed a lot to the understanding of phase transitions in
general. Indeed the study of finite-size effects in the infinite range Ising spin
glass has proven very useful,(22-24) and hence analogous studies of the Potts
glass clearly are warranted.

In previous work,(25) a first step in this direction was taken by exact
partition function calculations, which could be carried out for p = 3 up to
N=15, and for p = 6 up to N= 12. While such sizes clearly are too small
to reach the asymptotic limit of finite-size scaling of either model, some
valuable hints on the behavior of these models could already be gained.
Moreover, this work is very valuable as an independent check on the
Monte Carlo simulations that are presented below, which extend from
N=5 to N=120. As is well known, (1 ,10 ,11) Monte Carlo simulations of
glassy systems sometimes suffer from an underestimation of the relaxation
times at equilibrium, and/or from insufficient size of the sample average
over the disordered bond configurations (in a finite-size scaling context the
lack of self-averaging is particularly noteworthy(26,27). Since the partition
function calculations provide exact equilibrium results, and large samples
are accessible (up to 105 or even 106 samples were averaged over ref. 25),
these results do validate the procedures used here for equilibration of
the data, and justify that the accuracy taken from much smaller samples
(only 200 samples are taken in the calculations presented below) actually
suffices.

In the next section, we define the model and the quantities that are
calculated and give some details on the computational procedures. Section 3
then describes our results for the case p = 3, and analyzes them in terms of the
finite-size scaling theory that was already sketched in ref. 25. Section 4
presents the results for p = 6, where our data confirm the existence of the
first order transition without latent heat. Phenomenological discussions of
the finite-size scaling behavior of this case are given. Section 5 then sum-
marizes our conclusions.
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2. MODEL AND COMPUTATIONAL PROCEDURES

2.1. The Model

The Hamiltonian of the p-state mean-field Potts glass of N interact-
ing Potts spins Si (i= 1, 2,..., N) that can take the p discrete values
Si = 1,2,..., p is defined as(5-11,25)

The "exchange constants" (bonds) Jij are quenched random variables, dis-
tributed according to a distribution function P(Ji j ) , whose first two
moments are chosen according to

Here we denote by [ ••• ]av an average over all realizations of disordered
bonds, while thermal equilibrium averages will be denoted as < • • • > T. We
take here the parameters J0 and J as system-size independent constants,
because this choice ensures a sensible thermodynamic limit {remember that
there are 1 N ( N - 1 ) equivalent "bonds" Jij in the Hamiltonian and we wish
to have a thermodynamic limit where the energy is an extensive quantity,
i.e., l i m N _ > 0 0 [ < H > T ] a v / N is finite and in general nonzero}. Analytical
work(5-9) usually assumes a Gaussian distribution of bonds,

Instead of Eq. (4) we use here a bimodal distribution of bonds,

where the concentration x of ferromagnetic bonds and their strengths J are
chosen such that the first two moments yield Eqs. (2), (3) and thus coin-
cide with the moments of the Gaussian distribution,

Since the higher order cumulants of this distribution vanish with higher
powers of N-1 than Eqs. (2), (3), the results obtained for Eq. (5) will coin-
cide with those of Eq. (4) in the thermodynamic limit. It has even been
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shown that the leading terms in finite-size scaling will coincide.(23) Equa-
tion (5) is more convenient for numerical calculations and allows faster
Monte Carlo simulation codes.

We now choose units such that J= 1 and Boltzmann's constant
kB= 1, such that the spin glass transition simply occurs for Tc= 1. Now it
is important to recall that for J0 < (4 — p)/2 there exists a second transition
to a different type of spin glass phase (sometimes called "randomly canted
ferromagnetic phase")(6-8) at a transition temperature T2 given by

It is clearly advisable not to mix up two different types of phase transitions
in a finite-size scaling analysis. Therefore we choose J0 such that T2 occurs
halfway between zero temperature and Tc=1, i.e., T2 = 1/2. With this
choice and Eqs. (6), (7) the explicit choices for x and J become

For p = 3 this reduces to the simple result x= 1/2, J= 1 / ^ / N — 1.
For defining the "magnetization" and the glass order parameter for

Potts models it is necessary to choose a suitable coordinate system to
represent the p states that the spins can take. As usual we choose the
simplex representation,(13,28) i.e., the states 5, correspond to (p— 1) ^dimen-
sional unit vectors pointing towards the Gth corner of a p-simplex, i.e.,

E.g., for p = 3 the space of the three vectors S(1).", S(2), S ( 3 ) representing the
values of the Potts spin Si at site 0 is two-dimensional and their x, y coor-
dinates are denoted as {Sf} = ( S 1 , S2). The vectors read as follows

2.2. Quantities Recorded

In this study we have focused on low order moments of the
Hamiltonian, the magnetization and the order parameter. From the
moments of the Hamiltonian one straightforwardly gets the internal energy
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u per spin, the specific heat cv per spin and the fourth order energy
"cumulant" B4>

Note that K4 sometimes is used as an indicator of "standard" first-order
phase transitions in the context of finite-size scaling analyses/(21'29) Note
that c v = ( d u / d T ) N differs from an analogous quantity c'v,

due to the lack of self-averaging in systems with quenched disorder.(26,27)

Now the magnetization M is a (p — 1 )-dimensional vector, as noted
above, which has p — 1 components

The moments of the magnetization per spin then are given as

while the "susceptibility" becomes

Again we note that an analogous quantity %' similar to Eq. (15) can be
studied

which differs from % because of the lack of self-averaging. Also a fourth order
cumulant U4 = ( p - 1 ) { ( p + 1 ) / ( p - 1 ) - m ( 4 ) / ( m m } 2 } / 2 was studied (30)but
the behavior of this quantity is less interesting and hence not considered here.

For defining an order parameter, we follow standard practice(17,25,31)

to consider two real replicas of the system 1, 2 with identical bond con-
figuration, which evolve independently in parallel in the course of the
Monte Carlo simulation. This order parameter hence is a tensorial variable,
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Since in the simulation we only consider the disordered phase of the system
where the symmetry is not broken (we also do not use any fields coupling
either to components of the order parameter or the magnetization), we
again introduce a "root mean square" order parameter in analogy to
Eq. (16)(17,25,31)

and define moments of the order parameter,

Note that the standard spin glass susceptibility is just related to the second
moment of the order parameter,(1)

and it has proven useful(17,31) to define a fourth-order cumulant g4

2.3. A Brief Review of Exact and Phenomenological Results
for N -> oo

For p < p c = 4 there is a second-order transition at Tc= 1, and within
the replica formalism(1-4) the replica symmetry is not broken for T^ Tc. As
a consequence, one can model(32) the spin glass transition in terms of a
simple Landau-type theory with a scalar order parameter q, writing the free
energy density f(q, m)/kBT as follows

where r', u, r" are coefficients that remain nonzero, positive, and analytic
at Tc. Minimizing this free energy density for T<TC {where Eq. (25) is
only qualitatively correct because of broken replica symmetry} would yield
a linear vanishing of the order parameter at Tc,
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while for T> Tc one concludes that there is a Curie-Weiss like divergence
of XSQ while % remains finite,

Now a phenomenological description of the finite-size scaling limit can be
obtained from Eq. (25) by simply taking this expression in the argument of
a Boltzmann factor to obtain the probability distribution of P(q,m) in a
finite system(25)

or the corresponding reduced distributions {note that to the low order of
the Landau expansion considered in Eq. (25), q and m are not coupled,
while in higher order terms of order q2m2 etc. should appear}

Now from Eqs. (30), (31) the leading behavior in the finite-size scaling
limit can be inferred qualitatively {a quantitative estimation of prefactors
and scaling functions is not possible, since for finite TV replica-symmetry
breaking must be accounted for even for T^TC

 (23)}. This is simply done
by calculating suitable moments,

Note that in the considered approximation the argument of the scaling func-
tion Jk can simply be understood noting that the argument of the exponential
in Eq. (30) can be written as (N 1 / 3 q) 3 u/6 + (N 1 / 3 q) 2 {N 1 / 3 (1 - TC/T)} r'/2,
and thus q(k) at Tc must scale like N- k / 3 , and temperature enters in the scaled
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combination N1/3l1- TC/T) only. We thus also conclude for the scaling of
the spin glass susceptibility

while the ferromagnetic susceptibility should not have any interesting size
effects at all,

noting that f2 is a regular function of temperature at Tc its temperature
dependence results only from assuming a temperature dependence of rn in
Eq. (25)}.

We emphasize that Eqs. (29)-(34) are rather speculative since replica-
symmetry breaking is completely neglected in this argument. However, for
the Ising spin glass (p = 2) Parisi et al.(24) basing on an infinite level of
replica-symmetry breaking, as is appropriate for this case, derived results
compatible with Eqs. (32), (34). Thus it is plausible to assume that Eqs.
(32), (34) hold also for the Potts glass for p>2, despite the fact that the
nature of replica-symmetry breaking (one level is sufficient) differs there
from the Ising spin glass.(67)

It is also interesting to note the analogy of the result(25) q ( l ) N - 1 / 3

for the spin glass order parameter at Tc with the results for the percolation
probability in infinite range percolation at Pc,(33>34) P X ( N ) oc N - 1 / 3 . This
analogy is not accidental, since considering the p -> 1 limit of Potts models
one does obtain percolation.(13,35)

This description, however, cannot even apply qualitatively for
p>pc = 4 where a first-order glass transition occurs and q jumps discon-
tinuously from zero to </jump > 0.(6~8) The value of qjump is only known to
leading order of a p — 4 expansion,(7)

It should also be noted that the distribution of the order parameter P(q]
near Tc according to the replica theory(67) is predicted to behave as
P(q) = (1 — w) d(q) + wd(q — qfjump), where the weight w of the peak at
q =qjump vanishes as Tc is approached, w oc (1 — T/TC). This behavior
implies that all moments vanish continuously, q(k) oc q(k)p( 1 — T/TC). This
behavior is not at all described by the simple free energy ansatz, Eq. (25),
and hence the derivation of a phenomenological finite-size scaling descrip-
tion for this case is rather nontrivial. In the appendix some speculative
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attempts to formulate such an approach will be discussed, starting, e.g.,
from the standard theory of finite-size scaling for first-order transitions
with non-vanishing latent heat.(21,29,36-38)

2.4. Lack of Self-Averaging at Criticality

Wiseman and Domany(26) and Aharony and Harris(27) suggested to
consider in random systems the following ratios

where X are critical quantities (such as magnetization or susceptibility in
ferromagnets, etc.). For systems such as short range ferromagnets with
random bonds, random fields and random anisotropies it was concluded
that(27)

where L is the linear dimension of the d-dimensional system, £ the order
parameter correlation length, and Cx is a universal constant. While Eq. (39)
expresses "strong self averaging" (the relative fluctuation vary inversely
with the volume(39), Eq. (38) exhibits lack of self averaging at criticality.
On the other hand, considering a quantity Y that is non-critical at Tc (such
as the internal energy of the short range system, which is nonzero at Tc)
one finds "weak self averaging" (i.e., Ru decays with a smaller power of L
than d at Tc.

(26)

We now assume that Eqs. (38), (39) can be carried over to systems
with long range interactions by using Eqs. (38), (39) for a short range
system at the upper critical dimension d = du, where the hyperscaling rela-
tion holds with mean-field exponents, d uvM F = yMF + 23MF, and using
Ldu = N we conclude for random mean-field ferromagnets

If we make the further assumption that Eqs. (40), (41) are not only true for
the random ferromagnets considered in refs. 26 and 27, but for spin glass
systems as well where du = 6, VMF= 1/2, }MF= 1, yMF = 1, we conclude that
Eq. (41) can be written as
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We thus find that in general the ratio RX has a scaling structure analogous
to Eq. (32),

with R(z» 1) oc z- 3. We expect this behavior in our case hence for the
moments of the order parameter distribution, i.e., for X=q n , with
n = 1, 2,.... On the other hand, if self-averaging holds for quantities such as
energy and magnetization, which are non-critical quantities in our case, we
expect that the ratios

vanish even at Tc for large N,

For finite N these ratios Ru, Rmn clearly are nonzero, but we do not know
an argument to predict the power laws with which these ratios should
vanish as N-> oo. In any case Eq. (46) has the consequence that the quan-
tities cv, cv converge for N -+ oo to the same limit, as well as that x,x
converge to the same limit, which one can derive using Eq. (46)
straightforwardly in the definitions Eqs. (13), (15) or Eqs. (18), (19),
respectively.

2.5. Monte Carlo Procedures

Standard Metropolis Monte Carlo simulations have been carried out,
putting most effort on T=T C =1, but considering f o r p = 3 also a range of
temperatures below Tc (usually 0.98 <T< 1.0), in order to be able to
locate the temperatures T m a x ( N ) of the specific-heat maxima, which fall
into this region. For p = 6, on the other hand, data for considerably higher
temperatures than Tc= 1 were necessary (up to T = 2-3 for N = 5) to be
able to locate the specific-heat maximum. For being able to locate the
specific-heat maxima, we have used the exact calculations of ref. 25 as
guidance for the temperature range where the maximum should occur, and
then recorded typically 3-5 temperatures in that region, which where used
as a starting point for an interpolation with standard multihistogram
methods(40) to generate smooth curves that "connect" the original data
points. This needs to be done independently for each sample of bond
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configurations. The sample averaging (using in practice a sample of 200
configurations) then is done as a last step. Because of the large storage
requirements, such a reweighting was done only for the energy distribution
(allowing thus to calculate internal energy, specific heat etc. over some tem-
perature range), but not for the joint distribution of energy and order
parameter, which would be needed to obtain reweighted order parameter
moments as well. Most effort hence was devoted to obtain the various
quantities right at Tc. Since T c =1 is known in the present model
beforehand the calculation this allows the most stringent tests of the
theoretical concepts anyway.

Since the model is believed to exhibit a "dynamical phase transi-
tion"(14,15) at some temperature TD>TC, however, critical slowing down
could be a serious problem for our approach, hampering the accuracy that
can be reached. Of course, for small N we do expect that also all divergen-
cies of relaxation time are rounded off, irrespective whether they occur at
TD or Tc. Nevertheless it is important to assess the accuracy, that is
actually reached, since it is known that the statistical error of a quantity A
is enhanced by a factor 2TA relative to the error that would be obtained for
statistically independent data,(41-43)

where Jf is the number of observations used for computing the averages.
Here TA is interpreted as the integrated autocorrelation time of the quan-
tity A, and Eq. (47) is valid if TA is much larger than the time between the
successive "measurements" used to compute the averages.(41-43)

As a crude method to both estimate roughly this autocorrelation time
TA and the actual statistical errors, we have analyzed for some examples the
time series for various data by a binning method. I.e., the N observations
are combined into N/b blocks of size b, carrying out a sub-average of A
(At) over every block (labeled by an index /). Then an error is calculated
as (N = N/b)

Only if b exceeds x2TA, will a A ( b ) settle down at the correct error
estimate, which does not depend on b systematically, while if b < 2tA the
error is systematically too small, but increases with increasing b.

Figure 1 shows two typical examples where this method was used for the
energy per spin. One can see that for T=1 and N = 60 the autocorrelation
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time is still rather small (Tu 13 in units of MCS/spin for p = 6) while for
T=0.5 even small systems (such as N = 30) do not converge to a plateau
during a reasonable autocorrelation time (which is at least T,, = 250 in the
example shown in Fig. 1 but possibly much larger). Therefore no attempt
could be made to study the lower transition at T2 = 0.5.

Another crucial observation that our procedures for equilibration and
averaging are sufficient {typically averages were taken over 500000

Fig. 1. Error Au(b) of the energy per spin plotted versus the bin size for the case p = 6, T= 1,
N = 60, taking measurements every 10 MCS/spin (a) and for the case p = 6, T=0.5, N=30,
with measurements taken in every update step (b).



70 Dillmann et al.

MCS/spin for each sample, taking observations every 100 MCS/spin, and
before the averaging begins a comparably large run is made with no
averages taken to properly equilibrate the data} is the very good agree-
ment with the exact calculations of ref. 25, of course. This fact will become
apparent in the following sections.

Particular care is necessary(26) in estimating the ratios Rx {Eq. (37)},
since the Monte Carlo simulation does not yield < X>T exactly but only an
average X which differs from <A'>T by some statistical error SX, with
[ S X ] a v = 0 but [ (pX) 2 ] a v

= 0. If one hence estimates Rx by Rx defined by

one would systematically overestimate the true Rx. Although in our case
at Tc the contribution due to [(JX)2]av always was relatively small, we
have corrected for it, as suggested by Wiseman and Domany.(26)

3. NUMERICAL RESULTS FOR THE p = 3 STATE POTTS GLASS

We start our discussion by presenting the temperature dependence of
the second moment of the order parameter q(2) for small systems (N < 15),
where "exact" results(25) are available (Fig. 2). It is seen that there is
excellent agreement over the full temperature range (for such small N as

Fig. 1. Second moment of the order parameter distribution of the 3-state Potts glass q(2)

plotted vs. temperature rfor N = 5, 8 and 15. Symbols with error bars are the present Monte
Carlo results, while curves represent the "exact" calculations of Peters el al.(25)
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shown in Fig. 2 the growth of the relaxation times at and below Tc is so
strongly rounded that one can perform the Monte Carlo simulations also
at low temperatures). Ref. 30 contains many more such comparisons which
all show similar agreement (including the case p = 6) and thus establish
that the accuracy of our Monte Carlo procedures is well under control.

Figure 3 shows the second and fourth moment of q(2) plotted vs. N-1

at T — Tc = 1. As a first step to analyze the data, they were fitted to equa-
tions y = a + bxc, which yielded for q(2) the constants a, b, c as (errors
being shown in parenthesis) a = 0.002(2), b= 1.169(40), c = 0.726(17), with
a quality Q of the fit g = 0.93 and x2/f = 0.435 (f being the number of
degrees of freedom of the fit). For q(4) the analogous numbers are
a = 0.3(1.5).10-4, b =1.614(93), c = 2.379(21) and Q = 0.835, x2/f= 0.576,
and for q ( 1 ) (not shown here) a = 0.021(11), b = 1.041(14), c = 0.387(16),
Q = 0.93 and x2/f= 0.436. From these fits one hence can conclude that
a = 0 in all cases, i.e., there is no nonzero order parameter present at Tc for
p = 3, in this respect the Monte Carlo data yield the same conclusion as the
replica treatment.(5-8) However, the exponents c resulting from the fits quoted
above are not in agreement with the prediction q(k) oc N - k / 3 {Eq. (32)}. It is
very likely that this deviation results from corrections to finite size scaling.
In fact, for the infinite range Ising spin glass one can show from replica
symmetry breaking methods the following structure(23,24)

It is probable (but remains to be proven) that Eq. (50) holds for the p = 3
infinite range Potts glass as well. In fact, fits of our data to Eq. (50) are
possible, and one obtains "reasonable" values of the coefficients C(k), C'(k)

and C"(k) (i.e., the coefficients are of order unity, and the quality of the fits
is comparable to the fits quoted above). However, in order to test for the
leading power law in a way unbiased by theoretical prejudices, we also
proceeded in a different manner, fitting the data from N = Nmin up to
Nmax = 120 to a simple power law with a free exponent, y = bxc (with
x= 1/N as before), varying Nmin to see if for large enough Nmin the results
for the exponent c get stable. In this way, one finds that c decreases
systematically with Nmin up to about Nmin = 30, while for larger Nmin the
systematic trend is clearly very small, distinctly smaller than the error of
the fit resulting from the statistical errors of the data. Choosing hence
Nmin = 30 for all q ( k ) one finds for the exponent c = 0.347(7), c = 0.688(15)
and c= 1.352(34) for k= l ,2 ,4 , respectively. While the predicted
exponents k/3 are still slightly outside of the error margins of these fits, we
do not consider these slight deviations as significant, they can very likely
be attributed to a residual effect of the correction terms of Eq. (50) that
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Fig. 3. Second moment q(21) (a) and fourth moment q( 4 ) (b) of the order parameter distribu-
tion for p = 3 at T=TC=1 plotted vs. N-1. Asteriks represent "exact" data from Peters
et al.,(25) diamonds show the present Monte Carlo results. Error bars are only shown if they
exceed the size of the symbols. Curves are fits through the data points as mentioned in the
text.

still influence the data for N ^ Nmin = 30 a little. As a corollary of this
conclusion, Fig. 4 shows plots of q(2) and q(4) vs. N - 2 / 3 and N-4/3, to
demonstrate also by visual inspection that for large enough N the scaling
relation q(k ) oc N - k / 3 holds. The straight lines shown in Fig. 4 are fits to
y = a + bx with parameters a= -0.002(1), b = 0.981(23), x2/f= 0.700and
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Fig. 4. Second moment q(2) (a) and fourth moment q(4) (b) of the order parameter distribu-
tion for p = 3 at T=TC= 1 plotted vs. N-2/3 (a) or N-4/3* (b), including only data for
N>Nmin = 30.

0 = 0.623 in case (a), and a =-0.5(1.2). 10 -4 ,b=1.346(40), x2/f=0.711
and 2 = 0.615 in case (b).

Having tested the scaling of q(k) oc N- k / 3 for T=TC , it also is of inter-
est to check to what extent our data are compatible with the full scaling
structure of Eq. (32) considering off-critical temperatures. Figure 5 shows
scaling plots for the first two moments, including even the smallest values
of N studied. Although there is some statistical scatter and also systematic
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Fig. 5. Plot of q(1) N-1/3 (a) and q(2) N-2/3 (b) vs. the scaling variable N-l/3 (T- Tc)/Tc. for
p = 3. Different symbols show the various values of N, as indicated.

deviations are clearly present (due to the use of too small N and of tem-
peratures too distant from Tc), we do feel that the present data indicate
that Eq. (32) is in fact valid, in the appropriate limit where N- oo and
T-> Tc.

Next we are concerned with the magnetization at the critical tem-
perature (Figs. 6 and 7). All moments recorded {m ( 1 ) m ( 2 ) and m(4)} are
in excellent agreement with the "exact" calculations of Peters et al.(25) for
the corresponding sizes. There is also no doubt that all moments m(k)
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Fig. 6. Plot of the second moment of the magnetization m(2) at Tc as function of N-1 for
p = 3. Asteriks represent the "exact" data from Peters et al.,(25) diamonds show the present
Monte Carlo results. Error bars are only shown if they exceed the size of the symbols. Curve
is a fit through the data points of the form y = a + bxc with a = -0.002(1), b= 1.021(64),
c = 0.874(26), q = 0.854 and x 2 / f = 0.552.

Fig. 7. First moment m(1) of the magnetization distribution at T=Tc, plotted vs. N-1/2 for
p = 3. Only Monte Carlo data for the 7 largest sizes are shown. Straight line y = a + bx is
a result of a fit, with parameters a = 0.006(3), b= 1.066(27), goodness 2 = 0.640 and
x2/f= 0.678.
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vanish as N-» oo. As seen in Fig. 6, one does not really reproduce the
expected power laws m(k) oc N - k / 2 if one includes all values of N in a fit,
due to corrections to the asymptotic behavior. But it is plausible from Fig. 6
that the data for large enough N (N>Nmin = 30) are in fact compatible
with a straight line through the origin, and this expectation is confirmed by
a corresponding fit. The same is true for other moments (Fig. 7). We have
also recorded the magnetization at off-critical temperatures, but since it
always is rather small and with a sample of n = 200 bond configurations
the relative error of this sampling (/2/n = 0.1) is rather large, a convincing
demonstration of the temperature dependence suggested by Eq. (33) has
not been attempted.

For the internal energy uc = E ( 1 ) (T= Tc)/N at the critical temperature
Parisi et al.(23,24) derived in the case of the Ising infinite range model the
finite-size behavior as

Note that this is of the same type as the second moment q(2), as expected,
the only distinction being that the limiting value u* is nonzero. Assuming
that Eq. (51) also holds for the p = 3 Potts glass, we have fitted our data
for uc. to Eq. (51) as well. It turns out that restricting the fit to N> 15 the
correction term u'N-1 can be omitted (Fig. 8).

Fig. 8. Internal energy uc. per spin at T= Tc plotted vs. N -2/3 for p = 3. Straight line
y = a + bx shows results from a fit that yielded the parameters a= -0.985(9), b = 0.818(148),
with quality Q = 0.961 and x2/f= 0.205.
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A rather interesting behavior is exhibited by the specific heat which
shows a maximum cmax at a temperature Tmax that approaches Tc. in a non-
monotonic fashion (Fig. 9). One can fit a quadratic parabola to the curve
Tmax vs- N-1/3 as indicated in Fig. 9(b), but it is clear that this does not
yield a particularly accurate estimate of Tc if one assumes Tc = Tmax

Fig. 9. (a) Maximum of the specific heat cmax plotted vs. -N-1/3 for p = 3. Stars represent
"exact" data from Peters et al.,(25) diamonds show the present Monte Carlo results. Curve is
a fit to the equation y = a + bx1,3 + cx2/3 (with x = 1 / N ) and parameters a = 0.994( 15),
b= -1.307(93), c = 0.397(128), and quality Q = 0.408, x2/f= 1.037. (b) Tmax plotted vs. N-1/3
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(N->cc). Both cmax (Fig. 9(a)) and cc = cv(T= Tc) are compatible with a
behavior Cv = ccrit + c ' v N - l / 3 + c n N - 2 / 3

Finally we return to the ratios Rx characterizing the self-averaging
properties {Section 2.4}. Figure 10 shows log-log plots of Rq and Rq2. at
T=TC versus N. If one excludes the smallest sizes N=5, N =8, no
systematic N-dependence can be seen, and hence these data are in fact com-
patible with the lack of self-averaging predicted in Eq. (40).

Fig. 10. Log-log plot of ratios Rq (a) and Rq2 (b) for T= Tc. versus N for p = 3. The horizon-
tal straight lines indicate that the data are compatible with the approach to an N-independent
limit.
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In contrast, quantities such as u and cv that reach finite limits uc and
c'y at Tc. are compatible with strong self-averaging even at Tc (Fig. 11) . But
the moments of the magnetization, which is a "non-ordering field" at this
transition but has moments which vanish only for N-> oo, seems to show
weak self-averaging only (Fig. 12). In fact, it seems possible that both Rm

1

and R,,,2 show a scaling behavior Rmk oc N - 1 / 3 independent of the order of
the moment k. Remembering that the moments of the magnetization did

Fig. 11. Plot of the ratio Ru (a) and Rct (b) at T= Tc versus 1/N for p = 3.
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not scale as powers of N 1/3 but rather as powers of N- 1/2 {Eq. 33, Figs. 6
and 7}, this is somewhat unexpected. Of course, it always is possible that
in the regime of N studied the asymptotic size dependence has not been
fully reached, and in view of the very large error bars in Fig. 12 any
systematic correction to scaling could easily be overlooked. This problem
deserves further investigation but would require a substantially larger com-
putational effort than is possible at present.

Fig. 12. Plot of the ratios Rm (a) and Rm2 (b) at T= Tc versus N-1/3 for p = 3.
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4. NUMERICAL RESULTS FOR THE p = 6 STATE POTTS GLASS

Again we start our discussion by focusing on the moments of the order
parameter distribution (Figs. 13, 14). As for the case p = 3, we want to
proceed with our analysis in an unbiased fashion, and thus first try fits to
the form y = a + bxc (x = 1 / N ) but since we expect that only data for large
N can show the asymptotic behavior, we restrict the range of the fit to

Fig. 13. First moment q(1) (a) and second moment q (2 ) (b) of the order parameter distribu-
tion of the 6-state Potts glass at T= Tc= 1 plotted vs. N-1. Asteriks denote the "exact" data
of Peters et al.(25) while diamonds denote the Monte Carlo data. Only open symbols have
been used for fitting the curves shown, which are discussed in the main text.
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Fig. 14. First moment q(1) plotted vs. N-1 as in Fig. 13, but (a) including data only for
N > N m i n = 40. The curve shown is a fit to the equation y = 2/15+bxc with x = 1 / N ,
b = 3.434(232) and c = 0.877(17), (b) including data only for N > N m i n = 30. The curve shown
is a fit to the equation y = bxc with x=1/N, b = 0.960(18) and c = 0.348(5).

N>N m i n = 40 in this section. For q(1) we thus obtain fitted parameters
a = 0.098(23), b = 1.670(510), c = 0.621(118), and the quality of the fit is
characterized by x2/f= 0.542, Q = 0.653, while for q(2) the analogous
numbers are a = 0.015(4), b = 2.112(817), c = 0.973(122), X

2/f= 0.519 and
Q = 0.669. Of course, again the effect of varying Nmin was studied, and
since the uncertainties of the fit strongly increase with increasing Nmin, this
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value of Nmin was again chosen where the systematic trend (e.g., the inter-
cept a systematically increases with increasing Nmin but stabilizes for
Nmin >40) gets lost in the uncertainty found from the fit.

The result of these fits for all three moments q(1), q ( 2 ) and q(4) hence
is that the limiting value for N-> oo (namely the above constant a) is
slightly different from zero. In order to test whether this is a consequence
of the first-order transition described by Eq. (36), we have tried a second
fit, where a = (qjump)k with qjump = 2/15 was used as a constraint (Fig. 14(a)).
It is seen that such fits are nicely possible also (fits for q ( 2 ] and q(4)

are of similar quality(30)). However, as mentioned above, such a behavior
is not consistent with the replica theory, which rather requires nonzero
intercepts for T< Tc only (a oc qkjump(1 - T /T c ) ) . Thus we have also tried
a third fit where we impose the constraint a = 0 in the fit, q(k) = bx
Fig. 14(b). Also in this case an acceptable quality of the fit is obtained, and
the exponent c for k =1, 2 and 4 is roughly compatible with a behavior
c = k/3.

While on the basis of their exact enumeration data (included as
asteriks in Fig. 13(b)) Peters et al.(25) had concluded that limN-> q(k}>0,
the downturn of the data for N-1 <0.1 in Fig. 13(b) already raises some
doubt on the firmness of this conclusions, and the comparison of the fits
Fig. 14(a), (b) shows that in fact no firm conclusion can be drawn!

Fig. 15. Second moment of the magnetization distribution m(2) of the 6-state Potts glass at
Tc plotted vs. N-1. Asteriks show "exact" data of Peters et al.,(25) diamonds show the present
Monte Carlo results. Curve is a fit of the function y = a +bxc ( x = 1 / N ) through the data with
the open symbols, yielding parameters a = 2(2) . 10 - 4 ,b = 0.474(34), c= 1.037(25), the quality
of the fit being characterized by x2/f= 0.489, Q = 0.865.
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Also for p= 6 the magnetization is still nicely compatible with the
expectation that m(k) oc N - k / 2 , Eq. (33). Also for first-order glass tran-
sitions, the magnetization is decoupled from the order parameter to leading
order, and we can assume that Eq. (31) is still valid. Figure 15 shows, as
an example (more details are found in ref. 30) a plot of m(2) vs. N-1,()
demonstrating that the asymptotic regime of the linear behavior is much
wider than for the order parameter.

Fig. 16. (a) Maximum cmax of the specific heat of the 6-state Potts glass plotted vs. N- l/2.
Asteriks denote the "exact" data of Peters et al.,(25) diamonds the present Monte Carlo results,
(b )T m a x plotted vs. N-1/2.
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Again the behavior of the specific-heat maxima is rather interesting. In
view of the phenomenological finite-size scaling theory of the Appendix,
which predicts asymptotic variations proportional to N - 1 / 2 , we have plotted
our data against this variable (Fig. 16). Again the agreement with the
"exact" data of Peters et al.(25) is gratifying, as well as the clear hint that
there is no divergence of cmax as N -> oo and hence no latent heat, despite
the fact that we have a jump of the glass order parameter at the transition.
While the curve Tmax vs. N - 1 / 2 is very much curved—if the finite-size

Fig. 17. Plot of the ratio Ru (a) and Rcv (b) at T= Tc. versus 1/N for p = 6.
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scaling theory of the Appendix is correct at all, at least doubts could be
raised whether any of our data fall in the asymptotic regime of finite-size
scaling. Neither for p = 3 nor for p = 6 extrapolation of specific-heat maxima
locations would be a practical method to accurately find the transition
temperature! The curve cmax vs. N - 1 / 2 is better behaved, but it should be
remarked, that a curve cmax vs. N-1/3 looks equally nice {ref. 30}, and if
one would plot cmax vs. N - 1 / 6 all data included in Fig. 16(a) would fall
perfectly on a straight line—unfortunately there is no theoretical reason

Fig. 18. Plot of the ratios Rm' (a) and Rm2 (b) at T= Tc versus 1/N for p = 6.
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known to us to expect such an exponent, however. Rather a more plausible
interpretation is that the first-order glass transition is rather weak (since
q jumP is much smaller than unity) and hence rather large N may be required
to establish the proper asymptotic behavior.

A rather interesting distinction concerns the ratios Rx characterizing
the self-averaging properties: both Ru, Rcv, and Rm1, Rm2 seem to exhibit
strong self-averaging at Tc (Figs. 17, 18). The ratios Rq1 and Rq2, on the
other hand, even show a slight tendency to increase with N for large N,
indicating that the asymptotic region has not quite been reached (Fig. 19).

Fig. 19. Log-log plot of the ratios Rq1 (a) and Rq2 (b) for T= Tc. versus N for p = 6.
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5. CONCLUDING REMARKS

In this paper we have addressed static properties of the p-state infinite-
range Potts glass from the point of view of finite-size scaling, studying both
p = 3 and p = 6. While for p = 3 mean-field theories based on the replica
method predict a second-order glass transition, for p = 6 a first-order glass
transition without latent heat is predicted. Our Monte Carlo results are
compatible with these predictions. We have relied, however, on the
knowledge of Tc from the mean-field theory, while the Monte Carlo data
by themselves are not really so suitable to locate the transition temperature
accurately. E.g., since the specific heat at Tc is finite in both models,
extrapolation of the location of specific-heat maxima (which is one of the
standard methods of locating phase transitions of standard type, of course)
is not practical here. Another standard method, looking for common inter-
section points of the order parameter cumulant is not a successful approach
here either: this is already seen from the amplitude factors in the
asymptotic power laws for q(k) at Tc, which are for p = 3 : q(2)= 0.9N-2/3,
q (4)=1.35N-4/3, and hence g4 {Eq. (24)} becomes g4 = 2 { 3 / 2 - q ( 4 )

[q(2)]2} =0, within the accuracy with which we could estimate these
prefactors! Thus the behavior of g4 near Tc is mostly controlled by correc-
tions to finite-size scaling, and no unique intersection point is found. This
behavior seems to differ appreciably from the infinite range Ising spin glass,
where such analyses have had reasonable success. Another unsatisfactory
feature of our results is that they cannot distinguish the difference in
character of the transition for p = 3 and for p = 6.

An intriguing property that is not understood is the fact that for p = 3
the ratios Rmk relating to the self-averaging properties of the moments of
the magnetization distribution seem to imply weak self-averaging only,
while for p = 6 strong self-averaging is found. In contrast, [<mk>Tc ] a v %
N - k / 2 holds in both cases.

It hence would be very desirable if the replica theory could be
extended to treat finite-size effects for the Potts glass as well, as was done
for the Ising spin glass by Parisi et al. (24 ,25) Such an extension to finite
systems could be much more stringently tested than the thermodynamic
limit, N -> co, for which our data do allow a tentative extrapolation, but
there are still significant uncertainties. We hope that the present work will
stimulate such an extension of the replica theory. Also the ratios charac-
terizing self-averaging properties should be computed from such a treat-
ment.

Another interesting extension of our model which must be left to
future work is the extension to dynamics. Since the model is related to
models of the structural glass transition, such an extension clearly would be
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very interesting. A further topic that deserves study is the search for other
systems which exhibit first-order transitions without latent heat. Our
phenomenological theory for this case could then be put to another test.

APPENDIX: FINITE-SIZE SCALING FOR FIRST-ORDER
TRANSITIONS WITHOUT A LATENT HEAT

In this appendix we speculatively consider various heuristic
possibilities to describe first-order transitions without latent heat, without
relying explicitly on the use of the replica theory to the Potts glass.(6'7)

One possibility to obtain a first-order transition, where the order
parameter jumps discontinuously but there is no latent heat, is to consider
second order transitions with general exponents b, y •• • and consider the
limit b > 0 . The finite-size scaling relations (for systems with short range
interactions in a (hyper-) cubic box of volume Ld) can be written as (2 l )

where we have used the abbreviation t = 1 — T/TC and replaced the more
standard factor L1/v (where v is the correlation length exponent) by
Ld/(y + 2b) since then £q (52) holds also above the upper critical dimension
du (where the hyperscaling relation dv =b + 2b no longer holds). The mean-
field limit where spins interact independent of distance is obtained from
Eq. (52) by identifying the volume Ld with the number of spins, N, i.e.

It is seen that using the mean-field exponents B= 1, b= 1 appropriate for
spin glasses one obtains

As expected, these relations are equivalent to Eqs. (32), (34).
If we would assume that Eq. (53) holds also for a case with /? = 0, one

would conclude (b = 0)

It is seen that this treatment does not yield any information on finite-size
corrections to the order parameter at Tc, since there simply q = Q ( 0 ) is
independent of N in the finite-size scaling limit.

Another possibility is to consider the standard finite-size scaling theory
for first-order transitions.(21,29,36,38) There one starts from the fact that for
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T=TC the free energies of the ordered (Ford) and disordered (Fdis) phases
are equal, Fc, and assumes that Taylor expansions can be written down
both for T>TC and T<TC, which we distinguish by superscripts >, <,
see Fig. 20. In Fig. 20, we disregard the problem that in the replica theory
the thermal equilibrium is described by a maximum rather than a mini-
mum of the free energy (which would imply in Fig. 20(a), (b) the opposite
sign of the curvature of the various branches, of course).

We now consider the free energy differences AF> = F>
rd — F>

is >0 and
aF< = F<is — F<

rd>0, which we have defined such that both of them are
positive, and assuming that the ordered phase is stable at T<TC, and the
disordered one is stable at T> Tc. Considering now the situation that
the latent heat is zero, we must have ( d F > i s / d T ) T c = ( d F > r d / d T ) T =
(dFdis/dT)T = ( d F < d / d T ) T c i.e., the free energy cannot have a kink at Tc,
as it has in the case of a latent heat, but only a discontinuity in a higher
derivative can occur. Therefore
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Fig. 20. Schematic variation of free energy F(a), (b) and entropy S= - ( d F / d T ) v (c), (d)
with temperature at first order transitions, both for the case with a latent heat £dis — £ord =
(Sdis — So r d)/T,. (a), (c) and without it (b), (d). In the case with latent heat, free energies of
the ordered and disordered branches Ford, Fdis are equal at Tc. (Ford = Fdis = Fc.) but differ
already in order (T— Tc), while in the case without latent heat both F and (dF/dT) v are equal
in both branches at T= Tc, and only ( d 2 F / d T 2 ) v at Tc. differs. Note, however, that we must
have F>is < F>rd for T> Tc. and simultaneously F <rd < F<is, for T< Tc which cannot happen
if two regular functions touch tangentially at Tc,.: Then the function whose specific heat is
larger would have the lower free energy at both sides of Tc,.. Thus a first order transition
without latent heat must involve a singularity of at least one branch at Tc. In Eqs. (56)-(59)
a jump singularity of the specific heat is assumed.

91
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The weights with which the ordered and disordered phases appear above
Tc and below Tc hence can be written as follows

Eqs. (62), (63) are still formally identical to the results of Vollmayr et al.(38)

who allowed a nonzero latent heat Edis — Eord and hence the free energy
differences varied linear in T—TC, Fdis — Ford = — (Edis —Eord)(T— Tc)/
Tc+ • • • . While in this case with Edis-Eold >0 in leading order the weights
simply are(38)

and for T<TC

According to the theory developed in refs. 29, 36, and 38 these weight fac-
tors controlled both rounding and shifting of the transition (the order of
magnitude of these effects is simply estimated by arguing that the argument
of the exponential function in the region where the transition is rounded is
of order unity!). From Eqs. (64), (65) one predicts a rounding of order
\T-TC\ QC 1/N while Eqs. (66), (67) and (68), (69) predict a rounding of
order \T-TC\ x 1 /^ /N.

in the present case the quadratic variation of AF>, AF< in (T— Tc] leads
to a different scaling behavior of the weights, namely for T>TC
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These conclusions are made more explicit considering the order
parameter distribution, following ref. 38 using normalized weights h, 1-h
{cf. Eq. (14) of ref. 38}

where we have assumed that we can treat the order parameter q^ of the
spin glass analogous to the (p — 1 )-dimensional order parameter of the
Potts ferromagnet, Qp_1 being the surface area of a (p — 1 )-dimensional
unit sphere, and Xdis, Xord are the spin glass susceptibilities in the disor-
dered and ordered phases at T=TC in the thermodynamic limit, respec-
tively. The weakest point of this analogy is that some assumption on the
degeneracy of the ordered phase of the spin glass is needed. The smallest
possible degeneracy is that of the corresponding Potts ferromagnet, i.e.,
p (this assumption is probably true near the lower critical dimensionality
but not for the mean-field Potts glass). Then

h=Wdis/(Wdis + P W o r d )

It is clear that Eq. (71) does not reduce to weights of the ordered and dis-
ordered phases 1-h* oc ( 1 - T / T c ) , h< oc T/TC in the thermodynamic
limit, that the replica theory predicts.(6'7) It is not clear to us how one has
to modify Eqs. (64)-(70) in order to obtain the results of the latter theory.

In ref. 38 it was pointed out, that the parameters of this model calcula-
tion can be scaled out by defining a renormalized "volume"

as well as a renormalized temperature scale, which in ref. 38 was written as

while in the present case where A = 0 we rather have a variable
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and then all moments <qk> only depend on one additional parameter
x = x/dis/Zorf- Thus we recognize that the treatment of ref. 38 to a large
extent can be carried over, if we consider the (nonlinear!) transformation
of the temperature scale from Eq. (73) to Eq. (74). In particular, we con-
clude from this that the cumulant g4 considered in Eq. (24) still should
have a nearly universal intersection point for N so large that also n » 1
{Eq. (72)} and a minimum for T> Tc. We predict according to ref. 38,
using Eqs. (73), (74), that the position of this minimum should scale as

Note, however, that due to the smallness of qjump {Eq. (36)} it is doubtful
whether the condition n » 1 can be met in practice. And while the devia-
tions of intersections between g4(N), g 4 ( 2 N ) in the case £ord — £dis= 0
scale like Tinter(N, 2N) — Tc cc 1/N 2 , we here expect only a scaling like 1 /N ,
T inter(N, 2N)-Tcoc 1/N in the present case.

While with respect to finite-size effects on the order parameter the lack
of any latent heat thus simply expands the temperature scale on which the
transition is smeared out from 1/N to 1 / / N , for the specific heat the
phenomena are naturally more drastic: In the case where a latent heat is
present we have

where the first term represents the smeared delta-function singularity, and
the next term, the "background" specific heat (where Cdis, Cord are the
specific heats of the two phases at Tc in the limit N -» oo) hence is a relative
correction of order 1/N only. In our case such a finite term is the leading
term. In order to derive the specific heat in the transition region, we write
the internal energy of the finite system E^, E^ below and above Tc as a
weighted average over both phases,

Using E=F- T(dF/dT)v we obtain from Eqs. (56)-(59)
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The specific heat then is found from

From Eq. (71) we find for T> Tc in terms of x = C>(T- Tc)
2 N/kBTc that

h> =(1 + p e-x)-1 and hence

and similarly for T< Tc, using then x = C<(T- Tc)
2 N/kBTc and

h < = ( 1 + p e x ) - 1

From Eqs. (85), (86) we see that C^, C^ can be rewritten as

Of course, a necessary consistency condition of our description is that for
T=TC the specific heat is continuous, C < \ T c = C>/Tc. This requires,
noting that at Tc we have h<=h> = (1+ p ) - 1
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For T> Tc and large x we have h> -> 1, dh>/dx -» 0 and hence

as it should be. Similarly, for T<TC and large x we have h< -> 0, and
thus C< = - T ( d 2 F < d / d T 2 ) T c remains as required. Thus Eqs. (87), (88)
describe the smooth crossover from C> = — T(d2F^is/dT2)T to C< =
— T ( d 2 F < d / d T 2 ) T c i.e., the jump of the specific heat from one finite value
to another finite value is rounded on the scale of ATec 1/R/N, as is
obvious from the above definitions of x. Since for large N this temperature
interval is rather narrow, we may replace T by Tc in the square brackets
in Eqs. (87), (88), to obtain

and similarly for C>. Using Eqs. (85), (86), we find that the square
bracket can be written as

which shows that C> has a maximum at xm > 0 given by the following
transcendental equation

Since the relation between T and x is given by the quadratic equation
x=C<(T-Tc)

2 N/kBTc, however, the two signs of the solution for
Tm — Tc corresponding to xm would imply two maxima of the specific heat
both above and below Tc. But Eqs. (91)-(93) should be used for T<TC

only. For T> Tc, Eq. (88) implies near Tc

with
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which has a maximum at xm ,>0. {Note that for T> Tc,. the constant C>

replaces — C<, cf. Eq. (71): Since both constants C>, C" have been
defined such that they are positive, cf. Fig. 20(b) and Eqs. (60), (61), the
two solutions xm>0 and —x'H,<0 are the minimum and maximum of
f<(x), respectively.} Hence we conclude that the specific heat has two
maxima at Tm < Tc. and T'm > Tc, given in terms of xm and x'm {Eq. (93)} as

i.e., the specific heat has finite maxima shifted from Tc by a N-1/2 correction.
For a typical set of parameters (e.g., p = 6, Tc.= 1, ( d 2 F^ s / dT 2 ) T c =

-1.5, (d2F<d/aT2)Tc. = -0.5, ( d 2 F < s
/ d T 2 ) T c = -0.3, and ( d 2 F d / d T 2 ) =

-0.3 (using Eq. (89)), however, the maximum at Tm< Tc. turns out to be
so shallow that it is hardly visible and therefore difficult to detect with
noisy Monte Carlo data. For an illustration see Fig. 21. In any quantitative
comparison with the Monte Carlo data it should be kept in mind, of
course, that Eqs. (91)-(95) are leading-order approximations which can
only be trusted in the limit N -* oo, T= Tc,.. And since in the present case,
1/Rn is the relevant parameter, the asymptotic region is reached much
slowlier than for a standard first-order phase transition with a non-
vanishing latent heat where the finite-size scaling is governed by I/TV.

Fig. 21. Leading-order prediction for the specific heat Cv according to Eqs. (91)-(95) for
p = 6 with Tc= l, ( t 2 F >

s / y T 2 ) T c = -l.5, ( d 2 F <
d , / d T 2 ) T c = -0.5, ( d 2 F ^

s / S T 2 ) T c = -0.3, and
( d 2 F > r d / d T 2 ) T c = -0.3 (using Eq. (89)). The peak at Tm<T, is strongly suppressed because
-f<(xm)=0.'0682 is much smaller than f<(-xm) = 1.8342 (xm= 1.6040, x'm =2.9249).
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This conclusion can be obtained in a rather different way, generalizing
the description of first-order transitions developed by Borgs et al.(36) Then
the partition function is written as

Z(T, N) =p exp[ -NFord(T)/kBT] +exp[ -NFdis(T)/kBT]

where

Note, however, that also in this formulation AF for T>TC and for T < Tc

must be different, cf. Fig. 20 and Eqs. (56- (61) . Using f = 1/kBT one finds
for the energy per spin

where AE = Edis — Eord. The specific heat then becomes

where the abbreviation is introduced

where u(2)
d, u(2) are the normalized specific heats of the pure ordered or dis-

ordered phases, respectively, and zu(2)=u(2)-u(2)
d. For AE = A E ( i c ) = 0 ,

the maximum location fmax can be systematically expanded as Bmax =
Bc + a 1 / N + • • • , expanding all quantities around Bc (AB = b —B c ) ,

where the "hat" again indicates quantities evaluated at Bc. For AE^O
(nonzero latent heat) the maximum of u(2) in Eq. (102) is found for j = 0, of
course, and then Eq. (103) yields the well-known shift inversely proportional
to N, Af = (In p/AE)/N. For AE = 0, however, y = 0 is not the solution,

+ exponentially small terms
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since then all terms in Eq. (102) are of the same order. In leading order
Eq. (102) then yields

Abbreviating

Eq. (105) can be written as

Since the last term is a constant, the maximum of u(2} is found from
dp™Id£, = 0 or

With a little algebra Eq. (108) can be reduced to Eq. (93), identifying
C= -xm/2.
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